Cardiovascular diseases, risk factors and short-term heart rate variability in an elderly general population: the CARLA study 2002–2006

  • Karin Halina Greiser
  • Alexander Kluttig
  • Barbara Schumann
  • Cees A. Swenne
  • Jan A. Kors
  • Oliver Kuss
  • Johannes Haerting
  • Hendrik Schmidt
  • Joachim Thiery
  • Karl Werdan
Cardiovascular Disease

Abstract

Background: A reduced heart rate variability (HRV) is associated with worse prognosis, increased incidence of cardiovascular disease (CVD) and mortality. There are conflicting results and a lack of population-based data regarding the association of HRV with CVD risk factors and its potential role as independent cause or mediator of CVD risk. Methods: Cross-sectional data of a population-based cohort including 1,779 women and men aged 45–83 years were used to analyse associations of time and frequency domain measures of HRV (derived from 5-min ECG segments) with age, behavioural and biomedical risk factors and disease in the whole sample and in a “healthy” subgroup. Results: Age was inversely associated with all measures of HRV (mean standard deviation of normal intervals across 10-year age-groups 32.1, 26.9, 27.1 and 24.8 ms in women, 29.3, 25.9, 23.8 and 25.7 ms in men). There was no association of physical activity, current smoking or alcohol with HRV. In age-adjusted models, triglycerides, glucose, waist-to-hip ratio and diabetes were inversely associated with HRV in men and women, and low/high density cholesterol and hypertension in men only (up to 43% difference across risk factor quartiles). Multivariable adjustment and restriction to the “healthy” subgroup attenuated the associations. Conclusions: We found only weak and inconsistent associations of HRV with cardiovascular risk factors. However, these results as well as those from previous studies are still compatible with the hypothesis that short-term HRV may be a marker of ill health or a mediator of the effect of selected biomedical risk factors on CVD.

Keywords

Cardiovascular disease Cardiovascular risk factors Heart rate variability Population-based study 

Abbreviations

ACE

Angiotensin-converting enzyme

AFIB

Atrial fibrillation or flutter

BP

Blood pressure

CARLA

Cardiovascular disease, living and ageing in Halle

CHD

Coronary heart disease

CHF

Congestive heart failure

CVD

Cardiovascular disease

DBP

Diastolic blood pressure

DM

Diabetes mellitus

HbA1c

Glycated haemoglobin

HDL

High density lipoprotein cholesterol

HF

High frequency power

HR

Heart rate

HRV

Heart rate variability

LDL

Low density lipoprotein cholesterol

LDL/HDL

Ratio of low to high density lipoprotein cholesterol

LF

Low frequency power

LF/HF

Ratio of low frequency power to high frequency power

MI

Myocardial infarction

MetSyn

Metabolic syndrome

NS

Statistically not significant

Q1… Q4

First (=lowest)… fourth (=highest) quartile

RF

Risk factors

SBP

Systolic blood pressure

SDNN

Standard deviation of normal intervals

WHR

Waist-to-hip ratio

95% CI

95% confidence interval

Supplementary material

10654_2009_9317_MOESM1_ESM.doc (284 kb)
(DOC 284 kb)

