European Journal of Epidemiology

, Volume 23, Issue 4, pp 251–259

Hazard regression model and cure rate model in colon cancer relative survival trends: are they telling the same story?

  • Theodora Bejan-Angoulvant
  • Anne-Marie Bouvier
  • Nadine Bossard
  • Aurelien Belot
  • Valérie Jooste
  • Guy Launoy
  • Laurent Remontet
METHODS

Abstract

Hazard regression models and cure rate models can be advantageously used in cancer relative survival analysis. We explored the advantages and limits of these two models in colon cancer and focused on the prognostic impact of the year of diagnosis on survival according to the TNM stage at diagnosis. The analysis concerned 9,998 patients from three French registries. In the hazard regression model, the baseline excess death hazard and the time-dependent effects of covariates were modelled using regression splines. The cure rate model estimated the proportion of ‘cured’ patients and the excess death hazard in ‘non-cured’ patients. The effects of year of diagnosis on these parameters were estimated for each TNM cancer stage. With the hazard regression model, the excess death hazard decreased significantly with more recent years of diagnoses (hazard ratio, HR 0.97 in stage III and 0.98 in stage IV, P < 0.001). In these advanced stages, this favourable effect was limited to the first years of follow-up. With the cure rate model, recent years of diagnoses were significantly associated with longer survivals in ‘non-cured’ patients with advanced stages (HR 0.95 in stage III and 0.97 in stage IV, P < 0.001) but had no significant effect on cure (odds ratio, OR 0.99 in stages III and IV, P > 0.5). The two models were complementary and concordant in estimating colon cancer survival and the effects of covariates. They provided two different points of view of the same phenomenon: recent years of diagnosis had a favourable effect on survival, but not on cure.

Keywords

Cancer Cure rate model Hazard regression model Registries Relative survival (RS) Time-dependent effect 

