Advertisement

European Journal of Epidemiology

, Volume 26, Issue 1, pp 29–38 | Cite as

Estimation of the contribution of biomarkers of different metabolic pathways to risk of type 2 diabetes

  • Jukka MontonenEmail author
  • Dagmar Drogan
  • Hans-Georg Joost
  • Heiner Boeing
  • Andreas Fritsche
  • Erwin Schleicher
  • Matthias B. Schulze
  • Tobias Pischon
DIABETES

Abstract

The contribution of different biological pathways to the development of type 2 diabetes was quantified in a case-cohort design based on circulating blood biomarkers from participants aged 35–65 years in the EPIC–Potsdam Study. The analytic sample included 613 participants with incident diabetes and 1965 participants without diabetes. The proportion that each biomarker contributed to the risk of diabetes was quantified using effect decomposition method. Summarized risk of each biomarker was estimated by an index based on quintiles of gamma-glutamyltransferase (GGT), HDL-cholesterol, hs-CRP, and adiponectin. Cox proportional hazard regression was used to estimate relative risks adjusted for age, sex, body mass index, waist-circumference, education, sport activity, cycling, occupational activity, smoking, alcohol intake, and consumptions of red meat, coffee and whole grain bread. Adiponectin explained a total of 32.1% (CI = 16.8, 49.1%) of the risk related to index. For the other biomarkers the corresponding proportions were 23.5% (CI = 10.1, 37.8%) by HDL-cholesterol, 21.5% (CI = 11.5, 32.8%) by GGT, and 15.5% (CI = 4.44, 27.3%) by hs-CRP. The results support the hypothesis that the different biological pathways reflected by GGT, HDL-cholesterol, hs-CRP and adiponectin independent from each other contribute to the risk of type 2 diabetes. Of these pathways the highest contribution was observed for adiponectin which contributed one-third to the risk and that equal proportion was contributed by GGT and HDL-cholesterol, although the contribution of inflammation was lower.

Keywords

Adiponectin/blood Biological markers/blood Diabetes Liver enzymes Inflammation Prospective studies 

Notes

Acknowledgment

The authors thank Dr. Manuela Bergman for critical comments to the final version of the manuscript.

Conflict of interest

None.

