European Journal of Epidemiology

, Volume 28, Issue 1, pp 87–98 | Cite as

Offspring’s blood pressure and metabolic phenotype after exposure to gestational hypertension in utero

  • Satu Miettola
  • Anna-Liisa Hartikainen
  • Marja Vääräsmäki
  • Aini Bloigu
  • Aimo Ruokonen
  • Marjo-Riitta Järvelin
  • Anneli Pouta
DEVELOPMENTAL EPIDEMIOLOGY

Abstract

The aim of the study was to investigate the impact of de novo hypertension in pregnancy, i.e. gestational (non-proteinuric) hypertension (GH) and preeclampsia (PE), on the long-term metabolic outcome of the offspring. Data was obtained from the Northern Finland Birth Cohort 1986 (NFBC 1986), including 9,362 pregnancies and subsequent births between 1985 and 1986. Pregnancies were categorised into three groups: (1) GH with blood pressure (BP) ≥ 140/90 mmHg, (2) PE with BP ≥ 140/90 mmHg and proteinuria, and (3) reference group with normal BP. The final study population included 331 offspring of mothers with GH, 197 with PE and 5,045 offspring of normotensive mothers. The main outcome measures were systolic and diastolic blood pressure (SBP, DBP), mean arterial pressure (MAP), body mass index (BMI), and serum lipid, glucose and insulin levels of the 16 year-old offspring. The children of mothers with GH had higher BP compared to the reference group (SBP percentage difference 2.7 (95 % CI 1.6, 3.8); DBP 3.4 (2.1, 4.6); MAP 3.1 (2.0, 4.1), P < 0.001 for all) and a tendency towards higher cholesterol and apolipoprotein B values. The offspring of mothers with PE had higher DBP and MAP, however after the adjustments this difference disappeared. Maternal de novo hypertension during pregnancy is associated with offspring’s elevated blood pressure level already in adolescence. GH may also be associated with unfavourable lipid profile of the offspring.

Keywords

Gestational hypertension Preeclampsia Hypertension Dyslipidemia Metabolic disorder 

