European Journal of Epidemiology

, Volume 28, Issue 11, pp 859–866 | Cite as

Do leukocyte telomere length dynamics depend on baseline telomere length? An analysis that corrects for ‘regression to the mean’

  • Simon Verhulst
  • Abraham Aviv
  • Athanase Benetos
  • Gerald S. Berenson
  • Jeremy D. Kark
METHODS

Abstract

Leukocyte telomere length (LTL) shortens with age. Longitudinal studies have reported accelerated LTL attrition when baseline LTL is longer. However, the dependency of LTL attrition on baseline LTL might stem from a statistical artifact known as regression to the mean (RTM). To our knowledge no published study of LTL dynamics (LTL and its attrition rate) has corrected for this phenomenon. We illustrate the RTM effect using replicate LTL measurements, and show, using simulated data, how the RTM effect increases with a rise in stochastic measurement variation (representing LTL measurement error), resulting in spurious increasingly elevated dependencies of attrition on baseline values. In addition, we re-analyzed longitudinal LTL data collected from four study populations to test the hypothesis that LTL attrition depends on baseline LTL. We observed that the rate of LTL attrition was proportional to baseline LTL, but correction for the RTM effect reduced the slope of the relationship by 57 % when measurement error was low (coefficient of variation ~2 %). A modest but statistically significant effect remained however, indicating that high baseline LTL is associated with higher LTL attrition even when correcting for the RTM effect. Baseline LTL explained 1.3 % of the variation in LTL attrition, but this effect, which differed significantly between the study samples, appeared to be primarily attributable to the association in men (3.7 %).

