European Journal of Epidemiology

, Volume 27, Issue 9, pp 717–727 | Cite as

The short-term effect of 24-h average and peak air pollution on mortality in Oslo, Norway

  • Christian MadsenEmail author
  • Pål Rosland
  • Dominic Anthony Hoff
  • Wenche Nystad
  • Per Nafstad
  • Øyvind Erik Næss


Numerous epidemiological studies have shown associations between increases in outdoor air pollution and all-cause mortality as well as cardiovascular and respiratory related mortality. The majority of studies has used the routine monitoring network and thus has not been able to characterize the small-scale variation in daily averages and peak concentrations within urban settings. To address possible short term impact on mortally by air pollution we used a time-stratified case-crossover design to estimate associations of traffic-related air pollution and wood burning and daily mortality during a period of 10 years among residents above 50 years of age in Oslo, Norway. A dispersion model was used to assess short-term air pollution for daily (24-h) averages and peak concentrations of nitrogen dioxide (NO2) from exhaust and particulate matter with a diameter of 2.5 μm or less (PM2.5) from exhaust and wood-burning at residential neighbourhood level for each individual. We found an overall increased risk from exposure at the lag of 0–5 days before the day of death for both pollutants. The excess risk was highest for PM2.5 with a 2.8 % (95 % confidence interval: 1.2–4.4) increase per 10 μg per cubic meter change in daily exposure. Short-term traffic-related air pollution was associated with increased risk for mortality among individuals above 50 years of age, especially for circulatory outcomes.


Air pollution Mortality Case-crossover Short-term exposure Registry-based 



This work was funded by the Norwegian Public Road Administration. Christian Madsen was also funded by the Norwegian Research Council (Grant Number 196102/V40). Statistics Norway linked census data with the death registry. We would also thank the Norwegian Surveillance System for Communicable Diseases (MSIS) for providing data on seasonal influenza.