References

  1. 1.
    Sattar N, Wannamethee SG, Forouhi NG. Novel biochemical risk factors for type 2 diabetes: pathogenic insights or prediction possibilities? Diabetologia. 2008;51:926–40.CrossRefPubMedGoogle Scholar
  2. 2.
    Ford ES, Schulze MB, Bergmann MM, Thamer C, Joost HG, Boeing H. Liver enzymes and incident diabetes: findings from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes Care. 2008;31:1138–43.CrossRefPubMedGoogle Scholar
  3. 3.
    Li S, Shin HJ, Ding EL, van Dam RM. Adiponectin Levels and Risk of Type 2 Diabetes: A Systematic Review and Meta-analysis. JAMA. 2009;302:179–88.CrossRefPubMedGoogle Scholar
  4. 4.
    Schulze MB, Weikert C, Pischon T, Bergmann MM, Al-Hasani H, Schleicher E, et al. Use of Multiple Metabolic and Genetic Markers to Improve the Prediction of Type 2 Diabetes: the EPIC-Potsdam Study. Diabetes Care. 2009;32:2116–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Schmidt MI, Duncan BB, Bang H, Pankow JS, Ballantyne CM, Golden SH, et al. Identifying individuals at high risk for diabetes: The Atherosclerosis Risk in Communities study. Diabetes Care. 2005;28:2013–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Wilson PW, Meigs JB, Sullivan L, Fox CS, Nathan DM, D’Agostino RB Sr. Prediction of incident diabetes mellitus in middle-aged adults: the Framingham Offspring Study. Arch Intern Med. 2007;167:1068–74.CrossRefPubMedGoogle Scholar
  7. 7.
    Chen C, Wang H, Snapinn SM. Proportion of treatment effect (PTE) explained by a surrogate marker. Stat Med. 2003;22:3449–59.CrossRefPubMedGoogle Scholar
  8. 8.
    Drogan D, Weikert C, Dierkes J, Klipstein-Grobusch K, Buijsse B, Möhlig M, et al. Plasma gamma-glutamyltransferase, cysteinyl-glycine, and oxidized low-density lipoprotein: a pathway associated with myocardial infarction risk? Arterioscler Thromb Vasc Biol. 2010;30:2053–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Riboli E, Hunt KJ, Slimani N, Ferrari P, Norat T, Fahey M, et al. European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection. Public Health Nutr. 2002;5:1113–24.CrossRefPubMedGoogle Scholar
  10. 10.
    Boeing H, Wahrendorf J, Becker N. EPIC-Germany–A source for studies into diet and risk of chronic diseases. European Investigation into Cancer and Nutrition. Ann Nutr Metab. 1999;43:195–204.Google Scholar
  11. 11.
    Boeing H, Korfmann A, Bergmann MM. Recruitment procedures of EPIC-Germany. European Investigation into Cancer and Nutrition. Ann Nutr Metab. 1999;43:205–15.Google Scholar
  12. 12.
    Bohlscheid-Thomas S, Hoting I, Boeing H, Wahrendorf J. Reproducibility and relative validity of food group intake in a food frequency questionnaire developed for the German part of the EPIC project. European Prospective Investigation into Cancer and Nutrition. Int J Epidemiol. 1997;26(Suppl 1):S59–70.CrossRefPubMedGoogle Scholar
  13. 13.
    Klipstein-Grobusch K, Georg T, Boeing H. Interviewer variability in anthropometric measurements and estimates of body composition. Int J Epidemiol. 1997;26(Suppl 1):S174–80.CrossRefPubMedGoogle Scholar
  14. 14.
    Barlow WE, Ichikawa L, Rosner D, Izumi S. Analysis of case-cohort designs. J Clin Epidemiol. 1999;52:1165–72.CrossRefPubMedGoogle Scholar
  15. 15.
    Spranger J, Kroke A, Möhlig M, Bergmann MM, Ristow M, Boeing H, et al. Adiponectin and protection against type 2 diabetes mellitus. Lancet. 2003;361:226–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Fieller E. The biological standardization of insulin. J Roy Stat Soc. 1940;7(Supplement):1–15.Google Scholar
  17. 17.
    Rabe K, Lehrke M, Parhofer KG, Broedl UC. Adipokines and insulin resistance. Mol Med. 2008;14:741–51.CrossRefPubMedGoogle Scholar
  18. 18.
    Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest. 2006;116:1784–92.CrossRefPubMedGoogle Scholar
  19. 19.
    Samuel VT, Liu ZX, Qu X, Elder BD, Bilz S, Befroy D, et al. Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem. 2004;279:32345–53.CrossRefPubMedGoogle Scholar
  20. 20.
    Lee DH, Blomhoff R, Jacobs DR Jr. Is serum gamma glutamyltransferase a marker of oxidative stress? Free Radic Res. 2004;38:535–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Khan HA, Sobki SH, Khan SA. Association between glycaemic control and serum lipids profile in type 2 diabetic patients: HbA1c predicts dyslipidaemia. Clin Exp Med. 2007;7:24–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Khan HA. Clinical significance of HbA1c as a marker of circulating lipids in male and female type 2 diabetic patients. Acta Diabetol. 2007;44:193–200.CrossRefGoogle Scholar
  23. 23.
    Gatti A, Maranghi M, Bacci S, Carallo C, Gnasso A, Mandosi E, et al. Poor Glycemic Control Is an Independent Risk Factor for Low HDL Cholesterol in Patients With Type 2 Diabetes. Diabetes Care. 2009;32:1550–2.CrossRefPubMedGoogle Scholar
  24. 24.
    Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. Jama. 2001;286:327–34.CrossRefPubMedGoogle Scholar
  25. 25.
    Dehghan A, Kardys I, de Maat MP, Uitterlinden AG, Sijbrands EJ, Bootsma AH, et al. Genetic variation, C-reactive protein levels, and incidence of diabetes. Diabetes. 2007;56:872–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Doi Y, Kiyohara Y, Kubo M, Ninomiya T, Wakugawa Y, Yonemoto K, et al. Elevated C-reactive protein is a predictor of the development of diabetes in a general Japanese population: the Hisayama Study. Diabetes Care. 2005;28:2497–500.CrossRefPubMedGoogle Scholar
  27. 27.
    Laaksonen DE, Niskanen L, Nyyssönen K, Punnonen K, Tuomainen TP, Valkonen VP, et al. C-reactive protein and the development of the metabolic syndrome and diabetes in middle-aged men. Diabetologia. 2004;47:1403–10.CrossRefPubMedGoogle Scholar