Keywords

Leukocyte telomere length Sex Age ‘Regression to the mean’ Longitudinal studies 

References

  1. 1.
    Aviv A, Chen W, Gardner JP, et al. Leukocyte telomere dynamics: longitudinal findings among young adults in the Bogalusa heart study. Am J Epidemiol. 2009;169:323–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Nordfjäll K, Svenson U, Norrback KF, Adolfsson R, Lenner P, Roos G. The individual blood cell telomere attrition is telomere length dependent. PLoS Genet. 2009;5:e1000375. doi:10.1371/journal.pgen.1000375.PubMedCrossRefGoogle Scholar
  3. 3.
    Ehrlenbach S, Willeit P, Kiechl S, et al. Influences on the reduction of relative telomere length over 10 years in the population-based Bruneck Study: introduction of a well-controlled high-throughput assay. Int J Epidemiol. 2009;38(6):1725–34. doi:10.1093/ije/dyp273.PubMedCrossRefGoogle Scholar
  4. 4.
    Farzaneh-Far R, Lin J, Epel E, Lapham K, Blackburn E, Whooley MA. Telomere length trajectory and its determinants in persons with coronary artery disease: longitudinal findings from the heart and soul study. PLoS One. 2010;5(1):e8612. doi:10.1371/journal.pone.0008612.PubMedCrossRefGoogle Scholar
  5. 5.
    Boonekamp JJ, Simons MJP, Hemerik L, Verhulst S. Telomeres behave as measure of somatic redundancy rather than biological age. Aging Cell. 2013;12:330–2. doi:10.1111/acel.12050.PubMedCrossRefGoogle Scholar
  6. 6.
    Berry DA, Eaton ML, Ekholm BP, Fox TL. Assessing differential drug effect. Biometrics. 1984;40:1109–15.PubMedCrossRefGoogle Scholar
  7. 7.
    Barnett AG, van der Pols JC, Dobson AJ. Regression to the mean: what it is and how to deal with it. Int J Epidemiol. 2005;34(1):215–20. doi:10.1093/ije/dyh29.PubMedCrossRefGoogle Scholar
  8. 8.
    Yudkin PL, Stratton IM. How to deal with regression to the mean in intervention studies. Lancet. 1996;347(8996):241–3. doi:10.1016/s0140-6736(96)90410-9.PubMedCrossRefGoogle Scholar
  9. 9.
    Giltay EJ, Hageman GJ, Kromhout D. Spurious association between telomere length reduction over time and baseline telomere length. Int J Epidemiol. 2011;40(3):839–40. doi:10.1093/ije/dyq235.PubMedCrossRefGoogle Scholar
  10. 10.
    Frenck RW. The rate of telomere sequence loss in human leukocytes varies with age. PNAS. 1998;95(10):5607–10.PubMedCrossRefGoogle Scholar
  11. 11.
    Aubert G, Baerlocher GM, Vulto I, Poon SS, Lansdorp PM. Collapse of telomere homeostasis in hematopoietic cells caused by heterozygous mutations in telomerase genes. PLoS Genet. 2012;8(5):e1002696. doi:10.1371/journal.pgen.1002696.PubMedCrossRefGoogle Scholar
  12. 12.
    Barrett ELB, Richardson DS. Sex differences in telomeres and lifespan. Aging Cell. 2011;10(6):913–21. doi:10.1111/j.1474-9726.2011.00741.x.PubMedCrossRefGoogle Scholar
  13. 13.
    Kimura M, Stone RC, Hunt SC, et al. Measurement of telomere length by the Southern blot analysis of terminal restriction fragment lengths. Nat Protoc. 2010;5(9):1596–607. doi:10.1038/nprot.2010.124.PubMedCrossRefGoogle Scholar
  14. 14.
    Hunt SC, Chen W, Gardner JP, et al. Leukocyte telomeres are longer in African Americans than in whites: the national heart, lung, and blood institute family heart study and the Bogalusa Heart Study. Aging Cell. 2008;7(4):451–8. doi:10.1111/j.1474-9726.2008.00397.x.PubMedCrossRefGoogle Scholar
  15. 15.
    R_Core_Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2012.Google Scholar
  16. 16.
    Aviv A, Hunt SC, Lin J, Cao XJ, Kimura M, Blackburn E. Impartial comparative analysis of measurement of leukocyte telomere length/DNA content by Southern blots and qPCR. Nucl Acids Res. 2011;39(20):e134. doi:10.1093/nar/gkr634.PubMedCrossRefGoogle Scholar
  17. 17.
    Aubert G, Hills M, Lansdorp PM. Telomere length measurement-Caveats and a critical assessment of the available technologies and tools. Mutat Res. 2012;730(1–2):59–67. doi:10.1016/j.mrfmmm.2011.04.003.PubMedCrossRefGoogle Scholar
  18. 18.
    Salomons HM, Mulder GA, Linskens MHK, Haussmann MF, Verhulst S. Telomere shortening and survival in free-living corvids. Proc R Soc B. 2009;276:3157–65.PubMedCrossRefGoogle Scholar
  19. 19.
    Grasman J, Salomons HM, Verhulst S. Stochastic modeling of length-dependent telomere shortening in Corvus monedula. J Theor Biol. 2011;282(1):1–6. doi:10.1016/j.jtbi.2011.04.026.PubMedCrossRefGoogle Scholar
  20. 20.
    Kark JD, Goldberger N, Kimura M, Sinnreich R, Aviv A. Energy intake and leukocyte telomere length in young adults. Am J Clin Nutr. 2012;95(2):479–87. doi:10.3945/ajcn.111.024521.PubMedCrossRefGoogle Scholar
  21. 21.
    Benetos A, Okuda K, Lajemi M, et al. Telomere length as an indicator of biological aging: the gender effect and relation with pulse pressure and pulse wave velocity. Hypertension. 2001;37(2):381–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Chen W, Kimura M, Kim S, et al. Longitudinal versus cross-sectional evaluations of leukocyte telomere length dynamics: age-dependent telomere shortening is the rule. J Gerontol A Biol Sci Med Sci. 2011;66(3):312–9. doi:10.1093/gerona/glq223.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Simon Verhulst
    • 1
  • Abraham Aviv
    • 2
  • Athanase Benetos
    • 3
  • Gerald S. Berenson
    • 4
  • Jeremy D. Kark
    • 5
  1. 1.Centre for Behaviour and NeurosciencesUniversity of GroningenGroningenThe Netherlands
  2. 2.The Center of Human Development and Aging, RoomUniversity of Medicine and Dentistry of New Jersey, New Jersey Medical SchoolNewarkUSA
  3. 3.Department of GeriatricsCHU Nancy, Hôpital BraboisVandoeuvre-lès-NancyFrance
  4. 4.Tulane Center for Cardiovascular HealthTulane University Health Sciences CenterNew OrleansUSA
  5. 5.Hadassah School of Public Health and Community MedicineThe Hebrew UniversityJerusalemIsrael

Personalised recommendations