References

  1. 1.
    National Institutes of Health NHLaBI. NHLBI fact book fiscal year 2006. http://www.nhlbi.nih.gov/about/factpdf.htm (2007). 23 Nov 2007.
  2. 2.
    Bursi F, Weston SA, Redfield MM, Jacobsen SJ, Pakhomov S, Nkomo VT, et al. Systolic and diastolic heart failure in the community. JAMA. 2006;296(18):2209–16. doi:10.1001/jama.296.18.2209.PubMedGoogle Scholar
  3. 3.
    Cowie MR, Wood DA, Coats AJ, Thompson SG, Poole-Wilson PA, Suresh V, et al. Incidence and aetiology of heart failure; a population-based study. Eur Heart J. 1999;20(6):421–8. doi:10.1053/euhj.1998.1280.PubMedGoogle Scholar
  4. 4.
    Kannel WB. Vital epidemiologic clues in heart failure. J Clin Epidemiol. 2000;53(3):229–35. doi:10.1016/S0895-4356(99)00135-3.PubMedGoogle Scholar
  5. 5.
    O’Connell JB. The economic burden of heart failure. Clin Cardiol. 2000;23(3 Suppl):III6–10.PubMedGoogle Scholar
  6. 6.
    Redfield MM, Jacobsen SJ, Burnett JC Jr, Mahoney DW, Bailey KR, Rodeheffer RJ. Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA. 2003;289(2):194–202. doi:10.1001/jama.289.2.194.PubMedGoogle Scholar
  7. 7.
    Shammas RL, Khan NU, Nekkanti R, Movahed A. Diastolic heart failure and left ventricular diastolic dysfunction: what we know, and what we don’t know! Int J Cardiol. 2007;115(3):284–92. doi:10.1016/j.ijcard.2006.03.027.PubMedGoogle Scholar
  8. 8.
    Bigger JT, Fleiss JL, Rolnitzky LM, Steinman RC. The ability of several short-term measures of RR variability to predict mortality after myocardial infarction. Circulation. 1993;88(3):927–34.PubMedGoogle Scholar
  9. 9.
    Huikuri HV, Jokinen V, Syvanne M, Nieminen MS, Airaksinen KE, Ikaheimo MJ, et al. Heart rate variability and progression of coronary atherosclerosis. Arterioscler Thromb Vasc Biol. 1999;19(8):1979–85.PubMedGoogle Scholar
  10. 10.
    Janszky I, Ericson M, Mittleman MA, Wamala S, Al Khalili F, Schenck-Gustafsson K, et al. Heart rate variability in long-term risk assessment in middle-aged women with coronary heart disease: the Stockholm female coronary risk study. J Intern Med. 2004;255(1):13–21. doi:10.1046/j.0954-6820.2003.01250.x.PubMedGoogle Scholar
  11. 11.
    Nolan J, Batin PD, Andrews R, Lindsay SJ, Brooksby P, Mullen M, et al. Prospective study of heart rate variability and mortality in chronic heart failure: results of the United Kingdom heart failure evaluation and assessment of risk trial (UK-heart). Circulation. 1998;98(15):1510–6.PubMedGoogle Scholar
  12. 12.
    Kleiger RE, Miller JP, Bigger JT Jr, Moss AJ. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol. 1987;59(4):256–62. doi:10.1016/0002-9149(87)90795-8.PubMedGoogle Scholar
  13. 13.
    Zuanetti G, Neilson JM, Latini R, Santoro E, Maggioni AP, Ewing DJ. Prognostic significance of heart rate variability in post-myocardial infarction patients in the fibrinolytic era. The GISSI-2 results. Gruppo Italiano per lo Studio della Sopravvivenza nell’ Infarto Miocardico. Circulation. 1996;94(3):432–6.PubMedGoogle Scholar
  14. 14.
    Hohnloser SH, Klingenheben T, Zabel M, Li YG. Heart rate variability used as an arrhythmia risk stratifier after myocardial infarction. Pacing Clin Electrophysiol. 1997;20(10 Pt 2):2594–601. doi:10.1111/j.1540-8159.1997.tb06109.x.PubMedGoogle Scholar
  15. 15.
    La Rovere MT, Pinna GD, Hohnloser SH, Marcus FI, Mortara A, Nohara R, et al. Baroreflex sensitivity and heart rate variability in the identification of patients at risk for life-threatening arrhythmias: implications for clinical trials. Circulation. 2001;103(16):2072–7.PubMedGoogle Scholar
  16. 16.
    Kearney MT, Fox KA, Lee AJ, Prescott RJ, Shah AM, Batin PD, et al. Predicting death due to progressive heart failure in patients with mild-to-moderate chronic heart failure. J Am Coll Cardiol. 2002;40(10):1801–8. doi:10.1016/S0735-1097(02)02490-7.PubMedGoogle Scholar
  17. 17.
    La Rovere MT, Pinna GD, Maestri R, Mortara A, Capomolla S, Febo O, et al. Short-term heart rate variability strongly predicts sudden cardiac death in chronic heart failure patients. Circulation. 2003;107(4):565–70. doi:10.1161/01.CIR.0000047275.25795.17.PubMedGoogle Scholar
  18. 18.
    Hadase M, Azuma A, Zen K, Asada S, Kawasaki T, Kamitani T, et al. Very low frequency power of heart rate variability is a powerful predictor of clinical prognosis in patients with congestive heart failure. Circ J. 2004;68(4):343–7. doi:10.1253/circj.68.343.PubMedGoogle Scholar