Conflict of interest



  1. 1.
    Pope CA 3rd, Dockery DW. Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc. 2006;56(6):709–42.PubMedCrossRefGoogle Scholar
  2. 2.
    Dominici F, Peng RD, Bell ML, Pham L, McDermott A, Zeger SL, Samet JM. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA. 2006;295(10):1127–34.PubMedCrossRefGoogle Scholar
  3. 3.
    Guo Y, Jia Y, Pan X, Liu L, Wichmann HE. The association between fine particulate air pollution and hospital emergency room visits for cardiovascular diseases in Beijing, China. Sci Total Environ. 2009;407(17):4826–30.PubMedCrossRefGoogle Scholar
  4. 4.
    Seaton A, MacNee W, Donaldson K, Godden D. Particulate air pollution and acute health effects. Lancet. 1995;345(8943):176–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Peters A, Döring A, Wichmann HE, et al. Increased plasma viscosity during the 1985 air pollution episode: a link to mortality? Lancet. 1997;349:1582–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Madsen C, Durand KL, Nafstad P, Schwarze PE, Rønningen KS, Håheim LL. Associations between environmental exposures and serum concentrations of Clara cell protein among elderly men in Oslo, Norway. Environ Res. 2008;108(3):354–60.PubMedCrossRefGoogle Scholar
  7. 7.
    Rückerl R, Ibald-Mulli A, Koenig W, Schneider A, Woelke G, Cyrys J, Heinrich J, Marder V, Frampton M, Wichmann HE, Peters A. Air pollution and markers of inflammation and coagulation in patients with coronary heart disease. Am J Respir Crit Care Med. 2006;173(4):432–41.PubMedCrossRefGoogle Scholar
  8. 8.
    Pope CA 3rd, Verrier RL, Lovett EG, Larson AC, Raizenne ME, Kanner RE, Schwartz J, Villegas GM, Gold DR, Dockery DW. Heart rate variability associated with particulate air pollution. Am Heart J. 1999;138(5 Pt 1):890–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Gold DR, Litonjua A, Schwartz J, Lovett E, Larson A, Nearing B, Allen G, Verrier M, Cherry R, Verrier R. Ambient pollution and heart rate variability. Circulation. 2000;101(11):1267–73.PubMedCrossRefGoogle Scholar
  10. 10.
    Bhaskaran K, Hajat S, Armstrong B, Haines A, Herrett E, Wilkinson P, Smeeth L. The effects of hourly differences in air pollution on the risk of myocardial infarction: case crossover analysis of the MINAP database. BMJ. 2011;343:d5531.PubMedCrossRefGoogle Scholar
  11. 11.
    Peters A, von Klot S, Heier M, Trentinaglia I, Hörmann A, Wichmann HE. Cooperative Health Research in the Region of Augsburg Study Group. Exposure to traffic and the onset of myocardial infarction. N Engl J Med. 2004;351(17):1721–30.PubMedCrossRefGoogle Scholar
  12. 12.
    Blakely T, Subramanian SV. Multilevel studies. In: Oakes JM and Kaufman JS, editors. Methods in social epidemiology. San Francisco: Jossey-Bass; 2006.Google Scholar
  13. 13.
    Naess O, Piro FN, Nafstad P, Smith GD, Leyland AH. Air pollution, social deprivation, and mortality: a multilevel cohort study. Epidemiology. 2007;18(6):686–94.PubMedCrossRefGoogle Scholar
  14. 14.
    Deguen S, Zmirou-Navier D. Social inequalities resulting from health risks related to ambient air quality—a European review. Eur J Public Health. 2010;20(1):27–35.PubMedCrossRefGoogle Scholar
  15. 15.
    Serinelli M, Vigotti MA, Stafoggia M, Berti G, Bisanti L, Mallone S, Pacelli B, Tessari R, Forastiere F. Particulate matter and out-of-hospital coronary deaths in eight Italian cities. Occup Environ Med. 2010;67(5):301–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Janes H, Sheppard L, Lumley T. Case-crossover analyses of air pollution exposure data: referent selection strategies and their implications for bias. Epidemiology. 2005;16(6):717–26.PubMedCrossRefGoogle Scholar
  17. 17.
    Basu R, Dominici F, Samet JM. Temperature and mortality among the elderly in the United States: a comparison of epidemiologic methods. Epidemiology. 2005;16:58–66.PubMedCrossRefGoogle Scholar
  18. 18.
    Maclure M. The case-crossover design: a method for studying transient effects on the risk of acute events. Am J Epidemiol. 1991;133(2):144–53.PubMedGoogle Scholar
