European Journal of Epidemiology

, Volume 28, Issue 6, pp 513–523 | Cite as

The Netherlands Epidemiology of Obesity (NEO) study: study design and data collection

  • Renée de Mutsert
  • Martin den Heijer
  • Ton Johannes Rabelink
  • Johannes Willem Adriaan Smit
  • Johannes Anthonius Romijn
  • Johan Wouter Jukema
  • Albert de Roos
  • Christa Maria Cobbaert
  • Margreet Kloppenburg
  • Saskia le Cessie
  • Saskia Middeldorp
  • Frits Richard Rosendaal
NEW STUDY

Abstract

Obesity is a well-established risk factor for many chronic diseases. Incomplete insight exists in the causal pathways responsible for obesity-related disorders and consequently, in the identification of obese individuals at risk of these disorders. The Netherlands Epidemiology of Obesity (NEO) study is designed for extensive phenotyping to investigate pathways that lead to obesity-related diseases. The NEO study is a population-based, prospective cohort study that includes 6,673 individuals aged 45–65 years, with an oversampling of individuals with overweight or obesity. At baseline, data on demography, lifestyle, and medical history have been collected by questionnaires. In addition, samples of 24-h urine, fasting and postprandial blood plasma and serum, and DNA were collected. Participants underwent an extensive physical examination, including anthropometry, electrocardiography, spirometry, and measurement of the carotid artery intima-media thickness by ultrasonography. In random subsamples of participants, magnetic resonance imaging of abdominal fat, pulse wave velocity of the aorta, heart, and brain, magnetic resonance spectroscopy of the liver, indirect calorimetry, dual-energy X-ray absorptiometry, or accelerometry measurements were performed. The collection of data started in September 2008 and completed at the end of September 2012. Participants are followed for the incidence of obesity-related diseases and mortality. The NEO study investigates pathways that lead to obesity-related diseases. A better understanding of the mechanisms underlying the development of disease in obesity may help to identify individuals who are susceptible to the detrimental metabolic, cardiovascular and other consequences of obesity and has implications for the development of prevention and treatment strategies.

