European Journal of Epidemiology

, Volume 23, Issue 9, pp 615–624 | Cite as

Differences in precision in bone mineral density measured by SXA and DXA: the NOREPOS study

  • Lisa Forsén
  • Gro K. Rosvold Berntsen
  • Haakon E. Meyer
  • Grethe S. Tell
  • Vinjar Fønnebø
Locomotor Diseases


The aims were to compare the precision (reliability) in single X-ray (SXA) and dual X-ray (DXA) absorptiometry, and to compare smallest detectable difference (SDD). An additional aim was to examine determinants for precision in bone mineral density (BMD). BMD was measured by SXA (DTX-100, Osteometer) in the forearm and by DXA (Lunar Expert) in the forearm and in the hip. Two measurements were performed at each site/method, and 195 of 207 participants had complete datasets. Participants were aged 47–49 and 71–74 years. The precision was estimated by Root Mean Square Standard Deviation (RMS SD) with 95% Confidence Interval (95%CI) and the corresponding coefficients of variation (CV%). Determinants (age, gender, BMD) were analysed by multiple linear regression with log (SD) and log (CV) as dependent variables. RMS SD tended to be largest in older women and in those with low BMD. RMS SD for SXA and DXA forearm was 4.6 (4.2–5.1) and 6.8 (6.1–7.4) and the corresponding CVs 1.0% and 1.4%. RMS SD for DXA hip was 11.0 (9.9–12.0) with CV 1.2%. To detect a 3% change in BMD one would need two repeated measurements by DXA in the distal forearm at each of two consultations, but only one measurement by SXA in the distal forearm and also only one measurement by DXA in the hip. Precision differed by type of densitometer affecting the number of repeated measurements needed to detect a given BMD difference.


Bone mineral density Single-energy X-ray absorptiometry Dual-energy X-ray absorptiometry Reliability Least significant change Smallest detectable difference 



This study was supported by grants from the Norwegian Foundation for Health and Rehabilitation, Norwegian Osteoporosis Foundation, Norwegian Women’s Public Health Association, and Research Council of Norway. Economic support was also received from Astra Zeneca Norway; Merck, Sharpe & Dohme Norway; Norwegian Rheumatism Association; and TINE BA (Norwegian Dairy Industry). The data were collected in collaboration with the National Health Screening Service of Norway, now the Norwegian Institute of Public Health.