References

  1. 1.
    Remontet L, Esteve J, Bouvier AM, et al. Cancer incidence and mortality in France over the period 1978–2000. Rev Epidemiol Sante Publique 2003;51:3–30.PubMedGoogle Scholar
  2. 2.
    Finn-Faivre C, Maurel J, Benhamiche AM, et al. Evidence of improving survival of patients with rectal cancer in France: a population-based study. Gut 1999;44:377–81.PubMedCrossRefGoogle Scholar
  3. 3.
    Faivre-Finn C, Bouvier-Benhamiche AM, Phelip JM, Manfredi S, Dancourt V, Faivre J. Colon cancer in France: evidence for improvement in management and survival. Gut 2002;51:60–4.PubMedCrossRefGoogle Scholar
  4. 4.
    Mitry E, Bouvier AM, Esteve J, Faivre J. Improvement in colorectal cancer survival: a population-based study. Eur J Cancer 2005;41:2297–303.PubMedCrossRefGoogle Scholar
  5. 5.
    Bossard N, Velten M, Remontet L, Belot A, Maarouf N, Bouvier AM, et al. Survival of cancer patients in France: a population-based study from The Association of the French Cancer Registries (FRANCIM). Eur J Cancer 2007;43(1):149–60.PubMedCrossRefGoogle Scholar
  6. 6.
    Blomqvist P, Ekbom A, Nyren O, Krusemo U, Bergström R, Adami HO. Survival after colon cancer 1973–1990 in Sweden. Convergence between catchment areas. Ann Surg 1997;225:208–16.PubMedCrossRefGoogle Scholar
  7. 7.
    Verdecchia A, De Andelis R, Capocaccia R, et al. The cure for colon cancer: results from the Eurocare study. Int J Cancer 1998;77:322–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Sant M, Capocaccia R, Coleman M, et al. Cancer survival increases in Europe, but international differences remain wide. Eur J Cancer 2001;37:1659–67.PubMedCrossRefGoogle Scholar
  9. 9.
    Ries LA, Wingo PA, Miller DS, et al. The annual report to the nation on the status of cancer, 1973–1997, with a special section on colorectal cancer. Cancer 2000;88:2398–424.PubMedCrossRefGoogle Scholar
  10. 10.
    Ederer F, Axtell LM, Cutler SJ. The relative survival rate: a statistical methodology. Natl Cancer Inst Monogr 1961;6:101–21.PubMedGoogle Scholar
  11. 11.
    Hakulinen T. Cancer survival corrected for heterogeneity in patient withdrawal. Biometrics 1982;38:933–42.PubMedCrossRefGoogle Scholar
  12. 12.
    Esteve J, Benhamou E, Croasdale M, Raymond L. Relative survival and the estimation of the net survival: elements for further discussion. Stat Med 1990;9:528–38.CrossRefGoogle Scholar
  13. 13.
    Hakulinen T, Tenkanen L. Regression analysis of relative survival rates. Appl Stat 1987;36:309–17.CrossRefGoogle Scholar
  14. 14.
    Remontet L, Bossard N, Belot A, Estève J. An overall strategy based on regression models to estimate relative survival and model the effects of prognostic factors in cancer survival studies. Stat Med 2007;26:2214–28.PubMedCrossRefGoogle Scholar
  15. 15.
    Boag JW. Maximum likelihood estimates of the proportion of patients cured by cancer therapy. J Roy Stat Soc B 1949;11:15–44.Google Scholar
  16. 16.
    Berkson J, Gage RP. Survival curves for cancer patients following treatment. J Am Stat Assoc 1952;47:501–15.CrossRefGoogle Scholar
  17. 17.
    Farewell VT. The use of mixture models for the analysis of survival data with long-term survivors. Biometrics 1982;38:1041–6.PubMedCrossRefGoogle Scholar
  18. 18.
    De Angelis R, Capocaccia R, Hakulinen T, Soderman B, Verdecchia A. Mixture models for cancer survival analysis: application to population-based data with covariates. Stat Med 1999;18:441–54.PubMedCrossRefGoogle Scholar
  19. 19.
    Sposto R. Cure model analysis in cancer: an application to data from the Children’s cancer group. Stat Med 2002;21:293–312.PubMedCrossRefGoogle Scholar
  20. 20.
    World Health Organisation. International statistical classification of diseases and related health problems, tenth revision. Geneva: World Health Organisation 1992.Google Scholar
  21. 21.
    TNM classification of malignant tumours. 5th ed. New York: Wiley Inc.; 1997.Google Scholar
  22. 22.
    Gatta G, Capocaccia R, Sant M, et al. Understanding variations in survival for colorectal cancer in Europe: a EUROCARE high resolution study. Gut 2000;47:533–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Bolard P, Quantin C, Abrahamowicz M, et al. Assessing time-by-covariate interactions in relative survival models using restrictive cubic spline functions. J Cancer Epidemiol Prev 2002;7:113–22.PubMedGoogle Scholar
  24. 24.
    Giorgi R, Abrahamowicz M, Quantin C, et al. A relative survival regression model using B-splines functions to model non-proportional hazards. Stat Med 2003;22:2767–84.PubMedCrossRefGoogle Scholar
  25. 25.
    Abrahamowicz M, MacKenzie T, Esdaile JM. Time-dependent hazard ratio: modelling and hypothesis testing with application in Lupus Nephritis. J Am Stat Assoc 1996;91:1432–9.CrossRefGoogle Scholar
  26. 26.
    Roncucci L, Fante R, Losi L, et al. Survival for colon and rectal cancer in a population-based cancer registry. Eur J Cancer 1996;32:295–302.CrossRefGoogle Scholar
  27. 27.
    Moertel CG, Fleming TR, Macdonald JS, et al. Levamisole and fluorouracil for adjuvant therapy of resected colon carcinoma. N Engl J Med 1990;322:352–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Faivre-Finn C, Bouvier AM, Mitry E, Rassiat E, Clinard F, Faivre J. Chemotherapy for colon cancer in a well-defined French population: is it under- or over-prescribed? Aliment Pharmacol Ther 2002;16:353–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Theodora Bejan-Angoulvant
    • 1
    • 2
    • 3
  • Anne-Marie Bouvier
    • 4
    • 5
    • 6
  • Nadine Bossard
    • 1
    • 2
    • 3
  • Aurelien Belot
    • 1
    • 2
    • 3
    • 7
  • Valérie Jooste
    • 4
    • 5
    • 6
  • Guy Launoy
    • 8
    • 9
    • 10
  • Laurent Remontet
    • 1
    • 2
    • 3
  1. 1.Hospices Civils de Lyon, Service de BiostatistiquesCentre Hospitalier Lyon SudPierre-BéniteFrance
  2. 2.CNRS, UMR 5558 Equipe Biostatistique-SantéVilleurbanneFrance
  3. 3.Université Lyon 1, UMR 5558 Laboratoire Biostatistique-SantéVilleurbanneFrance
  4. 4.Registre des cancers digestifsINSERM EMI 0106DijonFrance
  5. 5.Université de BourgogneDijonFrance
  6. 6.CHU de DijonDijonFrance
  7. 7.Département des Maladies Chroniques et des TraumatismesInstitut de Veille SanitaireSaint-MauriceFrance
  8. 8.INSERM ERI3 ‘Cancers & Populations’CaenFrance
  9. 9.EA 3936 Université Caen, UF Epidémiologie—Pôle de Santé des PopulationsCaenFrance
  10. 10.CHU CaenCaenFrance

Personalised recommendations