European Journal of Epidemiology

, Volume 29, Issue 9, pp 629–638 | Cite as

Association of adiponectin and leptin with relative telomere length in seven independent cohorts including 11,448 participants

  • Linda Broer
  • Julia Raschenberger
  • Joris Deelen
  • Massimo Mangino
  • Veryan Codd
  • Kirsi H. Pietiläinen
  • Eva Albrecht
  • Najaf Amin
  • Marian Beekman
  • Anton J. M. de Craen
  • Christian Gieger
  • Margot Haun
  • Peter Henneman
  • Christian Herder
  • Iiris Hovatta
  • Annika Laser
  • Lyudmyla Kedenko
  • Wolfgang Koenig
  • Barbara Kollerits
  • Eeva Moilanen
  • Ben A. Oostra
  • Bernhard Paulweber
  • Lydia Quaye
  • Aila Rissanen
  • Michael Roden
  • Ida Surakka
  • Ana M. Valdes
  • Katriina Vuolteenaho
  • Barbara Thorand
  • Ko Willems van Dijk
  • Jaakko Kaprio
  • Tim D. Spector
  • P. Eline Slagboom
  • Nilesh J. Samani
  • Florian Kronenberg
  • Cornelia M. van Duijn
  • Karl-Heinz Ladwig
GENETIC EPIDEMIOLOGY

Abstract

Oxidative stress and inflammation are major contributors to accelerated age-related relative telomere length (RTL) shortening. Both conditions are strongly linked to leptin and adiponectin, the most prominent adipocyte-derived protein hormones. As high leptin levels and low levels of adiponectin have been implicated in inflammation, one expects adiponectin to be positively associated with RTL while leptin should be negatively associated. Within the ENGAGE consortium, we investigated the association of RTL with adiponectin and leptin in seven independent cohorts with a total of 11,448 participants. We performed partial correlation analysis on Z-transformed RTL and LN-transformed leptin/adiponectin, adjusting for age and sex. In extended models we adjusted for body mass index (BMI) and C-reactive protein (CRP). Adiponectin showed a borderline significant association with RTL. This appeared to be determined by a single study and when the outlier study was removed, this association disappeared. The association between RTL and leptin was highly significant (r = −0.05; p = 1.81 × 10−7). Additional adjustment for BMI or CRP did not change the results. Sex-stratified analysis revealed no difference between men and women. Our study suggests that high leptin levels are associated with short RTL.

Keywords

Telomere length Adipocytokines Leptin Oxidative stress Inflammation 

Supplementary material

10654_2014_9940_MOESM1_ESM.doc (391 kb)
Supplementary material 1 (DOC 391 kb)