  19. 19.
    Guzzetti S, La Rovere MT, Pinna GD, Maestri R, Borroni E, Porta A, et al. Different spectral components of 24 h heart rate variability are related to different modes of death in chronic heart failure. Eur Heart J. 2005;26(4):357–62. doi:10.1093/eurheartj/ehi067.PubMedGoogle Scholar
  20. 20.
    Stein PK, Domitrovich PP, Huikuri HV, Kleiger RE. Traditional and nonlinear heart rate variability are each independently associated with mortality after myocardial infarction. J Cardiovasc Electrophysiol. 2005;16(1):13–20. doi:10.1046/j.1540-8167.2005.04358.x.PubMedGoogle Scholar
  21. 21.
    Moore RK, Groves DG, Barlow PE, Fox KA, Shah A, Nolan J, et al. Heart rate turbulence and death due to cardiac decompensation in patients with chronic heart failure. Eur J Heart Fail. 2006;8(6):585–90. doi:10.1016/j.ejheart.2005.11.012.PubMedGoogle Scholar
  22. 22.
    de Bruyne MC, Kors JA, Hoes AW, Klootwijk P, Dekker JM, Hofman A, et al. Both decreased and increased heart rate variability on the standard 10-second electrocardiogram predict cardiac mortality in the elderly: the Rotterdam study. Am J Epidemiol. 1999;150(12):1282–8.PubMedGoogle Scholar
  23. 23.
    Dekker JM, Schouten EG, Klootwijk P, Pool J, Swenne CA, Kromhout D. Heart rate variability from short electrocardiographic recordings predicts mortality from all causes in middle-aged and elderly men. The Zutphen study. Am J Epidemiol. 1997;145(10):899–908.PubMedGoogle Scholar
  24. 24.
    Dekker JM, Crow RS, Folsom AR, Hannan PJ, Liao D, Swenne CA, et al. Low heart rate variability in a 2-minute rhythm strip predicts risk of coronary heart disease and mortality from several causes: the ARIC study. Atherosclerosis Risk in Communities. Circulation. 2000;102(11):1239–44.PubMedGoogle Scholar
  25. 25.
    Liao D, Cai J, Rosamond WD, Barnes RW, Hutchinson RG, Whitsel EA, et al. Cardiac autonomic function and incident coronary heart disease: a population-based case-cohort study. The ARIC study. Atherosclerosis Risk in Communities study. Am J Epidemiol. 1997;145(8):696–706.PubMedGoogle Scholar
  26. 26.
    Liao D, Carnethon M, Evans GW, Cascio WE, Heiss G. Lower heart rate variability is associated with the development of coronary heart disease in individuals with diabetes: the Atherosclerosis Risk in Communities (ARIC) study. Diabetes. 2002;51(12):3524–31. doi:10.2337/diabetes.51.12.3524.PubMedGoogle Scholar
  27. 27.
    Tsuji H, Venditti FJ Jr, Manders ES, Evans JC, Larson MG, Feldman CL, et al. Reduced heart rate variability and mortality risk in an elderly cohort. The Framingham heart study. Circulation. 1994;90(2):878–83.PubMedGoogle Scholar
  28. 28.
    Tsuji H, Larson MG, Venditti FJ Jr, Manders ES, Evans JC, Feldman CL, et al. Impact of reduced heart rate variability on risk for cardiac events. The Framingham heart study. Circulation. 1996;94(11):2850–5.PubMedGoogle Scholar
  29. 29.
    Britton A, Hemingway H. Heart rate variability in healthy populations: correlates and consequences. In: Malik M, Camm A, editors. Dynamic electrocardiography. New York: Futura/Blackwell; 2004. p. 90–111.Google Scholar
  30. 30.
    Fagard RH, Pardaens K, Staessen JA. Influence of demographic, anthropometric and lifestyle characteristics on heart rate and its variability in the population. J Hypertens. 1999;17(11):1589–99. doi:10.1097/00004872-199917110-00013.PubMedGoogle Scholar
  31. 31.
    Felber Dietrich D, Schindler C, Schwartz J, Barthelemy JC, Tschopp JM, Roche F, et al. Heart rate variability in an ageing population and its association with lifestyle and cardiovascular risk factors: results of the SAPALDIA study. Europace. 2006;8(7):521–9. doi:10.1093/europace/eul063.PubMedGoogle Scholar
  32. 32.
    Felber Dietrich D, Schwartz J, Schindler C, Gaspoz JM, Barthelemy JC, Tschopp JM, et al. Effects of passive smoking on heart rate variability, heart rate and blood pressure: an observational study. Int J Epidemiol. 2007;36(4):834–40. doi:10.1093/ije/dym031.PubMedGoogle Scholar
  33. 33.
    Hemingway H, Shipley M, Brunner E, Britton A, Malik M, Marmot M. Does autonomic function link social position to coronary risk? The Whitehall II study. Circulation. 2005;111(23):3071–7. doi:10.1161/CIRCULATIONAHA.104.497347.PubMedGoogle Scholar
  34. 34.
    Kuch B, Hense HW, Sinnreich R, Kark JD, von Eckardstein A, Sapoznikov D, et al. Determinants of short-period heart rate variability in the general population. Cardiology. 2001;95(3):131–8. doi:10.1159/000047359.PubMedGoogle Scholar