  28. 28.
    Hu FB, Meigs JB, Li TY, Rifai N, Manson JE. Inflammatory markers and risk of developing type 2 diabetes in women. Diabetes. 2004;53:693–700.CrossRefPubMedGoogle Scholar
  29. 29.
    Nakanishi S, Yamane K, Kamei N, Okubo M, Kohno N. Elevated C-reactive protein is a risk factor for the development of type 2 diabetes in Japanese Americans. Diabetes Care. 2003;26:2754–7.CrossRefPubMedGoogle Scholar
  30. 30.
    Spranger J, Kroke A, Möhlig M, Hoffmann K, Bergmann MM, Ristow M, et al. Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes. 2003;52:812–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Freeman DJ, Norrie J, Caslake MJ, Gaw A, Ford I, Lowe GD, et al. C-reactive protein is an independent predictor of risk for the development of diabetes in the West of Scotland Coronary Prevention Study. Diabetes. 2002;51:1596–600.CrossRefPubMedGoogle Scholar
  32. 32.
    Barzilay JI, Abraham L, Heckbert SR, Cushman M, Kuller LH, Resnick HE, et al. The relation of markers of inflammation to the development of glucose disorders in the elderly: the Cardiovascular Health Study. Diabetes. 2001;50:2384–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Hu G, Jousilahti P, Tuomilehto J, Antikainen R, Sundvall J, Salomaa V. Association of Serum C-Reactive Protein Level with Sex-Specific Type 2 Diabetes Risk: A Prospective Finnish Study. J Clin Endocrinol Metab. 2009;94:2099–105.CrossRefPubMedGoogle Scholar
  34. 34.
    Lee C, Adler A, Sandhu M, Sharp S, Forouhi N, Erqou S, et al. Association of C-reactive protein with type 2 diabetes: prospective analysis and meta-analysis. Diabetologia. 2009;52:1040–7.CrossRefPubMedGoogle Scholar
  35. 35.
    Little RR, England JD, Wiedmeyer HM, Madsen RW, Pettitt DJ, Knowler WC, et al. Glycated haemoglobin predicts progression to diabetes mellitus in Pima Indians with impaired glucose tolerance. Diabetologia. 1994;37:252–6.CrossRefPubMedGoogle Scholar
  36. 36.
    Yoshinaga H, Kosaka K. High glycosylated hemoglobin levels increase the risk of progression to diabetes mellitus in subjects with glucose intolerance. Diabetes Res Clin Pract. 1996;31:71–9.CrossRefPubMedGoogle Scholar
  37. 37.
    Narayan KM, Hanson RL, Pettitt DJ, Bennett PH, Knowler WC. A two-step strategy for identification of high-risk subjects for a clinical trial of prevention of NIDDM. Diabetes Care. 1996;19:972–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Ko GT, Chan JC, Tsang LW, Cockram CS. Combined use of fasting plasma glucose and HbA1c predicts the progression to diabetes in Chinese subjects. Diabetes Care. 2000;23:1770–3.CrossRefPubMedGoogle Scholar
  39. 39.
    Pradhan AD, Rifai N, Buring JE, Ridker PM. Hemoglobin A1c predicts diabetes but not cardiovascular disease in nondiabetic women. Am J Med. 2007;120:720–7.CrossRefPubMedGoogle Scholar
  40. 40.
    Michaelis D, Jutzi E. Epidemiologie des Diabetes mellitus in der Bevölkerung der ehemaligen DDR: Alters- und geschlechtsspezifische Inzidenz- und Prävalenztrends im Zeitraum 1960–1987 (Article in German). Z Klin Med. 1991;46:59–64.Google Scholar
  41. 41.
    Fleiss JL. The design and analysis of clinical experiments. New York: Wiley and Sons; 1986.Google Scholar
  42. 42.
    Al-Delaimy WK, Jansen EH, Peeters PH, van der Laan JD, van Noord PA, Boshuizen HC, et al. Reliability of biomarkers of iron status, blood lipids, oxidative stress, vitamin D, C-reactive protein and fructosamine in two Dutch cohorts. Biomarkers. 2006;11:370–82.CrossRefPubMedGoogle Scholar
  43. 43.
    Pischon T, Hankinson SE, Hotamisligil GS, Rifai N, Willett WC, Rimm EB. Habitual dietary intake of n-3 and n-6 fatty acids in relation to inflammatory markers among US men and women. Circulation. 2003;108:155–60.CrossRefPubMedGoogle Scholar
  44. 44.
    Pischon T, Hotamisligil GS, Rimm EB. Adiponectin: stability in plasma over 36 hours and within-person variation over 1 year. Clin Chem. 2003;49:650–2.CrossRefPubMedGoogle Scholar
  45. 45.
    Cole SR, Hernan MA. Fallibility in estimating direct effects. Int J Epidemiol. 2002;31:163–5.CrossRefPubMedGoogle Scholar
  46. 46.
    Petersen ML, Sinisi SE, van der Laan MJ. Estimation of direct causal effects. Epidemiology. 2006;17:276–84.CrossRefPubMedGoogle Scholar
  47. 47.
    Kaufman JS, Maclehose RF, Kaufman S. A further critique of the analytic strategy of adjusting for covariates to identify biologic mediation. Epidemiol Perspect Innov. 2004;1:4.CrossRefPubMedGoogle Scholar
  48. 48.
    Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, et al. Hypoadiponectinemia in Obesity and Type 2 Diabetes: Close Association with Insulin Resistance and Hyperinsulinemia. J Clin Endocrinol Metab. 2001;86:1930–5.CrossRefPubMedGoogle Scholar
  49. 49.
    Simpson KA, Singh MA. Effects of exercise on adiponectin: a systematic review. Obesity (Silver Spring). 2008;16:241–56.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Jukka Montonen
    • 1
    Email author
  • Dagmar Drogan
    • 1
  • Hans-Georg Joost
    • 2
  • Heiner Boeing
    • 1
  • Andreas Fritsche
    • 3
  • Erwin Schleicher
    • 3
  • Matthias B. Schulze
    • 4
  • Tobias Pischon
    • 1
  1. 1.Department of EpidemiologyGerman Institute of Human Nutrition Potsdam-RehbrueckeNuthetalGermany
  2. 2.Department of PharmacologyGerman Institute of Human Nutrition Potsdam-RehbrueckeNuthetalGermany
  3. 3.Department of Internal Medicine IVUniversity of TuebingenTuebingenGermany
  4. 4.Department of Molecular EpidemiologyGerman Institute of Human Nutrition Potsdam-RehbrueckeNuthetalGermany

Personalised recommendations