References

  1. 1.
    Tilg H, Moschen AR. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol. 2006;6(10):772–83.PubMedCrossRefGoogle Scholar
  2. 2.
    Conde J, et al. At the crossroad between immunity and metabolism: focus on leptin. Expert Rev Clin Immunol. 2010;6(5):801–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Hui X, et al. Adiponectin and cardiovascular health: an update. Br J Pharmacol. 2012;165(3):574–90.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Enriori PJ, et al. Leptin resistance and obesity. Obesity (Silver Spring). 2006;14(Suppl 5):254S–8S.CrossRefGoogle Scholar
  5. 5.
    Blackburn EH, Gall JG. A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. J Mol Biol. 1978;120(1):33–53.PubMedCrossRefGoogle Scholar
  6. 6.
    Blackburn EH, Greider CW, Szostak JW. Telomeres and telomerase: the path from maize, tetrahymena and yeast to human cancer and aging. Nat Med. 2006;12(10):1133–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Halvorsen TL, et al. Accelerated telomere shortening and senescence in human pancreatic islet cells stimulated to divide in vitro. J Endocrinol. 2000;166(1):103–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Kurz DJ, et al. Chronic oxidative stress compromises telomere integrity and accelerates the onset of senescence in human endothelial cells. J Cell Sci. 2004;117(Pt 11):2417–26.PubMedCrossRefGoogle Scholar
  9. 9.
    von Zglinicki T. Oxidative stress shortens telomeres. Trends Biochem Sci. 2002;27(7):339–44.CrossRefGoogle Scholar
  10. 10.
    von Zglinicki T, et al. Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence? Exp Cell Res. 1995;220(1):186–93.CrossRefGoogle Scholar
  11. 11.
    Brouilette S, et al. White cell telomere length and risk of premature myocardial infarction. Arterioscler Thromb Vasc Biol. 2003;23(5):842–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Brouilette SW, et al. Telomere length, risk of coronary heart disease, and statin treatment in the West of Scotland Primary Prevention Study: a nested case-control study. Lancet. 2007;369(9556):107–14.PubMedCrossRefGoogle Scholar
  13. 13.
    Fitzpatrick AL, et al. Leukocyte telomere length and cardiovascular disease in the cardiovascular health study. Am J Epidemiol. 2007;165(1):14–21.PubMedCrossRefGoogle Scholar
  14. 14.
    Kalantar-Zadeh K, et al. Epidemiology of dialysis patients and heart failure patients. Semin Nephrol. 2006;26(2):118–33.PubMedCrossRefGoogle Scholar
  15. 15.
    Aviv A, et al. Menopause modifies the association of leukocyte telomere length with insulin resistance and inflammation. J Clin Endocrinol Metab. 2006;91(2):635–40.PubMedCrossRefGoogle Scholar
  16. 16.
    Diaz VA, et al. Telomere length and adiposity in a racially diverse sample. Int J Obes (Lond). 2010;34(2):261–5.CrossRefGoogle Scholar
  17. 17.
    Njajou OT, et al. Shorter telomeres are associated with obesity and weight gain in the elderly. Int J Obes (Lond). 2011;36:1176.CrossRefGoogle Scholar
  18. 18.
    Njajou OT, et al. Shorter telomeres are associated with obesity and weight gain in the elderly. Int J Obes (Lond). 2012;36(9):1176–9.CrossRefGoogle Scholar
  19. 19.
    Valdes AM, et al. Obesity, cigarette smoking, and telomere length in women. Lancet. 2005;366(9486):662–4.PubMedCrossRefGoogle Scholar
  20. 20.
    Zhu H, et al. Leukocyte telomere length in healthy Caucasian and African-American adolescents: relationships with race, sex, adiposity, adipokines, and physical activity. J Pediatr. 2011;158(2):215–20.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Al-Attas OS, et al. Adiposity and insulin resistance correlate with telomere length in middle-aged Arabs: the influence of circulating adiponectin. Eur J Endocrinol. 2010;163(4):601–7.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Aulchenko YS, et al. Linkage disequilibrium in young genetically isolated Dutch population. Eur J Hum Genet. 2004;12(7):527–34.PubMedCrossRefGoogle Scholar