  35. 35.
    Stolarz K, Staessen JA, Kuznetsova T, Tikhonoff V, State D, Babeanu S, et al. Host and environmental determinants of heart rate and heart rate variability in four European populations. J Hypertens. 2003;21(3):525–35. doi:10.1097/00004872-200303000-00018.PubMedGoogle Scholar
  36. 36.
    Stein PK, Barzilay JI, Domitrovich PP, Chaves PM, Gottdiener JS, Heckbert SR, et al. The relationship of heart rate and heart rate variability to non-diabetic fasting glucose levels and the metabolic syndrome: the cardiovascular health study. Diabet Med. 2007;24(8):855–63. doi:10.1111/j.1464-5491.2007.02163.x.PubMedGoogle Scholar
  37. 37.
    Carney RM, Blumenthal JA, Freedland KE, Stein PK, Howells WB, Berkman LF, et al. Low heart rate variability and the effect of depression on post-myocardial infarction mortality. Arch Intern Med. 2005;165(13):1486–91. doi:10.1001/archinte.165.13.1486.PubMedGoogle Scholar
  38. 38.
    Sloan RP, Bagiella E, Shapiro PA, Kuhl JP, Chernikhova D, Berg J, et al. Hostility, gender, and cardiac autonomic control. Psychosom Med. 2001;63(3):434–40.PubMedGoogle Scholar
  39. 39.
    van der Kooy KG, van Hout HP, van Marwijk HW, de Haan M, Stehouwer CD, Beekman AT. Differences in heart rate variability between depressed and non-depressed elderly. Int J Geriatr Psychiatry. 2006;21(2):147–50. doi:10.1002/gps.1439.PubMedGoogle Scholar
  40. 40.
    Vrijkotte TG, Van Doornen LJ, De Geus EJ. Effects of work stress on ambulatory blood pressure, heart rate, and heart rate variability. Hypertension. 2000;35(4):880–6.PubMedGoogle Scholar
  41. 41.
    Collins SM, Karasek RA, Costas K. Job strain and autonomic indices of cardiovascular disease risk. Am J Ind Med. 2005;48(3):182–93. doi:10.1002/ajim.20204.PubMedGoogle Scholar
  42. 42.
    Martens EJ, Nyklicek I, Szabo BM, Kupper N. Depression and anxiety as predictors of heart rate variability after myocardial infarction. Psychol Med. 2008;38(3):375–83.PubMedGoogle Scholar
  43. 43.
    Ziegler D, Zentai CP, Perz S, Rathmann W, Haastert B, Doring A, et al. Prediction of mortality using measures of cardiac autonomic dysfunction in the diabetic and nondiabetic population: the MONICA/KORA Augsburg cohort study. Diabetes Care. 2008;31(3):556–61. doi:10.2337/dc07-1615.PubMedGoogle Scholar
  44. 44.
    Stein PK, Ehsani AA, Domitrovich PP, Kleiger RE, Rottman JN. Effect of exercise training on heart rate variability in healthy older adults. Am Heart J. 1999;138(3 Pt 1):567–76. doi:10.1016/S0002-8703(99)70162-6.PubMedGoogle Scholar
  45. 45.
    Rennie KL, Hemingway H, Kumari M, Brunner E, Malik M, Marmot M. Effects of moderate and vigorous physical activity on heart rate variability in a British study of civil servants. Am J Epidemiol. 2003;158(2):135–43. doi:10.1093/aje/kwg120.PubMedGoogle Scholar
  46. 46.
    De Meersman RE, Stein PK. Vagal modulation and aging. Biol Psychol. 2007;74(2):165–73. doi:10.1016/j.biopsycho.2006.04.008.PubMedGoogle Scholar
  47. 47.
    Gademan MG, Swenne CA, Verwey HF, van der Laarse A, Maan AC, Van de Vooren H, et al. Effect of exercise training on autonomic derangement and neurohumoral activation in chronic heart failure. J Card Fail. 2007;13(4):294–303. doi:10.1016/j.cardfail.2006.12.006.PubMedGoogle Scholar
  48. 48.
    Dreifus LS, Agarwal JB, Botvinick EH, Ferdinand KC, Fisch C, Fisher CD, et al. Heart rate variability for risk stratification of life-threatening arrhythmias. American College of Cardiology Cardiovascular Technology Assessment Committee. J Am Coll Cardiol. 1993;22(3):948–50.Google Scholar
  49. 49.
    Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task force of the European society of cardiology and the North American society of pacing and electrophysiology. Eur Heart J. 1996;17(3):354–81.Google Scholar
  50. 50.
    Bigger JT Jr, Fleiss JL, Steinman RC, Rolnitzky LM, Schneider WJ, Stein PK. RR variability in healthy, middle-aged persons compared with patients with chronic coronary heart disease or recent acute myocardial infarction. Circulation. 1995;91(7):1936–43.PubMedGoogle Scholar
  51. 51.
    Huikuri HV, Makikallio T, Airaksinen KE, Mitrani R, Castellanos A, Myerburg RJ. Measurement of heart rate variability: a clinical tool or a research toy? J Am Coll Cardiol. 1999;34(7):1878–83. doi:10.1016/S0735-1097(99)00468-4.PubMedGoogle Scholar
  52. 52.
