European Journal of Epidemiology

, Volume 28, Issue 11, pp 845–858 | Cite as

Whole grain and refined grain consumption and the risk of type 2 diabetes: a systematic review and dose–response meta-analysis of cohort studies

  • Dagfinn AuneEmail author
  • Teresa Norat
  • Pål Romundstad
  • Lars J. Vatten


Several studies have suggested a protective effect of intake of whole grains, but not refined grains on type 2 diabetes risk, but the dose–response relationship between different types of grains and type 2 diabetes has not been established. We conducted a systematic review and meta-analysis of prospective studies of grain intake and type 2 diabetes. We searched the PubMed database for studies of grain intake and risk of type 2 diabetes, up to June 5th, 2013. Summary relative risks were calculated using a random effects model. Sixteen cohort studies were included in the analyses. The summary relative risk per 3 servings per day was 0.68 (95 % CI 0.58–0.81, I2 = 82 %, n = 10) for whole grains and 0.95 (95 % CI 0.88–1.04, I2 = 53 %, n = 6) for refined grains. A nonlinear association was observed for whole grains, p nonlinearity < 0.0001, but not for refined grains, p nonlinearity = 0.10. Inverse associations were observed for subtypes of whole grains including whole grain bread, whole grain cereals, wheat bran and brown rice, but these results were based on few studies, while white rice was associated with increased risk. Our meta-analysis suggests that a high whole grain intake, but not refined grains, is associated with reduced type 2 diabetes risk. However, a positive association with intake of white rice and inverse associations between several specific types of whole grains and type 2 diabetes warrant further investigations. Our results support public health recommendations to replace refined grains with whole grains and suggest that at least two servings of whole grains per day should be consumed to reduce type 2 diabetes risk.


Whole grains Refined grains Cereals Type 2 diabetes Meta-analysis 



DA designed the project, conducted the literature search and analyses and wrote the first draft of the paper. DA, TN, PR, LJV interpreted the data and revised the subsequent drafts for important intellectual content and approved the final version of the paper to be published. The authors declare that there is no duality of interest associated with this manuscript. This project has been funded by Liaison Committee between the Central Norway Regional Health Authority (RHA) and the Norwegian University of Science and Technology (NTNU). We thank Ulrika Ericson for clarifying the definition of high-fibre cereals and breads in the Malmö Diet and Cancer cohort.

Supplementary material

10654_2013_9852_MOESM1_ESM.docx (531 kb)
Supplementary material 1 (DOCX 524 kb)