  23. 23.
    Pardo LM, et al. The effect of genetic drift in a young genetically isolated population. Ann Hum Genet. 2005;69(Pt 3):288–95.PubMedCrossRefGoogle Scholar
  24. 24.
    Wichmann HE, et al. KORA-gen–resource for population genetics, controls and a broad spectrum of disease phenotypes. Gesundheitswesen. 2005;67(Suppl 1):S26–30.PubMedCrossRefGoogle Scholar
  25. 25.
    Schoenmaker M, et al. Evidence of genetic enrichment for exceptional survival using a family approach: the Leiden Longevity Study. Eur J Hum Genet. 2006;14(1):79–84.PubMedGoogle Scholar
  26. 26.
    Beekman M, et al. Chromosome 4q25, microsomal transfer protein gene, and human longevity: novel data and a meta-analysis of association studies. J Gerontol A Biol Sci Med Sci. 2006;61(4):355–62.PubMedCrossRefGoogle Scholar
  27. 27.
    Moayyeri A et al. Cohort profile: TwinsUK and healthy ageing twin study. Int J Epidemiol. 2012.Google Scholar
  28. 28.
    Heid IM, et al. Genetic architecture of the APM1 gene and its influence on adiponectin plasma levels and parameters of the metabolic syndrome in 1,727 healthy Caucasians. Diabetes. 2006;55(2):375–84.PubMedCrossRefGoogle Scholar
  29. 29.
    Kaprio J. Twin studies in Finland 2006. Twin Res Hum Genet. 2006;9(6):772–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Pietilainen KH, et al. Growth patterns in young adult monozygotic twin pairs discordant and concordant for obesity. Twin Res. 2004;7(5):421–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Cawthon RM. Telomere measurement by quantitative PCR. Nucleic Acids Res. 2002;30(10):e47.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    R Development Core Team. R: A language and environment for statistical computing. Vienna, Austria: R foundation for Statistical Computing; 2010.Google Scholar
  33. 33.
    Knudson JD, et al. Leptin and mechanisms of endothelial dysfunction and cardiovascular disease. Curr Hypertens Rep. 2008;10(6):434–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Okamoto Y, et al. Adiponectin: a key adipocytokine in metabolic syndrome. Clin Sci (Lond). 2006;110(3):267–78.CrossRefGoogle Scholar
  35. 35.
    Considine RV, et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med. 1996;334(5):292–5.PubMedCrossRefGoogle Scholar
  36. 36.
    Kistorp C, et al. Plasma adiponectin, body mass index, and mortality in patients with chronic heart failure. Circulation. 2005;112(12):1756–62.PubMedCrossRefGoogle Scholar
  37. 37.
    Kizer JR, et al. Adiponectin and risk of coronary heart disease in older men and women. J Clin Endocrinol Metab. 2008;93(9):3357–64.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Maiolino G, et al. Plasma adiponectin for prediction of cardiovascular events and mortality in high-risk patients. J Clin Endocrinol Metab. 2008;93(9):3333–40.PubMedCrossRefGoogle Scholar
  39. 39.
    Menon V, et al. Adiponectin and mortality in patients with chronic kidney disease. J Am Soc Nephrol. 2006;17(9):2599–606.PubMedCrossRefGoogle Scholar
  40. 40.
    Pilz S, et al. Adiponectin and mortality in patients undergoing coronary angiography. J Clin Endocrinol Metab. 2006;91(11):4277–86.PubMedCrossRefGoogle Scholar
  41. 41.
    Jorsal A, et al. Serum adiponectin predicts all-cause mortality and end stage renal disease in patients with type I diabetes and diabetic nephropathy. Kidney Int. 2008;74(5):649–54.PubMedCrossRefGoogle Scholar
  42. 42.
    Kollerits B, et al. Gender-specific association of adiponectin as a predictor of progression of chronic kidney disease: the Mild to Moderate Kidney Disease Study. Kidney Int. 2007;71(12):1279–86.PubMedCrossRefGoogle Scholar
  43. 43.
    Saraheimo M, et al. Serum adiponectin and progression of diabetic nephropathy in patients with type 1 diabetes. Diabetes Care. 2008;31(6):1165–9.PubMedCrossRefGoogle Scholar