    Kleiger R, Stein P. Heart rate variability in ischaemic disease. In: Malik M, Camm A, editors. Dynamic electrocardiography. New York: Futura/Blackwell; 2004.Google Scholar
  53. 53.
    Faber TS, Staunton A, Hnatkova K, Camm AJ, Malik M. Stepwise strategy of using short- and long-term heart rate variability for risk stratification after myocardial infarction. Pacing Clin Electrophysiol. 1996;19(11 Pt 2):1845–51. doi:10.1111/j.1540-8159.1996.tb03238.x.PubMedGoogle Scholar
  54. 54.
    Kornitzer M. Predictive value of electrocardiographic markers for autonomic nervous system dysfunction in healthy populations: more studies needed. Eur Heart J. 2001;22(2):109–12. doi:10.1053/euhj.2000.2375.PubMedGoogle Scholar
  55. 55.
    Lombardi F. Physiological understanding of HRV components. In: Malik M, Camm A, editors. Dynamic electrocardiography. New York: Futura/Blackwell; 2004. p. 40–7.Google Scholar
  56. 56.
    Greiser KH, Kluttig A, Schumann B, Kors JA, Swenne CA, Kuss O, et al. Cardiovascular disease, risk factors and heart rate variability in the elderly general population: design and objectives of the cardiovascular disease, living and ageing in Halle (CARLA) study. BMC Cardiovasc Disord. 2005;5:33. doi:10.1186/1471-2261-5-33.PubMedGoogle Scholar
  57. 57.
    Baecke JA, Burema J, Frijters JE. A short questionnaire for the measurement of habitual physical activity in epidemiological studies. Am J Clin Nutr. 1982;36(5):936–42.PubMedGoogle Scholar
  58. 58.
    Ainsworth BE, Haskell WL, Whitt MC, Irwin ML, Swartz AM, Strath SJ, et al. Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc. 2000;32(9 Suppl):S498–504. doi:10.1097/00005768-200009001-00009.PubMedGoogle Scholar
  59. 59.
    Lee IM, Paffenbarger RS Jr. Associations of light, moderate, and vigorous intensity physical activity with longevity. The Harvard alumni health study. Am J Epidemiol. 2000;151(3):293–9.PubMedGoogle Scholar
  60. 60.
    UNESCO. International standard classification of education. ISCED 1997. Paris: UNESCO; 1997.Google Scholar
  61. 61.
    Leichtle A, Teupser D, Thiery J. Alpha-tocopherol distribution in lipoproteins and anti-inflammatory effects differ between CHD-patients and healthy subjects. J Am Coll Nutr. 2006;25(5):420–8.PubMedGoogle Scholar
  62. 62.
    Kannel WB. The Framingham study: ITS 50-year legacy and future promise. J Atheroscler Thromb. 2000;6(2):60–6.PubMedGoogle Scholar
  63. 63.
    van Bemmel JH, Kors JA, van Herpen G. Methodology of the modular ECG analysis system MEANS. Methods Inf Med. 1990;29(4):346–53.PubMedGoogle Scholar
  64. 64.
    Prineas RJ, Crow RS, Blackburn H. The Minnesota code manual of electrocardiographic findings. Standard procedures for measurement and classification. Boston: John Wright PSB; 1982.Google Scholar
  65. 65.
    Dekker JM, De Vries EL, Lengton RR, Maan AC, Schouten EG, Swenne CA, et al. Reproducibility and comparability of short- and long-term heart rate variability measures in healthy young men. Ann Noninvasive Electrocardiol. 1996;1:287–92. doi:10.1111/j.1542-474X.1996.tb00281.x.Google Scholar
  66. 66.
    Bootsma M, Swenne CA, Van Bolhuis HH, Chang PC, Cats VM, Bruschke AV. Heart rate and heart rate variability as indexes of sympathovagal balance. Am J Physiol. 1994;266(4 Pt 2):H1565–71.PubMedGoogle Scholar
  67. 67.
    Pluim BM, Swenne CA, Zwinderman AH, Maan AC, van der Laarse A, Doornbos J, et al. Correlation of heart rate variability with cardiac functional and metabolic variables in cyclists with training induced left ventricular hypertrophy. Heart. 1999;81(6):612–7.PubMedGoogle Scholar
  68. 68.
    Bootsma M, Swenne CA, Janssen MJA, Cats VM, Schalij MJ. Heart rate variability and sympathovagal balance: pharmacological validation. Neth Heart J. 2003;11(6):250–9.Google Scholar
  69. 69.
    National Heart Lung and Blood Institute of the National Institutes of Health. ARIC manuals of operation. Manual 5 electrocardiography. Chapel Hill: ARIC Coordinating Center, School of Public Health, University of North Carolina; 1987. p. 5.Google Scholar
  70. 70.
    Meisinger C, Heier M, Doering A, Thorand B, Loewel H. Prevalence of known diabetes and antidiabetic therapy between 1984/1985 and 1999/2001 in southern Germany. Diabetes Care. 2004;27(12):2985–7. doi:10.2337/diacare.27.12.2985.PubMedGoogle Scholar
  71. 71.
