European Journal of Epidemiology

, Volume 23, Issue 3, pp 163–166 | Cite as

From causal diagrams to birth weight-specific curves of infant mortality

  • Sonia Hernández-Díaz
  • Allen J. Wilcox
  • Enrique F. Schisterman
  • Miguel A. Hernán
METHODS

Abstract

This report explores the low birth weight paradox using two graphical approaches: causal directed acyclic graphs (DAGs), and the empirical curves of the birth weight distribution and birth weight-specific mortality. The birth weight curves are able to represent the associations quantitatively, while the corresponding causal DAGs provide a set of plausible explanations for the findings. Taken together, these two approaches can facilitate discussion of underlying biological mechanisms.

Keywords

Birth weight Mortality Curves DAGs Paradox 

References

  1. 1.
    Wilcox A. On the importance—and the unimportance—of birthweight. Int J Epidemiol 2001;30:1233–41.PubMedCrossRefGoogle Scholar
  2. 2.
    Wilcox A. Birth weight and perinatal mortality: the effect of maternal smoking. Am J Epidemiol 1993;137:1098–104.PubMedGoogle Scholar
  3. 3.
    Basso O, Wilcox A, Weinberg CR. Birth weight and mortality: causality or confounding? Am J Epidemiol 2006;164:303–11.PubMedCrossRefGoogle Scholar
  4. 4.
    Hernández-Díaz S, Schisterman EF, Hernán MA. The birth weight “paradox” uncovered? Am J Epidemiol 2006.doi 10.1093/aje/kwj275
  5. 5.
    Pearl J. Causal diagrams for empirical research. Biometrika 1995;82:669–710.CrossRefGoogle Scholar
  6. 6.
    Spirtes P, Glymour C, Scheines R. Causation, prediction, and search. Lecture notes in statistics 81. New York: Springer-Verlag; 1993.Google Scholar
  7. 7.
    Cole SR, Hernán MA. Fallibility in estimating direct effects. Int J Epidemiol 2002;31(1):163–5.PubMedCrossRefGoogle Scholar
  8. 8.
    Hernán MA, Hernández-Díaz S, Robins JM. A structural approach to selection bias. Epidemiology 2004;15(5):615–25.PubMedCrossRefGoogle Scholar
  9. 9.
    Hernán MA, Hernández-Díaz S, Werler MM, Mitchell AA. Causal knowledge as a prerequisite for confounding evaluation. An application to birth defects epidemiology. Am J Epidemiol 2002;155:176–84.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Sonia Hernández-Díaz
    • 1
  • Allen J. Wilcox
    • 2
  • Enrique F. Schisterman
    • 3
  • Miguel A. Hernán
    • 1
  1. 1.Department of EpidemiologyHarvard School of Public HealthBostonUSA
  2. 2.Epidemiology Branch, National Institute of Environmental Health SciencesNational Institutes of HealthDurhamUSA
  3. 3.Epidemiology Branch, National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaUSA

Personalised recommendations