  1. 1.
    Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011;94(3):311–21.Google Scholar
  2. 2.
    Standards of medical care in diabetes–2006. Diabetes Care. 2006;29 Suppl 1:S4–42.Google Scholar
  3. 3.
    Economic costs of diabetes in the u.s. In 2012. Diabetes Care 2013;36(4):1033–46.Google Scholar
  4. 4.
    Rana JS, Li TY, Manson JE, Hu FB. Adiposity compared with physical inactivity and risk of type 2 diabetes in women. Diabetes Care. 2007;30(1):53–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Meyer KA, Kushi LH, Jacobs DR Jr, Slavin J, Sellers TA, Folsom AR. Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. Am J Clin Nutr. 2000;71(4):921–30.PubMedGoogle Scholar
  6. 6.
    van Dam RM, Hu FB, Rosenberg L, Krishnan S, Palmer JR. Dietary calcium and magnesium, major food sources, and risk of type 2 diabetes in US black women. Diabetes Care. 2006;29(10):2238–43.PubMedCrossRefGoogle Scholar
  7. 7.
    Sun Q, Spiegelman D, van Dam RM, Holmes MD, Malik VS, Willett WC, et al. White rice, brown rice, and risk of type 2 diabetes in US men and women. Arch Intern Med. 2010;170(11):961–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Montonen J, Knekt P, Jarvinen R, Aromaa A, Reunanen A. Whole-grain and fiber intake and the incidence of type 2 diabetes. Am J Clin Nutr. 2003;77(3):622–9.PubMedGoogle Scholar
  9. 9.
    Wirström T, Hilding A, Gu HF, Ostenson CG, Bjorklund A. Consumption of whole grain reduces risk of deteriorating glucose tolerance, including progression to prediabetes. Am J Clin Nutr. 2013;97(1):179–87.Google Scholar
  10. 10.
    Parker ED, Liu S, Van Horn L, Tinker LF, Shikany JM, Eaton CB, et al. The association of whole grain consumption with incident type 2 diabetes: the Women’s Health Initiative Observational Study. Ann Epidemiol. 2013;23(6):321–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Fisher E, Boeing H, Fritsche A, Doering F, Joost HG, Schulze MB. Whole-grain consumption and transcription factor-7-like 2 (TCF7L2) rs7903146: gene-diet interaction in modulating type 2 diabetes risk. Br J Nutr. 2009;101(4):478–81.PubMedCrossRefGoogle Scholar
  12. 12.
    Ericson U, Sonestedt E, Gullberg B, Hellstrand S, Hindy G, Wirfalt E, Orho-Melander M. High intakes of protein and processed meat associate with increased incidence of type 2 diabetes. Br J Nutr. 2013;109(6):1143–53.PubMedCrossRefGoogle Scholar
  13. 13.
    Liu S, Manson JE, Stampfer MJ, Hu FB, Giovannucci E, Colditz GA, et al. A prospective study of whole-grain intake and risk of type 2 diabetes mellitus in US women. Am J Public Health. 2000;90(9):1409–15.PubMedCrossRefGoogle Scholar
  14. 14.
    Schulze MB, Schulz M, Heidemann C, Schienkiewitz A, Hoffmann K, Boeing H. Fiber and magnesium intake and incidence of type 2 diabetes: a prospective study and meta-analysis. Arch Intern Med. 2007;167(9):956–65.PubMedCrossRefGoogle Scholar
  15. 15.
    Simmons RK, Harding AH, Wareham NJ, Griffin SJ. Do simple questions about diet and physical activity help to identify those at risk of Type 2 diabetes? Diabet Med. 2007;24(8):830–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Kochar J, Djousse L, Gaziano JM. Breakfast cereals and risk of type 2 diabetes in the Physicians’ Health Study I. Obesity (Silver Spring). 2007;15(12):3039–44.CrossRefGoogle Scholar
  17. 17.
    Hodge AM, English DR, O’Dea K, Giles GG. Glycemic index and dietary fiber and the risk of type 2 diabetes. Diabetes Care. 2004;27(11):2701–6.PubMedCrossRefGoogle Scholar
  18. 18.
    von Ruesten A, Feller S, Bergmann MM, Boeing H. Diet and risk of chronic diseases: results from the first 8 years of follow-up in the EPIC-Potsdam study. Eur J Clin Nutr. 2013;67(4):412–9.CrossRefGoogle Scholar
  19. 19.