    Ziegler D, Zentai C, Perz S, Rathmann W, Haastert B, Meisinger C, et al. Selective contribution of diabetes and other cardiovascular risk factors to cardiac autonomic dysfunction in the general population. Exp Clin Endocrinol Diabetes. 2006;114(4):153–9. doi:10.1055/s-2006-924083.PubMedGoogle Scholar
  72. 72.
    Fay MP, Feuer EJ. Confidence intervals for directly standardized rates: a method based on the gamma distribution. Stat Med. 1997;16(7):791–801. doi:10.1002/(SICI)1097-0258(19970415)16:7<791::AID-SIM500>3.0.CO;2-#.PubMedGoogle Scholar
  73. 73.
    Dragano N, Verde PE, Moebus S, Stang A, Schmermund A, Roggenbuck U, et al. Subclinical coronary atherosclerosis is more pronounced in men and women with lower socio-economic status: associations in a population-based study. Coronary atherosclerosis and social status. Eur J Cardiovasc Prev Rehabil. 2007;14(4):568–74. doi:10.1097/HJR.0b013e32804955c4.PubMedGoogle Scholar
  74. 74.
    Meisinger C, Heier M, Volzke H, Lowel H, Mitusch R, Hense HW, et al. Regional disparities of hypertension prevalence and management within Germany. J Hypertens. 2006;24(2):293–9. doi:10.1097/01.hjh.0000200508.10324.8e.PubMedGoogle Scholar
  75. 75.
    Völzke H, Neuhauser H, Moebus S, Baumert J, Berger K, Stang A, et al. Regional disparities in smoking among adults in Germany. Dtsch Arztebl. 2006;103(42):A2784–90.Google Scholar
  76. 76.
    Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001;285(19):2486–97. doi:10.1001/jama.285.19.2486.Google Scholar
  77. 77.
    NCEP Expert Panel. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 2002;106(25):3143–421.Google Scholar
  78. 78.
    Bansal S, Buring JE, Rifai N, Mora S, Sacks FM, Ridker PM. Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA. 2007;298(3):309–16. doi:10.1001/jama.298.3.309.PubMedGoogle Scholar
  79. 79.
    Nordestgaard BG, Benn M, Schnohr P, Tybjaerg-Hansen A. Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA. 2007;298(3):299–308. doi:10.1001/jama.298.3.299.PubMedGoogle Scholar
  80. 80.
    Jacobs DR Jr, Ainsworth BE, Hartman TJ, Leon AS. A simultaneous evaluation of 10 commonly used physical activity questionnaires. Med Sci Sports Exerc. 1993;25(1):81–91. doi:10.1249/00005768-199301000-00012.PubMedGoogle Scholar
  81. 81.
    Pols MA, Peeters PH, Bueno-De-Mesquita HB, Ocke MC, Wentink CA, Kemper HC, et al. Validity and repeatability of a modified Baecke questionnaire on physical activity. Int J Epidemiol. 1995;24(2):381–8. doi:10.1093/ije/24.2.381.PubMedGoogle Scholar
  82. 82.
    Pols MA, Peeters PH, Kemper HC, Collette HJ. Repeatability and relative validity of two physical activity questionnaires in elderly women. Med Sci Sports Exerc. 1996;28(8):1020–5. doi:10.1097/00005768-199608000-00012.PubMedGoogle Scholar
  83. 83.
    Voorrips LE, Ravelli AC, Dongelmans PC, Deurenberg P, van Staveren WA. A physical activity questionnaire for the elderly. Med Sci Sports Exerc. 1991;23(8):974–9. doi:10.1249/00005768-199108000-00015.PubMedGoogle Scholar
  84. 84.
    Port SC, Boyle NG, Hsueh WA, Quinones MJ, Jennrich RI, Goodarzi MO. The predictive role of blood glucose for mortality in subjects with cardiovascular disease. Am J Epidemiol. 2006;163(4):342–51. doi:10.1093/aje/kwj027.PubMedGoogle Scholar
  85. 85.
    Kuss O, Schumann B, Kluttig A, Greiser KH, Haerting J. Time domain parameters can be estimated with less statistical error than frequency domain parameters in the analysis of heart rate variability. J Electrocardiol. 2008;41(4):287–91.PubMedGoogle Scholar
  86. 86.
    Pinna GD, Maestri R, Torunski A, Danilowicz-Szymanowicz L, Szwoch M, La Rovere MT, et al. Heart rate variability measures: a fresh look at reliability. Clin Sci (Lond). 2007;113(3):131–40. doi:10.1042/CS20070055.CrossRefGoogle Scholar
  87. 87.
    Eckberg DL. Sympathovagal balance: a critical appraisal. Circulation. 1997;96(9):3224–32.PubMedGoogle Scholar
  88. 88.
    Tulppo M, Huikuri HV. Origin and significance of heart rate variability. J Am Coll Cardiol. 2004;43(12):2278–80. doi:10.1016/j.jacc.2004.03.034.PubMedGoogle Scholar
  89. 89.
    Stein PK, Domitrovich PP, Hui N, Rautaharju P, Gottdiener J. Sometimes higher heart rate variability is not better heart rate variability: results of graphical and nonlinear analyses. J Cardiovasc Electrophysiol. 2005;16(9):954–9. doi:10.1111/j.1540-8167.2005.40788.x.PubMedGoogle Scholar
  90. 90.
    Labarthe DR. Stroke. In: Labarthe DR, editor. Epidemiology and prevention of cardiovascular diseases. A global challenge. Gaithersburg: Aspen; 1998. p. 73–90.Google Scholar