  44. 44.
    van Himbergen TM, et al. Biomarkers for insulin resistance and inflammation and the risk for all-cause dementia and alzheimer disease: results from the framingham heart study. Arch Neurol. 2012;69:594.PubMedCrossRefGoogle Scholar
  45. 45.
    Li S, et al. Adiponectin levels and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA. 2009;302(2):179–88.PubMedCrossRefGoogle Scholar
  46. 46.
    Costacou T, et al. The prospective association between adiponectin and coronary artery disease among individuals with type 1 diabetes. The Pittsburgh epidemiology of diabetes complications study. Diabetologia. 2005;48(1):41–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Pischon T, et al. Plasma adiponectin levels and risk of myocardial infarction in men. JAMA. 2004;291(14):1730–7.PubMedCrossRefGoogle Scholar
  48. 48.
    Schulze MB, et al. Adiponectin and future coronary heart disease events among men with type 2 diabetes. Diabetes. 2005;54(2):534–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Arita Y, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun. 1999;257(1):79–83.PubMedCrossRefGoogle Scholar
  50. 50.
    Hu E, Liang P, Spiegelman BM. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem. 1996;271(18):10697–703.PubMedCrossRefGoogle Scholar
  51. 51.
    Maeda N, et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med. 2002;8(7):731–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Han SH, et al. Antiatherosclerotic and anti-insulin resistance effects of adiponectin: basic and clinical studies. Prog Cardiovasc Dis. 2009;52(2):126–40.PubMedCrossRefGoogle Scholar
  53. 53.
    Furuhashi M, et al. Possible impairment of transcardiac utilization of adiponectin in patients with type 2 diabetes. Diabetes Care. 2004;27(9):2217–21.PubMedCrossRefGoogle Scholar
  54. 54.
    Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. Endocr Rev. 2005;26(3):439–51.PubMedCrossRefGoogle Scholar
  55. 55.
    Nordfjall K, et al. Telomere length is associated with obesity parameters but with a gender difference. Obesity (Silver Spring). 2008;16(12):2682–9.CrossRefGoogle Scholar
  56. 56.
    Horn T, Robertson BC, Gemmell NJ. The use of telomere length in ecology and evolutionary biology. Heredity (Edinb). 2010;105(6):497–506.CrossRefGoogle Scholar
  57. 57.
    Tsao TS, et al. Role of disulfide bonds in Acrp30/adiponectin structure and signaling specificity. Different oligomers activate different signal transduction pathways. J Biol Chem. 2003;278(50):50810–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Waki H, et al. Impaired multimerization of human adiponectin mutants associated with diabetes. Molecular structure and multimer formation of adiponectin. J Biol Chem. 2003;278(41):40352–63.PubMedCrossRefGoogle Scholar
  59. 59.
    Wang Y, et al. Proteomic and functional characterization of endogenous adiponectin purified from fetal bovine serum. Proteomics. 2004;4(12):3933–42.PubMedCrossRefGoogle Scholar
  60. 60.
    Hara K, et al. Measurement of the high-molecular weight form of adiponectin in plasma is useful for the prediction of insulin resistance and metabolic syndrome. Diabetes Care. 2006;29(6):1357–62.PubMedCrossRefGoogle Scholar
  61. 61.
    Komura N, et al. Clinical significance of high-molecular weight form of adiponectin in male patients with coronary artery disease. Circ J. 2008;72(1):23–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Koch HM, Calafat AM. Human body burdens of chemicals used in plastic manufacture. Philos Trans R Soc Lond B Biol Sci. 2009;364(1526):2063–78.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Newbold RR. Impact of environmental endocrine disrupting chemicals on the development of obesity. Hormones (Athens). 2010;9(3):206–17.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Linda Broer
