Advertisement

European Journal of Epidemiology

, Volume 29, Issue 8, pp 585–594 | Cite as

Cord blood 25(OH)D levels and the subsequent risk of lower respiratory tract infections in early childhood: the Ulm birth cohort

  • Anna Łuczyńska
  • Chad Logan
  • Alexandra NietersEmail author
  • Magdeldin Elgizouli
  • Ben Schöttker
  • Hermann Brenner
  • Dietrich Rothenbacher
PERINATAL EPIDEMIOLOGY

Abstract

Lower respiratory tract infections (LRTIs) are a major cause of hospitalization in infants. Research suggests that immunomodulatory properties of vitamin D may influence LRTI risk. This study’s objective was to examine whether 25-hydroxyvitamin D [25(OH)D] concentrations in cord blood influenced susceptibility to LRTI in the first year of life. Data was analyzed from a prospective birth cohort of 777 mother-infant pairs based in Ulm, Germany. Relative risks (RRs) of LRTI in relation to 25(OH)D cord blood levels were estimated by log-binomial regression after adjustment for potential confounders. To account for seasonal variation in both vitamin D levels and infections, we examined the association in different seasons. Analyses were conducted using clinical predefined cutpoints, quartiles, and season-standardized 25(OH)D quartiles. We observed a statistically significant association between 25(OH)D status in cord blood and risk of LRTI across the year using clinical cutpoints. The adjusted RR of LRTI for individuals with vitamin D deficiency (<25 nmol/L) in comparison to the referent category (>50 nmol/L) was 1.32 [95 % confidence interval (CI) 1.00, 1.73]. The association differed by maternal allergy status; children born to mothers without allergy demonstrated a RR of 1.45 (95 % CI 1.03, 2.03). The effect was largely driven by a strong association between 25(OH)D and LRTI in infants born in fall with a RR of 3.07 (95 % CI 1.37, 6.87). Our findings suggest that vitamin D deficiency at birth is associated with increased risk of LRTI particularly in infants born to mothers without allergy. The association seems strongest in infants born in fall.

Keywords

Vitamin D Birth cohort Lower respiratory tract infection Prospective study 

Notes

Acknowledgments

We highly appreciate the contribution of Dr. Jon Genuneit on discussion of the analysis and an earlier draft of the paper. We also thank Professor Andrea Heinzmann for her great input into the discussion. The study was supported by grants of the German Research Council (BR 1704/3-1, BR 1704/3). This study was supported by the German Federal Ministry of Education and Research (BMBF 01EO1303). The authors are responsible for the contents of this publication.

Conflict of interest

No potential conflicts of interest relevant to this article were reported. All researchers and authors were independent of the funding source. No funding source or sponsor was involved in the design or performance of the study; in the collection, management, analyses, or interpretation of the data; or in the preparation, review, approval, or decision to submit the manuscript for publication.

Supplementary material

10654_2014_9918_MOESM1_ESM.docx (29 kb)
Supplementary material 1 (DOCX 29 kb)
10654_2014_9918_MOESM2_ESM.docx (32 kb)
Supplementary material 2 (DOCX 32 kb)