    Fung TT, Hu FB, Pereira MA, Liu S, Stampfer MJ, Colditz GA, et al. Whole-grain intake and the risk of type 2 diabetes: a prospective study in men. Am J Clin Nutr. 2002;76(3):535–40.PubMedGoogle Scholar
  20. 20.
    Villegas R, Liu S, Gao YT, Yang G, Li H, Zheng W, et al. Prospective study of dietary carbohydrates, glycemic index, glycemic load, and incidence of type 2 diabetes mellitus in middle-aged Chinese women. Arch Intern Med. 2007;167(21):2310–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Nanri A, Mizoue T, Noda M, Takahashi Y, Kato M, Inoue M, et al. Rice intake and type 2 diabetes in Japanese men and women: the Japan Public Health Center-based Prospective Study. Am J Clin Nutr. 2010;92(6):1468–77.PubMedCrossRefGoogle Scholar
  22. 22.
    Soriguer F, Colomo N, Olveira G, Garcia-Fuentes E, Esteva I, Ruiz de Adana MS, et al. White rice consumption and risk of type 2 diabetes. Clin Nutr. 2013;32(3):481–4.PubMedCrossRefGoogle Scholar
  23. 23.
    de Munter JS, Hu FB, Spiegelman D, Franz M, van Dam RM. Whole grain, bran, and germ intake and risk of type 2 diabetes: a prospective cohort study and systematic review. PLoS Med. 2007;4(8):e261.PubMedCrossRefGoogle Scholar
  24. 24.
    Ye EQ, Chacko SA, Chou EL, Kugizaki M, Liu S. Greater whole-grain intake is associated with lower risk of type 2 diabetes, cardiovascular disease, and weight gain. J Nutr. 2012;142(7):1304–13.PubMedCrossRefGoogle Scholar
  25. 25.
    Liu S, Willett WC, Manson JE, Hu FB, Rosner B, Colditz G. Relation between changes in intakes of dietary fiber and grain products and changes in weight and development of obesity among middle-aged women. Am J Clin Nutr. 2003;78(5):920–7.PubMedGoogle Scholar
  26. 26.
    Koh-Banerjee P, Franz M, Sampson L, Liu S, Jacobs DR Jr, Spiegelman D, et al. Changes in whole-grain, bran, and cereal fiber consumption in relation to 8-y weight gain among men. Am J Clin Nutr. 2004;80(5):1237–45.PubMedGoogle Scholar
  27. 27.
    Bazzano LA, Song Y, Bubes V, Good CK, Manson JE, Liu S. Dietary intake of whole and refined grain breakfast cereals and weight gain in men. Obes Res. 2005;13(11):1952–60.PubMedCrossRefGoogle Scholar
  28. 28.
    van de Vijver LP, van den Bosch LM, van den Brandt PA, Goldbohm RA. Whole-grain consumption, dietary fibre intake and body mass index in the Netherlands cohort study. Eur J Clin Nutr. 2009;63(1):31–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Mozaffarian D, Hao T, Rimm EB, Willett WC, Hu FB. Changes in diet and lifestyle and long-term weight gain in women and men. N Engl J Med. 2011;364(25):2392–404.PubMedCrossRefGoogle Scholar
  30. 30.
    Quick V, Wall M, Larson N, Haines J, Neumark-Sztainer D. Personal, behavioral and socio-environmental predictors of overweight incidence in young adults: 10-yr longitudinal findings. Int J Behav Nutr Phys Act. 2013;10:37.PubMedCrossRefGoogle Scholar
  31. 31.
    Danaei G, Pan A, Hu FB, Hernan MA. Hypothetical Midlife Interventions in Women and Risk of Type 2 Diabetes. Epidemiology. 2013;24(1):122–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Schulze MB, Hoffmann K, Boeing H, Linseisen J, Rohrmann S, Mohlig M, et al. An accurate risk score based on anthropometric, dietary, and lifestyle factors to predict the development of type 2 diabetes. Diabetes Care. 2007;30(3):510–5.PubMedCrossRefGoogle Scholar
  33. 33.
    Montonen J, Jarvinen R, Heliovaara M, Reunanen A, Aromaa A, Knekt P. Food consumption and the incidence of type II diabetes mellitus. Eur J Clin Nutr. 2005;59(3):441–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Hodge AM, English DR, O’Dea K, Giles GG. Dietary patterns and diabetes incidence in the Melbourne Collaborative Cohort Study. Am J Epidemiol. 2007;165(6):603–10.PubMedCrossRefGoogle Scholar