  1. 1.
    Weinstein M, Fineberg H, Elstein A. The value of clinical information. In: Weinstein M, Fineberg H, editors. Clinical decision analysis. Philadelphia: W.B. Saunders Company; 1980. p. 131–167.Google Scholar
  2. 2.
    Bonnick SL, Johnston CC Jr, Kleerekoper M, Lindsay R, Miller P, Sherwood L, et al. Importance of precision in bone density measurements. J Clin Densitom. 2001;4:105–10. doi: 10.1385/JCD:4:2:105.PubMedCrossRefGoogle Scholar
  3. 3.
    Faulkner KG, McClung MR. Quality control of DXA instruments in multicenter trials. Osteoporos Int. 1995;5:218–27. doi: 10.1007/BF01774010.PubMedCrossRefGoogle Scholar
  4. 4.
    Glüer CC, Faulkner KG, Estilo MJ, Engelke K, Rosin J, Genant HK. Quality assurance for bone densitometry research studies: concept and impact. Osteoporos Int. 1993;3:227–35. doi: 10.1007/BF01623825.PubMedCrossRefGoogle Scholar
  5. 5.
    Miller CG. Bone density measurements in clinical trials: the challenge of ensuring optimal data. Br J Clin Res. 1993;4:113–20.Google Scholar
  6. 6.
    Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ. 1996;312:1254–9.PubMedGoogle Scholar
  7. 7.
    Siris ES, Miller PD, Barrett-Connor E, Faulkner KG, Wehren LE, Abbott TA, et al. Identification and fracture outcomes of undiagnosed low bone mineral density in postmenopausal women: results from the National Osteoporosis Risk Assessment. JAMA. 2001;286:2815–22. doi: 10.1001/jama.286.22.2815.PubMedCrossRefGoogle Scholar
  8. 8.
    Rosvold Berntsen GK, Fonnebo V, Tollan A, Sogaard AJ, Joakimsen RM, Magnus JH. The Tromso study: determinants of precision in bone densitometry. J Clin Epidemiol. 2000;53:1104–12. doi: 10.1016/S0895-4356(00)00234-1.PubMedCrossRefGoogle Scholar
  9. 9.
    Johnston CC Jr, Slemenda CW. Identification of patients with low bone mass by single photon absorptiometry and single-energy X-ray absorptiometry. Am J Med. 1995;98:37S–40S. Review.  10.1016/S0002-9343(05)80044-0
  10. 10.
    Kleerekoper M, Nelson DA. Peripheral bone densitometry: an old friend revisited. Am Clin Climatol Assoc. 1998;109:62–70.Google Scholar
  11. 11.
    Borg J, Mollgaard A, Riis BJ. Single X-ray absorptiometry: performance characteristics and comparison with single photon absorptiometry. Osteoporos Int. 1995;5:377–81. doi: 10.1007/BF01622260.PubMedCrossRefGoogle Scholar
  12. 12.
    Kelly TL, Crane G, Baran DT. Single X-ray absorptiometry of the forearm: precision, correlation, and reference data. Calcif Tissue Int. 1994;54:212–8. doi: 10.1007/BF00301681.PubMedCrossRefGoogle Scholar
  13. 13.
    Lin S, Qin M, Riis B, Christiansen C, Ge Q. Forearm bone mass and biochemical markers of bone remodelling in normal Chinese women. J Bone Miner Metab. 1997;15:34–40. doi: 10.1007/BF02439453.CrossRefGoogle Scholar
  14. 14.
    Ravn P, Overgaard K, Huang C, Ross PD, Green D, McClung M. Comparison of bone densitometry of the phalanges, distal forearm and axial skeleton in early postmenopausal women participating in the EPIC Study. Osteoporos Int. 1996;6:308–13. doi: 10.1007/BF01623390.PubMedCrossRefGoogle Scholar
  15. 15.
    Eckert P, Casez JP, Thiebaud D, Schnyder P, Burckhardt P. Bone densitometry of the forearm: comparison of single-photon and dual-energy X-ray absorptiometry. Bone. 1996;18:575–9. doi: 10.1016/8756-3282(96)00082-8.PubMedCrossRefGoogle Scholar
  16. 16.
    Henzell S, Dhaliwal S, Pontifex R, Gill F, Price R, Retallack R, et al. Precision error of fan-beam dual X-ray absorptiometry scans at the spine, hip, and forearm. J Clin Densitom. 2000;3:359–64. doi: 10.1385/JCD:3:4:359.PubMedCrossRefGoogle Scholar
  17. 17.
    Leboff MS, Fuleihan GE, Angell JE, Chung S, Curtis K. Dual-energy x-ray absorptiometry of the forearm: reproducibility and correlation with single-photon absorptiometry. J Bone Miner Res. 1992;7:841–6.PubMedGoogle Scholar
  18. 18.
    Mole PA, McMurdo ME, Paterson CR. Evaluation of peripheral dual energy X-ray absorptiometry: comparison with single photon absorptiometry of the forearm and dual energy X-ray absorptiometry of the spine or femur. Br J Radiol. 1998;71:427–32.PubMedGoogle Scholar
  19. 19.
    Overton TR, Wheeler GD. Bone mass measurements in the distal forearm using dual-energy x-ray absorptiometry and gamma-ray computed tomography: a longitudinal, in vivo comparative study. J Bone Miner Res. 1992;7:375–81.PubMedCrossRefGoogle Scholar
  20. 20.
    Sievanen H, Oja P, Vuori I. Precision of dual-energy x-ray absorptiometry in determining bone mineral density and content of various skeletal sites. J Nucl Med. 1992;33:1137–42.PubMedGoogle Scholar
  21. 21.