Keywords

Cardiovascular disease Cohort Diabetes Epidemiology Obesity Study design 

Notes

Acknowledgments

The NEO study is supported by the participating Departments, the Division and the Board of Directors of the Leiden University Medical Centre, and by the Leiden University, Research Profile Area ‘Vascular and Regenerative Medicine’. We express our gratitude to all individuals who participate in the Netherlands Epidemiology in Obesity study. We are grateful to all participating general practitioners for inviting eligible participants. We furthermore thank M.W.M. de Waal, PhD and H.J. de Jong, MSc of the Leiden Eerstelijns Onderzoeks Netwerk for their assistance with the recruitment. We greatly acknowledge P.R. van Beelen and research nurses: E. Baak; N. Besling; M.L. Bruijning; M.M. Bussink; A.M. van Diemen; C. van Dijk; K.K.M. Glas; C.H. van Houwelingen; M. van Houwelingen; L.A.M. Janssen; K.B.A. de Koning; S. van Luijken; D. Malsen; S.A. Meertens; W.M. Ninaber-de Jong; M. Ottenhof; S.J. Randelia; J. van Rewijk; V.C.E. van der Slot; J. Terpstra-Bevelander; I. Verhoogt; B. Vink; J.P. de Vreugd; E.C. Willems of Brilman for collecting the data, P.J. Noordijk; A.G.F Reymer; B.E.P.B. Ballieux; J.C.M. Verhagen for laboratory procedures and management, and R.J. van den Berg; M.W.J. Bergman; N. Brak; R. van Eck, BSc; L. Gullerud-Edberg; E.J. Hoenderdos; L. Mahic; J. van Rewijk; E.C. Sierat-van der Steen; A.K. Smeding, BSc; C.E. van der Velden-Krijgsman, MSc; C.H.E. de Vries-van Lingen; X. Yang for sample handling. We thank J. van Amersfoort; J. Bijsterbosch, MD; P. Dibbets-Schneider; M. van Dijk; J.M. Gast-Strookman; E. Ghariq; M.S. den Heyer-de Zoete; B. van der Hiel, MD; M.E. Janson; R.C. de Jeu; W.Y. Kwok, A.C. van der Linden; G.J.K. Linthorst-Pikkaart; M. Loef; M. Los; A.C. Maan; S. Ramanand; B.A.M.J. van Schie-Geyer; J.E.H. Schoumans-Mens; R. Schot; R.G.M. van Steijn; MD; R. Suttorius; D.H. Versteeg; A.O. Westerlaken for their help in data collection. We thank O.M. Dekkers, MD, PhD; L.J.M. Kroft, MD; M. Reijnierse, MD for medical assistance. The fellows A.W. de Boer, MD; E. Donga, MD; K.B. Gast, MD; S. Hillebrand, MSc; W.T. Thijs, MD; A.W. Visser, MSc; R.L. Widya, MD; E. Yusuf, MD took part in the data collection. We sincerely thank I. de Jonge, MSc for all data management of the NEO study. We thank Danone Research Centre for Specialised Nutrition B.V., Wageningen, for providing the mixed meal.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    WHO: Obesity and overweight. In: Fact sheet No 311. http://www.who.int/mediacentre/factsheets/fs311/en/ (2012). Accessed 1 Nov 2012.
  2. 2.
    Nationaal Kompas Volksgezondheid: http://www.nationaalkompas.nl/gezondheidsdeterminanten/persoonsgebonden/lichaamsgewicht/trend/ (2012). Accessed 1 Nov 2012.
  3. 3.
    International Obesity TaskForce Prevalence Data: http://www.iaso.org/iotf/obesity/ (2010). Accessed 1 Nov 2012.
  4. 4.
    Visscher TL, Kromhout D, Seidell JC. Long-term and recent time trends in the prevalence of obesity among Dutch men and women. Int J Obes Relat Metab Disord. 2002;26:1218–24.PubMedCrossRefGoogle Scholar
  5. 5.
    Gast GC, Frenken FJ, van Leest LA, Wendel-Vos GC, Bemelmans WJ. Intra-national variation in trends in overweight and leisure time physical activities in The Netherlands since 1980: stratification according to sex, age and urbanisation degree. Int J Obes (Lond). 2007;31:515–20.CrossRefGoogle Scholar
  6. 6.
    Flegal KM, Carroll MD, Ogden CL, Curtin LR. Prevalence and trends in obesity among US adults, 1999–2008. JAMA. 2010;303:235–41.PubMedCrossRefGoogle Scholar
  7. 7.