  19. 19.
    Peters A, von Klot S, Heier M, Trentinaglia I, Cyrys J, Hörmann A, Hauptmann M, Wichmann HE, Löwel H. Particulate air pollution and nonfatal cardiac events. Part I. Air pollution, personal activities, and onset of myocardial infarction in a case-crossover study. Res Rep Health Eff Inst. 2005;124:1–66.PubMedGoogle Scholar
  20. 20.
    Neas LM, Schwartz J, Dockery D. A case-crossover analysis of air pollution and mortality in Philadelphia. Environ Health Perspect. 1999;107(8):629–31.PubMedCrossRefGoogle Scholar
  21. 21.
    Sunyer J, Schwartz J, Tobías A, Macfarlane D, Garcia J, Antó JM. Patients with chronic obstructive pulmonary disease are at increased risk of death associated with urban particle air pollution: a case-crossover analysis. Am J Epidemiol. 2000;151(1):50–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Kwon HJ, Cho SH, Nyberg F, Pershagen G. Effects of ambient air pollution on daily mortality in a cohort of patients with congestive heart failure. Epidemiology. 2001;12(4):413–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Zeka A, Zanobetti A, Schwartz J. Short term effects of particulate matter on cause specific mortality: effects of lags and modification by city characteristics. Occup Environ Med. 2005;62(10):718–25.PubMedCrossRefGoogle Scholar
  24. 24.
    Forastiere F, Stafoggia M, Tasco C, Picciotto S, Agabiti N, Cesaroni G, Perucci CA. Socioeconomic status, particulate air pollution, and daily mortality: differential exposure or differential susceptibility. Am J Ind Med. 2007;50(3):208–16.PubMedCrossRefGoogle Scholar
  25. 25.
    Maynard D, Coull BA, Gryparis A, Schwartz J. Mortality risk associated with short-term exposure to traffic particles and sulfates. Envrion Health Perspect. 2007;115(5):751–5.CrossRefGoogle Scholar
  26. 26.
    Stafoggia M, Schwartz J, Forastiere F. SISTI Group. Does temperature modify the association between air pollution and mortality? A multicity case-crossover analysis in Italy. Am J Epidemiol. 2008;167(12):1476–85.PubMedCrossRefGoogle Scholar
  27. 27.
    Guo Y, Barnett AG, Zhang Y, Tong S, Yu W, Pan X. The short-term effect of air pollution on cardiovascular mortality in Tianjin, China: comparison of time series and case-crossover analyses. Sci Total Environ. 2010;409(2):300–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Oftedal B, Walker SE, Gram F, McInnes H, Nafstad P. Modelling long-term averages of local ambient air pollution in Oslo, Norway: evaluation of nitrogen dioxide, PM10 and PM2.5. Int J Environ Pollut. 2009;36(1–3):110–26.CrossRefGoogle Scholar
  29. 29.
    Basu R, Samet JM. Relation between elevated ambient temperature and mortality: a review of the epidemiologic evidence. Epidemiol Rev. 2002;24:190–202.PubMedCrossRefGoogle Scholar
  30. 30.
    The Eurowinter Group. Cold exposure and winter mortality from ischaemic heart disease, cerebrovascular disease, respiratory disease, and all causes in warm and cold regions of Europe. The Eurowinter Group. Lancet. 1997;349(9062):1341–6.CrossRefGoogle Scholar
  31. 31.
    Madsen C, Nafstad P. Associations between environmental exposure and blood pressure among participants in the Oslo Health Study (HUBRO). Eur J Epidemiol. 2006;21(7):485–91.PubMedCrossRefGoogle Scholar
  32. 32.
    Lu Y, Zeger SL. On the equivalence of case-crossover and time series methods in environmental epidemiology. Biostatistics. 2007;8(2):337–44.PubMedCrossRefGoogle Scholar
  33. 33.
    Mittleman MA. Optimal referent selection strategies in case-crossover studies: a settled issue. Epidemiology. 2005;16:715–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Lumley T, Levy D. Bias in the case-crossover design: implications for studies of air pollution. Environmetrics. 2000;11:689–704.CrossRefGoogle Scholar
  35. 35.
    Bateson TF, Schwartz J. Control for seasonal variation and time trend in case-crossover studies of acute effects of environmental exposures. Epidemiology. 1999;10(5):539–44.PubMedCrossRefGoogle Scholar