    Sievanen H, Kannus P, Oja P, Vuori I. Precision of dual energy x-ray absorptiometry in the upper extremities. Bone Miner. 1993;20:235–43.PubMedCrossRefGoogle Scholar
  22. 22.
    Sievanen H, Backstrom MC, Kuusela AL, Ikonen RS, Maki M. Dual energy x-ray absorptiometry of the forearm in preterm and term infants: evaluation of the methodology. Pediatr Res. 1999;45:100–5. doi: 10.1203/00006450-199901000-00017.PubMedCrossRefGoogle Scholar
  23. 23.
    Tanaka N, Sonoda S, Kondo K, Chino N. Reproducibility of dual-energy x-ray absorptiometry in the upper extremities in stroke patients. Disabil Rehabil. 1997;19:523–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Gjesdal CG, Aanderud SJ, Haga HJ, Brun JG, Tell GS. Femoral and whole-body bone mineral density in middle-aged and older Norwegian men and women: suitability of the reference values. Osteoporos Int. 2004;15:525–34. doi: 10.1007/s00198-003-1573-2.PubMedCrossRefGoogle Scholar
  25. 25.
    Meyer HE, Berntsen GK, Sogaard AJ, Langhammer A, Schei B, Fonnebo V, et al. Higher bone mineral density in rural compared with urban dwellers: the NOREPOS study. Am J Epidemiol. 2004;160:1039–46. doi: 10.1093/aje/kwh337.PubMedCrossRefGoogle Scholar
  26. 26.
    Expert-XI imaging densitometer––reference manual. Software v.1.7. Documentation version 2/98 E. Reference Manual Assembly P/N 17460, Lunar. 2 ed. 1998.Google Scholar
  27. 27.
    Osteometer DTX-100. Operator’s manual. 1MAN0510-B00. Osteometer A/S, Glerupvej 2, DK-2610 Rødovre, Denmark, System Software version 1.52. 1994.Google Scholar
  28. 28.
    Berntsen GK, Tollan A, Magnus JH, Sogaard AJ, Ringberg T, Fonnebo V. The Tromso study: artifacts in forearm bone densitometry-prevalence and effect. Osteoporos Int. 1999;10:425–32. doi: 10.1007/s001980050249.PubMedCrossRefGoogle Scholar
  29. 29.
    Baim S, Wilson CR, Lewiecki EM, Luckey MM, Downs-Jr RW, Lentle BC. Precision assessment and radiation safety for dual-energy X-ray absorptiometry: position paper of the International Society for Clinical Densitometry. J Clin Densitom. 2005;8:371–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Glüer CC, Blake G, Lu Y, Blunt BA, Jergas M, Genant HK. Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int. 1995;5:262–70. doi: 10.1007/BF01774016.PubMedCrossRefGoogle Scholar
  31. 31.
    Ravaud P, Reny JL, Giraudeau B, Porcher R, Dougados M, Roux C. Individual smallest detectable difference in bone mineral density measurements. J Bone Miner Res. 1999;14:1449–56. doi: 10.1359/jbmr.1999.14.8.1449.PubMedCrossRefGoogle Scholar
  32. 32.
    Berntsen GK, Fonnebo V, Tollan A, Sogaard AJ, Magnus JH. Forearm bone mineral density by age in 7, 620 men and women: the Tromso study, a population-based study. Am J Epidemiol. 2001;153:465–73. doi: 10.1093/aje/153.5.465.PubMedCrossRefGoogle Scholar
  33. 33.
    Lodder MC, Lems WF, Ader HJ, Marthinsen AE, van Coeverden SC, Lips P, et al. Reproducibility of bone mineral density measurement in daily practice. Ann Rheum Dis. 2004;63:285–9. doi: 10.1136/ard.2002.005678.PubMedCrossRefGoogle Scholar
  34. 34.
    Alver K, Meyer HE, Falch JA, Sogaard AJ. Bone mineral density in ethnic Norwegians and Pakistani immigrants living in Oslo—The Oslo Health Study. Osteoporos Int.. 2005;16:623–30. doi: 10.1007/s00198-004-1722-2.PubMedCrossRefGoogle Scholar
  35. 35.
    Emaus N, Berntsen GK, Joakimsen R, Fonnebo V, Emaus N, Berntsen GKR, et al. Longitudinal changes in forearm bone mineral density in women and men aged 45–84 years: the Tromso Study, a population-based study. Am J Epidemiol. 2006;163:441–9. doi: 10.1093/aje/kwj055.PubMedCrossRefGoogle Scholar
  36. 46.
    Forsmo S, Aaen J, Schei B, Langhammer A. What is the influence of weight change on forearm bone mineral density in peri- and postmenopausal women? The health study of Nord-Trondelag, Norway. Am J Epidemiol. 2006;164(9):890–7. doi: 10.1093/aje/kwj268.PubMedCrossRefGoogle Scholar
  37. 37.
    Szulc P, Delmas PD, Szulc P, Delmas PD. Bone loss in elderly men: increased endosteal bone loss and stable periosteal apposition. The prospective MINOS study. Osteoporos Int. 2007;18:495–503. doi: 10.1007/s00198-006-0254-3.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Lisa Forsén
    • 1
  • Gro K. Rosvold Berntsen
    • 2
  • Haakon E. Meyer
    • 1
  • Grethe S. Tell
    • 3
  • Vinjar Fønnebø
    • 2
  1. 1.Norwegian Institute of Public Health0403OsloNorway
  2. 2.Institute of Community MedicineUniversity of TromsøTromsoNorway
  3. 3.Department of Public Health and Primary Health CareUniversity of BergenBergenNorway

Personalised recommendations