    James WPT, Jackson-Leach R, Mhurchu CN, Kalamara E, Shayeghi M, Rigby NJ, Nishida C, and Rodgers A: Overweight and obesity (high body mass index). In: Ezzati M, Lopez AD Rodgers A Murray CJL, editors. Comparative quantification of health risks: Global and regional burden of disease attributable to selected major risk factors. Geneva: World Health Organization; 2004. pp 497–596.Google Scholar
  8. 8.
    WHO Technical Report Series 894. Obesity: preventing and managing the global epidemic. Report of a WHO Consultation. Geneva: World Health Organization; 1999.Google Scholar
  9. 9.
    Vogelzangs N, Kritchevsky SB, Beekman AT, Brenes GA, Newman AB, Satterfield S, Yaffe K, Harris TB, Penninx BW. Obesity and onset of significant depressive symptoms: results from a prospective community-based cohort study of older men and women. J Clin Psychiatry. 2010;71:391–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Simon GE, Von KM, Saunders K, Miglioretti DL, Crane PK, van BG, Kessler RC. Association between obesity and psychiatric disorders in the US adult population. Arch Gen Psychiatry. 2006;63:824–30.PubMedCrossRefGoogle Scholar
  11. 11.
    Stewart ST, Cutler DM, Rosen AB. Forecasting the effects of obesity and smoking on U.S. life expectancy. N Engl J Med. 2009;361:2252–60.PubMedCrossRefGoogle Scholar
  12. 12.
    http://www.rivm.nl/nldemaat. Accessed 20 March 2013
  13. 13.
    Verkleij-Hagoort AC, De Vries JH, Stegers MP, Lindemans J, Ursem NT, Steegers-Theunissen RP. Validation of the assessment of folate and vitamin B12 intake in women of reproductive age: the method of triads. Eur J Clin Nutr. 2007;61:610–5.PubMedGoogle Scholar
  14. 14.
    Wendel-Vos GC, Schuit AJ, Saris WH, Kromhout D. Reproducibility and relative validity of the short questionnaire to assess health-enhancing physical activity. J Clin Epidemiol. 2003;56:1163–9.PubMedCrossRefGoogle Scholar
  15. 15.
    de Hollander EL, Zwart L, de Vries SI, Wendel-Vos W. The SQUASH was a more valid tool than the OBiN for categorizing adults according to the Dutch physical activity and the combined guideline. J Clin Epidemiol. 2012;65:73–81.PubMedCrossRefGoogle Scholar
  16. 16.
    Roos EM, Roos HP, Lohmander LS, Ekdahl C, Beynnon BD. Knee injury and osteoarthritis outcome score (KOOS)–development of a self-administered outcome measure. J Orthop Sports Phys Ther. 1998;28:88–96.PubMedGoogle Scholar
  17. 17.
    de G, I, Favejee MM, Reijman M, Verhaar JA, Terwee CB: The Dutch version of the knee injury and osteoarthritis outcome score: a validation study. Health Qual Life Outcomes 2008;6:16.Google Scholar
  18. 18.
    Bellamy N, Campbell J, Haraoui B, Gerecz-Simon E, Buchbinder R, Hobby K, MacDermid JC. Clinimetric properties of the AUSCAN osteoarthritis hand index: an evaluation of reliability, validity and responsiveness. Osteoarthritis Cartilage. 2002;10:863–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Bellamy N, Campbell J, Haraoui B, Buchbinder R, Hobby K, Roth JH, MacDermid JC. Dimensionality and clinical importance of pain and disability in hand osteoarthritis: development of the Australian/Canadian (AUSCAN) Osteoarthritis Hand Index. Osteoarthritis Cartilage. 2002;10:855–62.PubMedCrossRefGoogle Scholar
  20. 20.
    Johns MW. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep. 1991;14:540–5.PubMedGoogle Scholar
  21. 21.
    Buysse DJ, Reynolds CF III, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh sleep quality index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28:193–213.PubMedCrossRefGoogle Scholar
  22. 22.
    Netzer NC, Stoohs RA, Netzer CM, Clark K, Strohl KP. Using the Berlin questionnaire to identify patients at risk for the sleep apnea syndrome. Ann Intern Med. 1999;131:485–91.PubMedCrossRefGoogle Scholar
  23. 23.
    Rush AJ, Gullion CM, Basco MR, Jarrett RB, Trivedi MH. The inventory of depressive symptomatology (IDS): psychometric properties. Psychol Med. 1996;26:477–86.PubMedCrossRefGoogle Scholar