  36. 36.
    Lützenkirchen S, Lutnæs G, 2005, Luftkvaliteten i Oslo. Status 2004. [Air quality in Oslo. Status 2004], (only in Norwegian). Oslo City, Health and Wealth Administration. 2004.
  37. 37.
    Querol X, Alastuey A, Ruiz CR, Artiñano B, Hansson HC, Harrison RM, Buringh E, ten Brink HM, Lutz M, Bruckmann P, Straehl P, Schneider J. Speciation and origin of PM10 and PM2.5 in selected European cities. Atmos Environ. 2004;38:6547–55.CrossRefGoogle Scholar
  38. 38.
    Kupiainen KK, Tervahattu H, Räisänen M, Mäkelä T, Aurela M, Hillamo R. Size and composition of airborne particles from pavement wear, tires, and tractor sanding. Environ Sci Technol. 2005;39:699–706.PubMedCrossRefGoogle Scholar
  39. 39.
    Anderson HR, Atkinson RW, Peacock JL, Sweeting MJ, Marston L. Ambient particulate matter and health effects: publication bias in studies of short-term associations. Epidemiology. 2005;16:155–63.PubMedCrossRefGoogle Scholar
  40. 40.
    Zanobetti A, Schwartz J, Samoli E, Gryparis A, Touloumi G, Atkinson R, Le Tertre A, Bobros J, Celko M, Goren A, Forsberg B, Michelozzi P, Rabczenko D, Aranguez Ruiz E, Katsouyanni K. The temporal pattern of mortality responses to air pollution: a multicity assessment of mortality displacement. Epidemiology. 2002;13:87–93.PubMedCrossRefGoogle Scholar
  41. 41.
    Brook RD. Cardiovascular effects of air pollution. Clin Sci. 2008;115:175–87.PubMedCrossRefGoogle Scholar
  42. 42.
    Schnelle-Kreis J, Küpper U, Sklorz M, Cyrys J, Briedé JJ, Peters AA, Zimmermann R. Daily measurement of organic compounds in ambient particulate matter in Augsburg, Germany: new aspects on aerosol sources and aerosol related health effects. Biomarkers. 2009;14(1):39–44.PubMedCrossRefGoogle Scholar
  43. 43.
    Møller P, Loft S. Oxidative damage to DNA and lipids as biomarkers of exposure to air pollution. Environ Health Perspect. 2010;118(8):1126–36.PubMedCrossRefGoogle Scholar
  44. 44.
    Environmental Protection Agency. Air quality criteria for particulate matter, vol. III of EPA/600/P-95/001CF, National Center for Environmental Assessment, Research Triangle Park, NC, USA, 1996.Google Scholar
  45. 45.
    Ferin F, Oberdörster G, Penney DP. Pulmonary retention of ultrafine and fine particles in rats. Am J Respir Cell Mol Biol. 1992;6(5):535–42.PubMedGoogle Scholar
  46. 46.
    Liu HH, Wu YC, Chen HL. Production of ozone and reactive oxygen species after welding. Arch Environ Contam Toxicol. 2007;53(4):513–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Ostro B, Tobias A, Querol X, Alastuey A, Amato F, Pey J, Pérez N, Sunyer J. The effects of particulate matter sources on daily mortality: A case-crossover study of Barcelona, Spain. Environ Health Perspect. 2011 [Epub ahead of print].Google Scholar
  48. 48.
    Becker S, Dailey LA, Soukup JM, Grambow SC, Devlin RB, Huang YC. Environ Health Perspect. 2005;113(8):1032–8.Google Scholar
  49. 49.
    Nakayama Wong LS, Aung HH, Lamé MW, Wegesser TC, Wilson DW. Fine particulate matter from urban ambient and wildfire sources from California’s San Joaquin Valley initiate differential inflammatory, oxidative stress, and zenobiotic responses in human bronchial epithelial cells. Toxicol In Vitro. 2011 [Epub ahead of print].Google Scholar
  50. 50.
    Kocbach A, Namork E, Schwarze PE. Pro-inflammatory potential of wood smoke and traffic-derived particles in a monocytic cell line. Toxicology. 2008;247(2–3):123–32.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Christian Madsen
    • 1
    Email author
  • Pål Rosland
    • 2
  • Dominic Anthony Hoff
    • 1
  • Wenche Nystad
    • 1
  • Per Nafstad
    • 1
    • 3
  • Øyvind Erik Næss
    • 1
  1. 1.Division of EpidemiologyNorwegian Institute of Public HealthOsloNorway
  2. 2.Norwegian Public Road AdministrationOsloNorway
  3. 3.Faculty of Medicine, Institute of Health and SocietyUniversity of OsloOsloNorway

Personalised recommendations