    • 1
    • 2
  • Julia Raschenberger
    • 3
  • Joris Deelen
    • 2
    • 4
  • Massimo Mangino
    • 5
  • Veryan Codd
    • 6
  • Kirsi H. Pietiläinen
    • 7
    • 8
  • Eva Albrecht
    • 9
  • Najaf Amin
    • 1
  • Marian Beekman
    • 2
    • 4
  • Anton J. M. de Craen
    • 10
  • Christian Gieger
    • 9
    • 25
    • 22
  • Margot Haun
    • 3
  • Peter Henneman
    • 11
  • Christian Herder
    • 12
  • Iiris Hovatta
    • 13
    • 14
    • 15
  • Annika Laser
    • 9
    • 25
    • 22
  • Lyudmyla Kedenko
    • 16
  • Wolfgang Koenig
    • 17
  • Barbara Kollerits
    • 3
  • Eeva Moilanen
    • 18
  • Ben A. Oostra
    • 1
  • Bernhard Paulweber
    • 16
  • Lydia Quaye
    • 5
  • Aila Rissanen
    • 19
  • Michael Roden
    • 12
    • 20
  • Ida Surakka
    • 8
    • 21
  • Ana M. Valdes
    • 5
  • Katriina Vuolteenaho
    • 18
  • Barbara Thorand
    • 22
  • Ko Willems van Dijk
    • 11
    • 23
  • Jaakko Kaprio
    • 8
    • 15
    • 24
  • Tim D. Spector
    • 5
  • P. Eline Slagboom
    • 2
    • 4
  • Nilesh J. Samani
    • 6
  • Florian Kronenberg
    • 3
  • Cornelia M. van Duijn
    • 1
    • 2
  • Karl-Heinz Ladwig
    • 22
  1. 1.Department of EpidemiologyErasmus University Medical CenterRotterdamThe Netherlands
  2. 2.Netherlands Consortium for Healthy AgingLeiden University Medical CenterLeidenThe Netherlands
  3. 3.Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical PharmacologyInnsbruck Medical UniversityInnsbruckAustria
  4. 4.Section of Molecular EpidemiologyLeiden University Medical CenterLeidenThe Netherlands
  5. 5.Department of Twin Research and Genetic EpidemiologyKing’s College LondonLondonUK
  6. 6.Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUK
  7. 7.Obesity Research Unit, Department of Medicine, Research Programs Unit, Diabetes and ObesityHelsinki UniversityHelsinkiFinland
  8. 8.Institute for Molecular Medicine Finland, FIMMUniversity of HelsinkiHelsinkiFinland
  9. 9.Institute of Genetic EpidemiologyHelmholtz Zentrum München - German Research Center for Environmental HealthNeuherbergGermany
  10. 10.Department of Gerontology and GeriatricsLeiden University Medical CenterLeidenThe Netherlands
  11. 11.Department Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
  12. 12.Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes ResearchHeinrich Heine University DüsseldorfDüsseldorfGermany
  13. 13.Research Programs Unit, Molecular Neurology, Biomedicum-HelsinkiUniversity of HelsinkiHelsinkiFinland
  14. 14.Department of Medical Genetics, Haartman InstituteUniversity of HelsinkiHelsinkiFinland
  15. 15.Department of Mental Health and Substance Abuse ServicesNational Institute for Health and WelfareHelsinkiFinland
  16. 16.First Department of Internal MedicineParacelsus Medical University/Salzburger LandesklinikenSalzburgAustria
  17. 17.Department of Internal Medicine II-CardiologyUniversity of Ulm Medical CenterUlmGermany
  18. 18.The Immunopharmacology Research GroupUniversity of Tampere School of Medicine and Tampere University HospitalTampereFinland
  19. 19.Obesity Research Unit, Department of PsychiatryHelsinki University Central HospitalHelsinkiFinland
  20. 20.Department of Metabolic DiseasesUniversity Hospital DüsseldorfDüsseldorfGermany
  21. 21.Public Health Genomics Unit, Department of Chronic Disease PreventionNational Institute for Health and WelfareHelsinkiFinland
  22. 22.Institute of Epidemiology IIHelmholtz Zentrum München - German Research Center for Environmental HealthNeuherbergGermany
  23. 23.Department of EndocrinologyLeiden University Medical CenterLeidenThe Netherlands
  24. 24.Department of Public Health, Hjelt InstituteUniversity of HelsinkiHelsinkiFinland
  25. 25.Research Unit of Molecular EpidemiologyHelmholtz Center Munich – German Research Center for Environmental HealthNeuherbergGermany

Personalised recommendations