References

  1. 1.
    Roberts JM, Pearson GD, Cutler JA, Lindheimer MD. National Heart Lung and Blood, Institute. Summary of the NHLBI working group on research on hypertension during pregnancy. Hypertens Pregn. 2003;22(2):109–27.CrossRefGoogle Scholar
  2. 2.
    Ferreira I, Peeters LL, Stehouwer CD. Preeclampsia and increased blood pressure in the offspring: meta-analysis and critical review of the evidence. J Hypertens. 2009;27(10):1955–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Palmsten K, Buka SL, Michels KB. Maternal pregnancy-related hypertension and risk for hypertension in offspring later in life. Obstet Gynecol. 2010;116(4):858–64.PubMedCrossRefGoogle Scholar
  4. 4.
    Mamun AA, Kinarivala MK, O’Callaghan M, Williams G, Najman J, Callaway L. Does hypertensive disorder of pregnancy predict offspring blood pressure at 21 years? Evidence from a birth cohort study. J Hum Hypertens. 2011;4(6):478–81Google Scholar
  5. 5.
    Tenhola S, Rahiala E, Martikainen A, Halonen P, Voutilainen R. Blood pressure, serum lipids, fasting insulin, and adrenal hormones in 12-year-old children born with maternal preeclampsia. J Clin Endocrinol Metab. 2003;88(3):1217–22.PubMedCrossRefGoogle Scholar
  6. 6.
    Lawlor DA, Macdonald-Wallis C, Fraser A, Nelson SM, Hingorani A, Davey Smith G, et al. Cardiovascular biomarkers and vascular function during childhood in the offspring of mothers with hypertensive disorders of pregnancy: findings from the Avon Longitudinal Study of Parents and Children. Eur Heart J. 2012;33(3):335–45.PubMedCrossRefGoogle Scholar
  7. 7.
    Davis EF, Lazdam M, Lewandowski AJ, Worton SA, Kelly B, Kenworthy Y, et al. Cardiovascular risk factors in children and young adults born to preeclamptic pregnancies: a systematic review. Pediatrics. 2012;129(6):e1552–61.PubMedCrossRefGoogle Scholar
  8. 8.
    Kajantie E, Eriksson JG, Osmond C, Thornburg K, Barker DJ. Pre-eclampsia is associated with increased risk of stroke in the adult offspring: the Helsinki birth cohort study. Stroke. 2009;40(4):1176–80.PubMedCrossRefGoogle Scholar
  9. 9.
    Kotchen JM, Kotchen TA, Cottrill CM, Guthrie GP Jr, Somes G. Blood pressures of young mothers and their first children 3–6 years following hypertension during pregnancy. J Chronic Dis. 1979;32(9–10):653–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Geelhoed JJ, Fraser A, Tilling K, Benfield L, Davey Smith G, Sattar N, et al. Preeclampsia and gestational hypertension are associated with childhood blood pressure independently of family adiposity measures: the Avon Longitudinal Study of Parents and Children. Circulation. 2010;122(12):1192–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Järvelin MR, Elliott P, Kleinschmidt I, Martuzzi M, Grundy C, Hartikainen AL, et al. Ecological and individual predictors of birthweight in a Northern Finland Birth Cohort 1986. Paediatr Perinat Epidemiol. 1997;11(3):298–312.PubMedCrossRefGoogle Scholar
  12. 12.
    Kantomaa MT, Tammelin TH, Näyhä S, Taanila AM. Adolescents’ physical activity in relation to family income and parents’ education. Prev Med. 2007;44(5):410–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364(9438):937–52.PubMedCrossRefGoogle Scholar
  14. 14.
    Seidman DS, Laor A, Gale R, Stevenson DK, Mashiach S, Danon YL. Pre-eclampsia and offspring’s blood pressure, cognitive ability and physical development at 17-years-of-age. Br J Obstet Gynaecol. 1991;98(10):1009–14.PubMedCrossRefGoogle Scholar
  15. 15.
    Oglaend B, Forman MR, Romundstad PR, Nilsen ST, Vatten LJ. Blood pressure in early adolescence in the offspring of preeclamptic and normotensive pregnancies. J Hypertens. 2009;27(10):2051–4.PubMedCrossRefGoogle Scholar
  16. 16.
    Huxley R, Lewington S, Clarke R. Cholesterol, coronary heart disease and stroke: a review of published evidence from observational studies and randomized controlled trials. Semin Vasc Med. 2002;2(3):315–23.PubMedCrossRefGoogle Scholar
  17. 17.
    McGill HC, McMahan CA, Gidding SS. Are pediatricians responsible for prevention of adult cardiovascular disease? Nat Clin Pract Cardiovasc Med. 2009;6(1):10–1.PubMedCrossRefGoogle Scholar
  18. 18.
    Daniels SR, Greer FR. Committee on Nutrition. Lipid screening and cardiovascular health in childhood. Pediatrics. 2008;122(1):198–208.PubMedCrossRefGoogle Scholar
  19. 19.
    Freedman DS, Otvos JD, Jeyarajah EJ, Shalaurova I, Cupples LA, Parise H, et al. Sex and age differences in lipoprotein subclasses measured by nuclear magnetic resonance spectroscopy: the Framingham Study. Clin Chem. 2004;50(7):1189–200.PubMedCrossRefGoogle Scholar
  20. 20.
    Hazzard WR. Atherogenesis: why women live longer than men. Geriatrics. 1985;40(1):42–51.PubMedGoogle Scholar
  21. 21.
    Walldius G, Jungner I, Holme I, Aastveit AH, Kolar W, Steiner E. High apolipoprotein B, low apolipoprotein A-I, and improvement in the prediction of fatal myocardial infarction (AMORIS study): a prospective study. Lancet. 2001;358(9298):2026–33.PubMedCrossRefGoogle Scholar
  22. 22.