References

  1. 1.
    Nair H, Brooks WA, Katz M, et al. Global burden of respiratory infections due to seasonal influenza in young children: a systematic review and meta-analysis. Lancet. 2011;378(9807):1917–30. doi: 10.1016/s0140-6736(11)61051-9.PubMedCrossRefGoogle Scholar
  2. 2.
    Levy O. Innate immunity of the newborn: basic mechanisms and clinical correlates. Nat Rev Immunol. 2007;7(5):379–90. doi: 10.1038/nri2075.PubMedCrossRefGoogle Scholar
  3. 3.
    Liu PT, Stenger S, Li H, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006;311(5768):1770–3. doi: 10.1126/science.1123933.PubMedCrossRefGoogle Scholar
  4. 4.
    Dorschner RA, Lin KH, Murakami M, Gallo RL. Neonatal skin in mice and humans expresses increased levels of antimicrobial peptides: innate immunity during development of the adaptive response. Pediatr Res. 2003;53(4):566–72. doi: 10.1203/01.pdr.0000057205.64451.b7.PubMedCrossRefGoogle Scholar
  5. 5.
    Hansdottir S, Monick MM, Hinde SL, Lovan N, Look DC, Hunninghake GW. Respiratory epithelial cells convert inactive vitamin D to its active form: potential effects on host defense. J Immunol. 2008;181(10):7090–9.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Wayse V, Yousafzai A, Mogale K, Filteau S. Association of subclinical vitamin D deficiency with severe acute lower respiratory infection in Indian children under 5 y. Eur J Clin Nutr. 2004;58(4):563–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Karatekin G, Kaya A, Salihoglu O, Balci H, Nuhoglu A. Association of subclinical vitamin D deficiency in newborns with acute lower respiratory infection and their mothers. Eur J Clin Nutr. 2009;63(4):473–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Roth DE, Shah R, Black RE, Baqui AH. Vitamin D status and acute lower respiratory infection in early childhood in Sylhet, Bangladesh. Acta Paediatr. 2010;99(3):389–93.PubMedCrossRefGoogle Scholar
  9. 9.
    Belderbos ME, Houben ML, Wilbrink B, et al. Cord blood vitamin D deficiency is associated with respiratory syncytial virus bronchiolitis. Pediatrics. 2011;127(6):e1513–20. doi: 10.1542/peds.2010-3054.PubMedCrossRefGoogle Scholar
  10. 10.
    Mohamed WA, Al-Shehri MA. Cord blood 25-hydroxyvitamin D levels and the risk of acute lower respiratory tract infection in early childhood. J Trop Pediatr. 2013;59(1):29–35. doi: 10.1093/tropej/fms042.PubMedCrossRefGoogle Scholar
  11. 11.
    Clancy N, Onwuneme C, Carroll A, et al. Vitamin D and neonatal immune function. J Matern Fetal Neonatal Med. 2012;10:10.Google Scholar
  12. 12.
    Weyermann M, Rothenbacher D, Brenner H. Acquisition of Helicobacter pylori infection in early childhood: independent contributions of infected mothers, fathers, and siblings. Am J Gastroenterol. 2009;104(1):182–9. doi: 10.1038/ajg.2008.61.PubMedCrossRefGoogle Scholar
  13. 13.
    Cavalier E, Wallace AM, Carlisi A, Chapelle JP, Delanaye P, Souberbielle JC. Cross-reactivity of 25-hydroxy vitamin D2 from different commercial immunoassays for 25-hydroxy vitamin D: an evaluation without spiked samples. Clin Chem Lab Med. 2011;49(3):555–8. doi: 10.1515/cclm.2011.072.PubMedCrossRefGoogle Scholar
  14. 14.
    Lips P. Which circulating level of 25-hydroxyvitamin D is appropriate? J Steroid Biochem. 2004;89–90(1–5):611–4. doi: 10.1016/j.jsbmb.2004.03.040.CrossRefGoogle Scholar
  15. 15.
    Ross AC, Manson JE, Abrams SA, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab. 2011;96(1):53–8. doi: 10.1210/jc.2010-2704.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Florath I, Kohler M, Weck MN, et al. Association of pre- and post-natal parental smoking with offspring body mass index: an 8-year follow-up of a birth cohort. Pediatr Obes. 2014;9(2):121–34. doi: 10.1111/j.2047-6310.2012.00146.x.PubMedCrossRefGoogle Scholar
  17. 17.
    Weisse K, Winkler S, Hirche F, et al. Maternal and newborn vitamin D status and its impact on food allergy development in the German LINA cohort study. Allergy. 2013;68(2):220–8. doi: 10.1111/all.12081.PubMedCrossRefGoogle Scholar
  18. 18.
    Camargo CA Jr, Ingham T, Wickens K, et al. Cord-blood 25-hydroxyvitamin D levels and risk of respiratory infection, wheezing, and asthma. Pediatrics. 2011;127(1):e180–7. doi: 10.1542/peds.2010-0442.PubMedCrossRefGoogle Scholar
  19. 19.
    Liu X, Wang G, Hong X, et al. Gene-vitamin D interactions on food sensitization: a prospective birth cohort study. Allergy. 2011;66(11):1442–8. doi: 10.1111/j.1398-9995.2011.02681.x.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Wuertz C, Gilbert P, Baier W, Kunz C. Cross-sectional study of factors that influence the 25-hydroxyvitamin D status in pregnant women and in cord blood in Germany. Br J Nutr. 2013;1–8. doi: 10.1017/s0007114513001438.