  35. 35.
    Colditz GA, Manson JE, Stampfer MJ, Rosner B, Willett WC, Speizer FE. Diet and risk of clinical diabetes in women. Am J Clin Nutr. 1992;55(5):1018–23.PubMedGoogle Scholar
  36. 36.
    Feskens EJ, Virtanen SM, Rasanen L, Tuomilehto J, Stengard J, Pekkanen J, et al. Dietary factors determining diabetes and impaired glucose tolerance. A 20-year follow-up of the Finnish and Dutch cohorts of the Seven Countries Study. Diabetes Care. 1995;18(8):1104–12.PubMedCrossRefGoogle Scholar
  37. 37.
    Williams DE, Wareham NJ, Cox BD, Byrne CD, Hales CN, Day NE. Frequent salad vegetable consumption is associated with a reduction in the risk of diabetes mellitus. J Clin Epidemiol. 1999;52(4):329–35.PubMedCrossRefGoogle Scholar
  38. 38.
    Mohan V, Radhika G, Sathya RM, Tamil SR, Ganesan A, Sudha V. Dietary carbohydrates, glycaemic load, food groups and newly detected type 2 diabetes among urban Asian Indian population in Chennai, India (Chennai Urban Rural Epidemiology Study 59). Br J Nutr. 2009;102(10):1498–506.PubMedCrossRefGoogle Scholar
  39. 39.
    Lecomte P, Vol S, Caces E, Born C, Chabrolle C, Lasfargues G, et al. Five-year predictive factors of type 2 diabetes in men with impaired fasting glucose. Diabetes Metab. 2007;33(2):140–7.PubMedCrossRefGoogle Scholar
  40. 40.
    DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–88.PubMedCrossRefGoogle Scholar
  41. 41.
    Greenland S, Longnecker MP. Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. Am J Epidemiol. 1992;135(11):1301–9.PubMedGoogle Scholar
  42. 42.
    Aune D, Greenwood DC, Chan DS, Vieira R, Vieira AR, Navarro Rosenblatt DA, et al. Body mass index, abdominal fatness and pancreatic cancer risk: a systematic review and non-linear dose-response meta-analysis of prospective studies. Ann Oncol. 2012;23(4):843–52.PubMedCrossRefGoogle Scholar
  43. 43.
    Aune D, Chan DS, Lau R, Vieira R, Greenwood DC, Kampman E, et al. Dietary fibre, whole grains, and risk of colorectal cancer: systematic review and dose-response meta-analysis of prospective studies. BMJ. 2011;343:d6617.PubMedCrossRefGoogle Scholar
  44. 44.
    Hu EA, Pan A, Malik V, Sun Q. White rice consumption and risk of type 2 diabetes: meta-analysis and systematic review. BMJ. 2012;344:e1454.PubMedCrossRefGoogle Scholar
  45. 45.
    Royston P. A strategy for modelling the effect of a continuous covariate in medicine and epidemiology. Stat Med. 2000;19(14):1831–47.PubMedCrossRefGoogle Scholar
  46. 46.
    Bagnardi V, Zambon A, Quatto P, Corrao G. Flexible meta-regression functions for modeling aggregate dose-response data, with an application to alcohol and mortality. Am J Epidemiol. 2004;159(11):1077–86.PubMedCrossRefGoogle Scholar
  47. 47.
    Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58.PubMedCrossRefGoogle Scholar
  48. 48.
    Egger M, Davey SG, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.PubMedCrossRefGoogle Scholar
  49. 49.
    Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088–101.PubMedCrossRefGoogle Scholar
  50. 50.
    Ross AB, Bourgeois A, Macharia HN, Kochhar S, Jebb SA, Brownlee IA, et al. Plasma alkylresorcinols as a biomarker of whole-grain food consumption in a large population: results from the WHOLEheart Intervention Study. Am J Clin Nutr. 2012;95(1):204–11.PubMedCrossRefGoogle Scholar
  51. 51.
    Liese AD, Roach AK, Sparks KC, Marquart L, D’Agostino RB Jr, Mayer-Davis EJ. Whole-grain intake and insulin sensitivity: the Insulin Resistance Atherosclerosis Study. Am J Clin Nutr. 2003;78(5):965–71.PubMedGoogle Scholar
  52. 52.
    Torsdottir I, Alpsten M, Holm G, Sandberg AS, Tolli J. A small dose of soluble alginate-fiber affects postprandial glycemia and gastric emptying in humans with diabetes. J Nutr. 1991;121(6):795–9.PubMedGoogle Scholar