    Westerveld HT, Van Lennep JE, van Lennep HW, Liem AH, de Boo JA, van der Schouw YT, et al. Apolipoprotein B and coronary artery disease in women: a cross-sectional study in women undergoing their first coronary angiography. Arterioscler Thromb Vasc Biol. 1998;18(7):1101–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Alexander BT. Placental insufficiency leads to development of hypertension in growth-restricted offspring. Hypertension. 2003;41(3):457–62.PubMedCrossRefGoogle Scholar
  24. 24.
    Barker DJ, Winter PD, Osmond C, Margetts B, Simmonds SJ. Weight in infancy and death from ischaemic heart disease. Lancet. 1989;2(8663):577–80.PubMedCrossRefGoogle Scholar
  25. 25.
    Szuran T, Zimmerman E, Pliska V, Pfister HP, Welzl H. Prenatal stress effects on exploratory activity and stress-induced analgesia in rats. Dev Psychobiol. 1991;24(5):361–72.PubMedCrossRefGoogle Scholar
  26. 26.
    Weinstock M, Poltyrev T, Schorer-Apelbaum D, Men D, McCarty R. Effect of prenatal stress on plasma corticosterone and catecholamines in response to footshock in rats. Physiol Behav. 1998;64(4):439–44.PubMedCrossRefGoogle Scholar
  27. 27.
    Igosheva N, Klimova O, Anishchenko T, Glover V. Prenatal stress alters cardiovascular responses in adult rats. J Physiol (Lond). 2004;557(Pt 1):273–85.CrossRefGoogle Scholar
  28. 28.
    Cadet R, Pradier P, Dalle M, Delost P. Effects of prenatal maternal stress on the pituitary adrenocortical reactivity in guinea-pig pups. J Dev Physiol. 1986;8(6):467–75.PubMedGoogle Scholar
  29. 29.
    Dauprat P, Monin G, Dalle M, Delost P. The effects of psychosomatic stress at the end of pregnancy on maternal and fetal plasma cortisol levels and liver glycogen in guinea-pigs. Reprod Nutr Dev. 1984;24(1):45–51.PubMedCrossRefGoogle Scholar
  30. 30.
    Dodic M, Moritz K, Koukoulas I, Wintour EM. Programmed hypertension: kidney, brain or both? Trends Endocrinol Metab. 2002;13(9):403–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Seckl JR. Glucocorticoid programming of the fetus; adult phenotypes and molecular mechanisms. Mol Cell Endocrinol. 2001;185(1–2):61–71.PubMedCrossRefGoogle Scholar
  32. 32.
    Welberg LA, Seckl JR. Prenatal stress, glucocorticoids and the programming of the brain. J Neuroendocrinol. 2001;13(2):113–28.PubMedCrossRefGoogle Scholar
  33. 33.
    Dampney RA. Functional organization of central pathways regulating the cardiovascular system. Physiol Rev. 1994;74(2):323–64.PubMedGoogle Scholar
  34. 34.
    Jansson T, Lambert GW. Effect of intrauterine growth restriction on blood pressure, glucose tolerance and sympathetic nervous system activity in the rat at 3–4 months of age. J Hypertens. 1999;17(9):1239–48.PubMedCrossRefGoogle Scholar
  35. 35.
    Khan IY, Taylor PD, Dekou V, Seed PT, Lakasing L, Graham D, et al. Gender-linked hypertension in offspring of lard-fed pregnant rats. Hypertension. 2003;41(1):168–75.PubMedCrossRefGoogle Scholar
  36. 36.
    Ozaki T, Nishina H, Hanson MA, Poston L. Dietary restriction in pregnant rats causes gender-related hypertension and vascular dysfunction in offspring. J Physiol (Lond). 2001;530(Pt 1):141–52.CrossRefGoogle Scholar
  37. 37.
    Zukowska-Grojec Z, Shen GH, Capraro PA, Vaz CA. Cardiovascular, neuropeptide Y, and adrenergic responses in stress are sexually differentiated. Physiol Behav. 1991;49(4):771–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Girdler SS, Turner JR, Sherwood A, Light KC. Gender differences in blood pressure control during a variety of behavioral stressors. Psychosom Med. 1990;52(5):571–91.PubMedGoogle Scholar
  39. 39.
    Livezey GT, Miller JM, Vogel WH. Plasma norepinephrine, epinephrine and corticosterone stress responses to restraint in individual male and female rats, and their correlations. Neurosci Lett. 1985;62(1):51–6.PubMedCrossRefGoogle Scholar
  40. 40.
    Macdonald-Wallis C, Lawlor DA, Heron J, Fraser A, Nelson SM, Tilling K. Relationships of risk factors for pre-eclampsia with patterns of occurrence of isolated gestational proteinuria during normal term pregnancy. PLoS ONE. 2011;6(7):e22115.PubMedCrossRefGoogle Scholar
  41. 41.
    Baraldi AN, Enders CK. An introduction to modern missing data analyses. J Sch Psychol. 2010;48(1):5–37.PubMedCrossRefGoogle Scholar
  42. 42.
    Pouta A, Hartikainen AL, Sovio U, Gissler M, Laitinen J, McCarthy MI, et al. Manifestations of metabolic syndrome after hypertensive pregnancy. Hypertension. 2004;43(4):825–31.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Satu Miettola
    • 1
    • 2
  • Anna-Liisa Hartikainen
    • 2
  • Marja Vääräsmäki
    • 2
  • Aini Bloigu
    • 1
  • Aimo Ruokonen
    • 3
  • Marjo-Riitta Järvelin
    • 1
    • 4
    • 5
  • Anneli Pouta
    • 1
    • 2
  1. 1.National Institute for Health and WelfareOuluFinland
  2. 2.Department of Obstetrics and GynecologyOulu University HospitalOuluFinland
  3. 3.Department of Clinical ChemistryOulu University HospitalOuluFinland
  4. 4.Institute of Health Sciences and Biocenter OuluUniversity of OuluOuluFinland
  5. 5.Department of Epidemiology and Biostatistics, and MRC HPA CenterImperial College LondonLondonUK

Personalised recommendations