  21. 21.
    McNally JD, Leis K, Matheson LA, Karuananyake C, Sankaran K, Rosenberg AM. Vitamin D deficiency in young children with severe acute lower respiratory infection. Pediatr Pulmonol. 2009;44(10):981–8. doi: 10.1002/ppul.21089.PubMedCrossRefGoogle Scholar
  22. 22.
    Zinkernagel RM. Maternal antibodies, childhood infections, and autoimmune diseases. N Engl J Med. 2001;345(18):1331–5. doi: 10.1056/NEJMra012493.PubMedCrossRefGoogle Scholar
  23. 23.
    Terletskaia-Ladwig E, Enders G, Schalasta G, Enders M. Defining the timing of respiratory syncytial virus (RSV) outbreaks: an epidemiological study. BMC Infect Dis. 2005;5:20. doi: 10.1186/1471-2334-5-20.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Currie SM, Findlay EG, McHugh BJ, et al. The human cathelicidin LL-37 has antiviral activity against respiratory syncytial virus. PLoS ONE. 2013;8(8):e73659. doi: 10.1371/journal.pone.0073659.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Evans KN, Bulmer JN, Kilby MD, Hewison M. Vitamin D and placental-decidual function. J Soc Gynecol Investig. 2004;11(5):263–71.PubMedCrossRefGoogle Scholar
  26. 26.
    Delvin EE, Glorieux FH, Salle BL, David L, Varenne JP. Control of vitamin D metabolism in preterm infants: feto-maternal relationships. Arch Dis Child. 1982;57(10):754–7.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Morales E, Romieu I, Guerra S, et al. Maternal vitamin D status in pregnancy and risk of lower respiratory tract infections, wheezing, and asthma in offspring. Epidemiology. 2012;23(1):64–71.PubMedCrossRefGoogle Scholar
  28. 28.
    Magnus MC, Stene LC, Haberg SE, et al. Prospective study of maternal mid-pregnancy 25-hydroxyvitamin D level and early childhood respiratory disorders. Paediatr Perinat Epidemiol. 2013;27(6):532–41. doi: 10.1111/ppe.12080.PubMedCrossRefGoogle Scholar
  29. 29.
    Gale CR, Robinson SM, Harvey NC, et al. Maternal vitamin D status during pregnancy and child outcomes. Eur J Clin Nutr. 2008;62(1):68–77. doi: 10.1038/sj.ejcn.1602680.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Gold DR, Bloomberg GR, Cruikshank WW, et al. Parental characteristics, somatic fetal growth, and season of birth influence innate and adaptive cord blood cytokine responses. J Allergy Clin Immunol. 2009;124(5):1078–87. doi: 10.1016/j.jaci.2009.08.021.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Prescott SL, Noakes P, Chow BW, et al. Presymptomatic differences in Toll-like receptor function in infants who have allergy. J Allergy Clin Immunol. 2008;122(2):391–9, 9 e1-5. doi: 10.1016/j.jaci.2008.04.042.
  32. 32.
    James KM, Peebles RS Jr, Hartert TV. Response to infections in patients with asthma and atopic disease: an epiphenomenon or reflection of host susceptibility? J Allergy Clin Immunol. 2012;130(2):343–51. doi: 10.1016/j.jaci.2012.05.056.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Lai JK, Lucas RM, Banks E, Ponsonby AL. Variability in vitamin D assays impairs clinical assessment of vitamin D status. Intern Med J. 2012;42(1):43–50. doi: 10.1111/j.1445-5994.2011.02471.x.PubMedCrossRefGoogle Scholar
  34. 34.
    Schottker B, Jansen EH, Haug U, Schomburg L, Kohrle J, Brenner H. Standardization of misleading immunoassay based 25-hydroxyvitamin D levels with liquid chromatography tandem-mass spectrometry in a large cohort study. PLoS ONE. 2012;7(11):e48774. doi: 10.1371/journal.pone.0048774.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Hall CB, Weinberg GA, Iwane MK, et al. The burden of respiratory syncytial virus infection in young children. N Engl J Med. 2009;360(6):588–98. doi: 10.1056/NEJMoa0804877.PubMedCrossRefGoogle Scholar
  36. 36.
    Hintzpeter B, Scheidt-Nave C, Muller MJ, Schenk L, Mensink GB. Higher prevalence of vitamin D deficiency is associated with immigrant background among children and adolescents in Germany. J Nutr. 2008;138(8):1482–90.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Anna Łuczyńska
    • 1
  • Chad Logan
    • 2
  • Alexandra Nieters
    • 1
    Email author
  • Magdeldin Elgizouli
    • 1
  • Ben Schöttker
    • 3
  • Hermann Brenner
    • 3
  • Dietrich Rothenbacher
    • 2
    • 3
  1. 1.Center for Chronic Immunodeficiency (CCI), Molecular EpidemiologyUniversity Medical Center FreiburgFreiburgGermany
  2. 2.Institute of Epidemiology and Medical BiometryUlm UniversityUlmGermany
  3. 3.Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research CenterHeidelbergGermany

Personalised recommendations