  53. 53.
    Holt S, Heading RC, Carter DC, Prescott LF, Tothill P. Effect of gel fibre on gastric emptying and absorption of glucose and paracetamol. Lancet. 1979;1(8117):636–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Jenkins DJ, Wolever TM, Leeds AR, Gassull MA, Haisman P, Dilawari J, et al. Dietary fibres, fibre analogues, and glucose tolerance: importance of viscosity. Br Med J. 1978;1(6124):1392–4.PubMedCrossRefGoogle Scholar
  55. 55.
    Juntunen KS, Laaksonen DE, Autio K, Niskanen LK, Holst JJ, Savolainen KE, et al. Structural differences between rye and wheat breads but not total fiber content may explain the lower postprandial insulin response to rye bread. Am J Clin Nutr. 2003;78(5):957–64.PubMedGoogle Scholar
  56. 56.
    Montonen J, Boeing H, Fritsche A, Schleicher E, Joost HG, Schulze MB, et al. Consumption of red meat and whole-grain bread in relation to biomarkers of obesity, inflammation, glucose metabolism and oxidative stress. Eur J Nutr. 2013;52(1):337–45.PubMedCrossRefGoogle Scholar
  57. 57.
    Qi L, van Dam RM, Liu S, Franz M, Mantzoros C, Hu FB. Whole-grain, bran, and cereal fiber intakes and markers of systemic inflammation in diabetic women. Diabetes Care. 2006;29(2):207–11.PubMedCrossRefGoogle Scholar
  58. 58.
    Gaskins AJ, Mumford SL, Rovner AJ, Zhang C, Chen L, Wactawski-Wende J, et al. Whole grains are associated with serum concentrations of high sensitivity C-reactive protein among premenopausal women. J Nutr. 2010;140(9):1669–76.PubMedCrossRefGoogle Scholar
  59. 59.
    Masters RC, Liese AD, Haffner SM, Wagenknecht LE, Hanley AJ. Whole and refined grain intakes are related to inflammatory protein concentrations in human plasma. J Nutr. 2010;140(3):587–94.PubMedCrossRefGoogle Scholar
  60. 60.
    Katcher HI, Legro RS, Kunselman AR, Gillies PJ, Demers LM, Bagshaw DM, et al. The effects of a whole grain-enriched hypocaloric diet on cardiovascular disease risk factors in men and women with metabolic syndrome. Am J Clin Nutr. 2008;87(1):79–90.PubMedGoogle Scholar
  61. 61.
    Hu FB, Meigs JB, Li TY, Rifai N, Manson JE. Inflammatory markers and risk of developing type 2 diabetes in women. Diabetes. 2004;53(3):693–700.PubMedCrossRefGoogle Scholar
  62. 62.
    Qi L, Rifai N, Hu FB. Interleukin-6 receptor gene, plasma C-reactive protein, and diabetes risk in women. Diabetes. 2009;58(1):275–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Fraser A, Harris R, Sattar N, Ebrahim S, Davey SG, Lawlor DA. Alanine aminotransferase, gamma-glutamyltransferase, and incident diabetes: the British Women’s Heart and Health Study and meta-analysis. Diabetes Care. 2009;32(4):741–50.PubMedCrossRefGoogle Scholar
  64. 64.
    Qi L, Rimm E, Liu S, Rifai N, Hu FB. Dietary glycemic index, glycemic load, cereal fiber, and plasma adiponectin concentration in diabetic men. Diabetes Care. 2005;28(5):1022–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Li S, Shin HJ, Ding EL, van Dam RM. Adiponectin levels and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA. 2009;302(2):179–88.PubMedCrossRefGoogle Scholar
  66. 66.
    Mellen PB, Walsh TF, Herrington DM. Whole grain intake and cardiovascular disease: a meta-analysis. Nutr Metab Cardiovasc Dis. 2008;18(4):283–90.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Dagfinn Aune
    • 1
    • 2
    Email author
  • Teresa Norat
    • 2
  • Pål Romundstad
    • 1
  • Lars J. Vatten
    • 1
  1. 1.Department of Public Health and General Practice, Faculty of MedicineNorwegian University of Science and TechnologyTrondheimNorway
  2. 2.Department of Epidemiology and Biostatistics, School of Public HealthImperial College LondonLondonUK

Personalised recommendations