  24. 24.
    Beck AT, Epstein N, Brown G, Steer RA. An inventory for measuring clinical anxiety: psychometric properties. J Consult Clin Psychol. 1988;56:893–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Fydrich T, Dowdall D, Chambless DL: Reliability and validity of the beck anxiety inventory. J Anxiety Disorders 1992;55–61.Google Scholar
  26. 26.
    Brugha TS, Cragg D. The list of threatening experiences: the reliability and validity of a brief life events questionnaire. Acta Psychiatr Scand. 1990;82:77–81.PubMedCrossRefGoogle Scholar
  27. 27.
    McHorney CA, Ware JE Jr, Lu JF, Sherbourne CD. The MOS 36-item short-form health survey (SF-36): III. Tests of data quality, scaling assumptions, and reliability across diverse patient groups. Med Care. 1994;32:40–66.PubMedCrossRefGoogle Scholar
  28. 28.
    McHorney CA, Ware JE Jr, Raczek AE. The MOS 36-item short-form health survey (SF-36): II. Psychometric and clinical tests of validity in measuring physical and mental health constructs. Med Care. 1993;31:247–63.PubMedCrossRefGoogle Scholar
  29. 29.
    Ware JE Jr, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care. 1992;30:473–83.PubMedCrossRefGoogle Scholar
  30. 30.
    Fraser CG. Biological variation: from principles to practice. Washington, DC: AACC Press; 2001.Google Scholar
  31. 31.
    van der Meer RW, Rijzewijk LJ, de Jong HW, Lamb HJ, Lubberink M, Romijn JA, Bax JJ, de RA, Kamp O, Paulus WJ, Heine RJ, Lammertsma AA, Smit JW, Diamant M: Pioglitazone improves cardiac function and alters myocardial substrate metabolism without affecting cardiac triglyceride accumulation and high-energy phosphate metabolism in patients with well-controlled type 2 diabetes mellitus. Circulation 2009;119:2069–77.Google Scholar
  32. 32.
    Livesey G, Elia M. Estimation of energy expenditure, net carbohydrate utilization, and net fat oxidation and synthesis by indirect calorimetry: evaluation of errors with special reference to the detailed composition of fuels. Am J Clin Nutr. 1988;47:608–28.PubMedGoogle Scholar
  33. 33.
    Schousboe JT, Wilson KE, Hangartner TN. Detection of aortic calcification during vertebral fracture assessment (VFA) compared to digital radiography. PLoS ONE. 2007;. doi: 10.1371/journal.pone.0000715.PubMedGoogle Scholar
  34. 34.
    Brage S, Brage N, Franks PW, Ekelund U, Wong MY, Andersen LB, Froberg K, Wareham NJ. Branched equation modeling of simultaneous accelerometry and heart rate monitoring improves estimate of directly measured physical activity energy expenditure. J Appl Physiol. 2004;96:343–51.PubMedCrossRefGoogle Scholar
  35. 35.
    Brage S, Brage N, Franks PW, Ekelund U, Wareham NJ. Reliability and validity of the combined heart rate and movement sensor Actiheart. Eur J Clin Nutr. 2005;59:561–70.PubMedCrossRefGoogle Scholar
  36. 36.
    Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 1996;93:1043–65.Google Scholar
  37. 37.
    Chae KY, Kripke DF, Poceta JS, Shadan F, Jamil SM, Cronin JW, Kline LE. Evaluation of immobility time for sleep latency in actigraphy. Sleep Med. 2009;10:621–5.PubMedCrossRefGoogle Scholar
  38. 38.
    WHO Collaboration Centre for Drug Statistics Methodology. Anatomical Therapeutic Chemical classification system. http://www.whocc.no/atc/ (2012). Accessed 1 Nov 2012.
  39. 39.
    Wonca International Classification Committee. The international classification of primary care. http://www.ph3c.org/4daction/w3_CatVisu/en/icpc.html?wCatIDAdmin=1106 (2012). Accessed 1 Nov 2012.
  40. 40.
    Vaartjes I, van Dis I, Visseren FLJ, Bots ML. Incidentie en prevalentie van hart- en vaatziekten in Nederland. In: Vaartjes I, van Dis I, Visseren FLJ, Bots ML, editors. Hart- en vaatziekten in Nederland 2010, cijfers over leefstijl- en risicofactoren, ziekte en sterfte. Den Haag: Nederlandse Hartstichting; 2010. p. 29–52.Google Scholar