  91. 91.
    Löwel H, Janku D, Lewis M, Hörmann A, Gostomzyk J, Keil U, et al. MONICA-projekt region Augsburg, data-book coronary event register 1990. Neuherberg: GSF-Forschungszentrum für Umwelt und Gesundheit; 1993.Google Scholar
  92. 92.
    Gerritsen J, Dekker JM, TenVoorde BJ, Bertelsmann FW, Kostense PJ, Stehouwer CD, et al. Glucose tolerance and other determinants of cardiovascular autonomic function: the Hoorn study. Diabetologia. 2000;43(5):561–70. doi:10.1007/s001250051344.PubMedGoogle Scholar
  93. 93.
    Liao D, Barnes RW, Chambless LE, Simpson RJ Jr, Sorlie P, Heiss G. Age, race, and sex differences in autonomic cardiac function measured by spectral analysis of heart rate variability—the ARIC study, Atherosclerosis Risk in Communities. Am J Cardiol. 1995;76(12):906–12. doi:10.1016/S0002-9149(99)80260-4.PubMedGoogle Scholar
  94. 94.
    Antelmi I, de Paula RS, Shinzato AR, Peres CA, Mansur AJ, Grupi CJ. Influence of age, gender, body mass index, and functional capacity on heart rate variability in a cohort of subjects without heart disease. Am J Cardiol. 2004;93(3):381–5. doi:10.1016/j.amjcard.2003.09.065.PubMedGoogle Scholar
  95. 95.
    Buchheit M, Simon C, Charloux A, Doutreleau S, Piquard F, Brandenberger G. Heart rate variability and intensity of habitual physical activity in middle-aged persons. Med Sci Sports Exerc. 2005;37(9):1530–4. doi:10.1249/01.mss.0000177556.05081.77.PubMedGoogle Scholar
  96. 96.
    Reland S, Ville NS, Wong S, Senhadji L, Carre F. Does the level of chronic physical activity alter heart rate variability in healthy older women? Clin Sci (Lond). 2004;107(1):29–35. doi:10.1042/CS20030405.Google Scholar
  97. 97.
    Sajadieh A, Nielsen OW, Rasmussen V, Hein HO, Abedini S, Hansen JF. Increased heart rate and reduced heart-rate variability are associated with subclinical inflammation in middle-aged and elderly subjects with no apparent heart disease. Eur Heart J. 2004;25(5):363–70. doi:10.1016/j.ehj.2003.12.003.PubMedGoogle Scholar
  98. 98.
    Sandercock GR, Bromley PD, Brodie DA. Effects of exercise on heart rate variability: inferences from meta-analysis. Med Sci Sports Exerc. 2005;37(3):433–9. doi:10.1249/01.MSS.0000155388.39002.9D.PubMedGoogle Scholar
  99. 99.
    Schuit AJ, van Amelsvoort LG, Verheij TC, Rijneke RD, Maan AC, Swenne CA, et al. Exercise training and heart rate variability in older people. Med Sci Sports Exerc. 1999;31(6):816–21. doi:10.1097/00005768-199906000-00009.PubMedGoogle Scholar
  100. 100.
    Boutcher SH, Stein P. Association between heart rate variability and training response in sedentary middle-aged men. Eur J Appl Physiol Occup Physiol. 1995;70(1):75–80. doi:10.1007/BF00601812.PubMedGoogle Scholar
  101. 101.
    Carnethon MR, Liao D, Evans GW, Cascio WE, Chambless LE, Heiss G. Correlates of the shift in heart rate variability with an active postural change in a healthy population sample: The Atherosclerosis Risk in Communities study. Am Heart J. 2002;143(5):808–13. doi:10.1067/mhj.2002.121928.PubMedGoogle Scholar
  102. 102.
    Loimaala A, Huikuri H, Oja P, Pasanen M, Vuori I. Controlled 5-mo aerobic training improves heart rate but not heart rate variability or baroreflex sensitivity. J Appl Physiol. 2000;89(5):1825–9.PubMedGoogle Scholar
  103. 103.
    Uusitalo AL, Laitinen T, Vaisanen SB, Lansimies E, Rauramaa R. Physical training and heart rate and blood pressure variability: a 5-yr randomized trial. Am J Physiol Heart Circ Physiol. 2004;286(5):H1821–6. doi:10.1152/ajpheart.00600.2003.PubMedGoogle Scholar
  104. 104.
    Verheyden B, Eijnde BO, Beckers F, Vanhees L, Aubert AE. Low-dose exercise training does not influence cardiac autonomic control in healthy sedentary men aged 55–75 years. J Sports Sci. 2006;24(11):1137–47. doi:10.1080/02640410500497634.PubMedGoogle Scholar
  105. 105.
    Roach D, Wilson W, Ritchie D, Sheldon R. Dissection of long-range heart rate variability: controlled induction of prognostic measures by activity in the laboratory. J Am Coll Cardiol. 2004;43(12):2271–7. doi:10.1016/j.jacc.2004.01.050.PubMedGoogle Scholar
  106. 106.
    Serrador JM, Finlayson HC, Hughson RL. Physical activity is a major contributor to the ultra low frequency components of heart rate variability. Heart. 1999;82(6):e9.PubMedGoogle Scholar
  107. 107.
    Eryonucu B, Bilge M, Guler N, Uzun K, Gencer M. Effects of cigarette smoking on the circadian rhythm of heart rate variability. Acta Cardiol. 2000;55(5):301–5. doi:10.2143/AC.55.5.2005757.PubMedGoogle Scholar
  108. 108.
    Horsten M, Ericson M, Perski A, Wamala SP, Schenck-Gustafsson K, Orth-Gomer K. Psychosocial factors and heart rate variability in healthy women. Psychosom Med. 1999;61(1):49–57.PubMedGoogle Scholar
  109. 109.
    Kupari M, Virolainen J, Koskinen P, Tikkanen MJ. Short-term heart rate variability and factors modifying the risk of coronary artery disease in a population sample. Am J Cardiol. 1993;72(12):897–903. doi:10.1016/0002-9149(93)91103-O.PubMedGoogle Scholar
  110. 110.
    Tsuji H, Venditti FJ Jr, Manders ES, Evans JC, Larson MG, Feldman CL, et al. Determinants of heart rate variability. J Am Coll Cardiol. 1996;28(6):1539–46. doi:10.1016/S0735-1097(96)00342-7.PubMedGoogle Scholar
  111. 111.
    Janszky I, Ericson M, Blom M, Georgiades A, Magnusson JO, Alinagizadeh H, et al. Wine drinking is associated with increased heart rate variability in women with coronary heart disease. Heart. 2005;91(3):314–8. doi:10.1136/hrt.2004.035105.PubMedGoogle Scholar
  112. 112.
    Christensen JH, Skou HA, Fog L, Hansen V, Vesterlund T, Dyerberg J, et al. Marine n-3 fatty acids, wine intake, and heart rate variability in patients referred for coronary angiography. Circulation. 2001;103(5):651–7.PubMedGoogle Scholar
  113. 113.
    Yusuf S, Hawken S, Ounpuu S, Bautista L, Franzosi MG, Commerford P, et al. Obesity and the risk of myocardial infarction in 27, 000 participants from 52 countries: a case-control study. Lancet. 2005;366(9497):1640–9. doi:10.1016/S0140-6736(05)67663-5.PubMedGoogle Scholar
  114. 114.
    Carnethon MR, Golden SH, Folsom AR, Haskell W, Liao D. Prospective investigation of autonomic nervous system function and the development of type 2 diabetes: the Atherosclerosis Risk in Communities study, 1987–1998. Circulation. 2003;107(17):2190–5. doi:10.1161/01.CIR.0000066324.74807.95.PubMedGoogle Scholar
  115. 115.
    Schroeder EB, Chambless LE, Liao D, Prineas RJ, Evans GW, Rosamond WD, et al. Diabetes, glucose, insulin, and heart rate variability: the Atherosclerosis Risk in Communities (ARIC) study. Diabetes Care. 2005;28(3):668–74. doi:10.2337/diacare.28.3.668.PubMedGoogle Scholar
  116. 116.
    Singh JP, Larson MG, O’Donnell CJ, Wilson PF, Tsuji H, Lloyd-Jones DM, et al. Association of hyperglycemia with reduced heart rate variability (the Framingham heart study). Am J Cardiol. 2000;86(3):309–12. doi:10.1016/S0002-9149(00)00920-6.PubMedGoogle Scholar
  117. 117.
    Perciaccante A, Fiorentini A, Paris A, Serra P, Tubani L. Circadian rhythm of the autonomic nervous system in insulin resistant subjects with normoglycemia, impaired fasting glycemia, impaired glucose tolerance, type 2 diabetes mellitus. BMC Cardiovasc Disord. 2006;6:19. doi:10.1186/1471-2261-6-19.PubMedGoogle Scholar
  118. 118.
    Schroeder EB, Liao D, Chambless LE, Prineas RJ, Evans GW, Heiss G. Hypertension, blood pressure, and heart rate variability: the Atherosclerosis Risk in Communities (ARIC) study. Hypertension. 2003;42(6):1106–11. doi:10.1161/01.HYP.0000100444.71069.73.PubMedGoogle Scholar
  119. 119.
    Singh JP, Larson MG, Tsuji H, Evans JC, O’Donnell CJ, Levy D. Reduced heart rate variability and new-onset hypertension: insights into pathogenesis of hypertension: the Framingham heart study. Hypertension. 1998;32(2):293–7.PubMedGoogle Scholar
  120. 120.
    Copie X, Le Heuzey JY. Effects of drugs. In: Malik M, Camm A, editors. Dynamic electrocardiography. New York: Futura/Blackwell; 2004. p. 83–9.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Karin Halina Greiser
    • 1
  • Alexander Kluttig
    • 1
  • Barbara Schumann
    • 1
  • Cees A. Swenne
    • 2
  • Jan A. Kors
    • 3
  • Oliver Kuss
    • 1
  • Johannes Haerting
    • 1
  • Hendrik Schmidt
    • 5
  • Joachim Thiery
    • 4
  • Karl Werdan
    • 5
  1. 1.Institute of Medical Epidemiology, Biostatistics, and InformaticsMartin-Luther-University Halle-WittenbergHalle (Saale)Germany
  2. 2.Department of CardiologyLeiden University Medical CenterLeidenThe Netherlands
  3. 3.Department of Medical InformaticsErasmus University Medical CenterRotterdamThe Netherlands
  4. 4.Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics (ILM)University of LeipzigLeipzigGermany
  5. 5.Department of Medicine IIIMartin-Luther-University Halle-WittenbergHalle (Saale)Germany

Personalised recommendations