  41. 41.
    Kolominsky-Rabas PL, Weber M, Gefeller O, Neundoerfer B, Heuschmann PU. Epidemiology of ischemic stroke subtypes according to TOAST criteria: incidence, recurrence, and long-term survival in ischemic stroke subtypes: a population-based study. Stroke. 2001;32:2735–40.PubMedCrossRefGoogle Scholar
  42. 42.
    Fowkes FG. Epidemiological research on peripheral vascular disease. J Clin Epidemiol. 2001;54:863–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Felson DT, Zhang Y, Hannan MT, Naimark A, Weissman B, Aliabadi P, Levy D. Risk factors for incident radiographic knee osteoarthritis in the elderly: the Framingham Study. Arthritis Rheum. 1997;40:728–33.PubMedCrossRefGoogle Scholar
  44. 44.
    Murphy JM, Olivier DC, Monson RR, Sobol AM, Leighton AH. Incidence of depression and anxiety: the Stirling County Study. Am J Public Health. 1988;78:534–40.PubMedCrossRefGoogle Scholar
  45. 45.
    Yusuf S, Hawken S, Ounpuu S, Bautista L, Franzosi MG, Commerford P, Lang CC, Rumboldt Z, Onen CL, Lisheng L, Tanomsup S, Wangai P Jr, Razak F, Sharma AM, Anand SS. Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: a case-control study. Lancet. 2005;366:1640–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Hu G, Tuomilehto J, Silventoinen K, Sarti C, Mannisto S, Jousilahti P. Body mass index, waist circumference, and waist-hip ratio on the risk of total and type-specific stroke. Arch Intern Med. 2007;167:1420–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Nystad W, Meyer HE, Nafstad P, Tverdal A, Engeland A. Body mass index in relation to adult asthma among 135,000 Norwegian men and women. Am J Epidemiol. 2004;160:969–76.PubMedCrossRefGoogle Scholar
  48. 48.
    Meisinger C, Doring A, Thorand B, Heier M, Lowel H. Body fat distribution and risk of type 2 diabetes in the general population: are there differences between men and women? The MONICA/KORA Augsburg cohort study. Am J Clin Nutr. 2006;84:483–9.PubMedGoogle Scholar
  49. 49.
  50. 50.
    Donders AR, van der Heijden GJ, Stijnen T, Moons KG. Review: a gentle introduction to imputation of missing values. J Clin Epidemiol. 2006;59:1087–91.PubMedCrossRefGoogle Scholar
  51. 51.
    Shoukri MM, Asyali MH, Donner A. Sample size requirements for the design of reliability study: review and new results. Stat Methods Med Res. 2004;13:251–71.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Renée de Mutsert
    • 1
  • Martin den Heijer
    • 1
    • 2
  • Ton Johannes Rabelink
    • 3
  • Johannes Willem Adriaan Smit
    • 4
  • Johannes Anthonius Romijn
    • 4
  • Johan Wouter Jukema
    • 5
  • Albert de Roos
    • 6
  • Christa Maria Cobbaert
    • 7
  • Margreet Kloppenburg
    • 1
    • 8
  • Saskia le Cessie
    • 1
    • 9
  • Saskia Middeldorp
    • 1
  • Frits Richard Rosendaal
    • 1
    • 10
  1. 1.Department of Clinical EpidemiologyLeiden University and Medical CenterLeidenThe Netherlands
  2. 2.Department of Internal MedicineVU Medical CenterAmsterdamThe Netherlands
  3. 3.Department of NephrologyLeiden University Medical CenterLeidenThe Netherlands
  4. 4.Department of EndocrinologyLeiden University Medical CenterLeidenThe Netherlands
  5. 5.Department of CardiologyLeiden University Medical CenterLeidenThe Netherlands
  6. 6.Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
  7. 7.Department of Clinical ChemistryLeiden University Medical CenterLeidenThe Netherlands
  8. 8.Department of RheumatologyLeiden University Medical CenterLeidenThe Netherlands
  9. 9.Department of Medical Statistics and Bio-informaticsLeiden University Medical CenterLeidenThe Netherlands
  10. 10.Department of Thrombosis and HemostasisLeiden University Medical CenterLeidenThe Netherlands

Personalised recommendations