Advertisement

European Journal of Epidemiology

, Volume 23, Issue 3, pp 175–190 | Cite as

Association of fatty acids in serum phospholipids with lung function and bronchial hyperresponsiveness in adults

  • Iris KompauerEmail author
  • Hans Demmelmair
  • Berthold Koletzko
  • Gabriele Bolte
  • Jakob Linseisen
  • Joachim Heinrich
RESPIRATORY DISEASES

Abstract

Background The dietary intake of certain fatty acids might have an impact on inflammatory processes in the lung and therefore contribute to the development of lung diseases like asthma or COPD. Methods In this study data from a population based cross-sectional study on respirator y health including measurement of fatty acids in serum phospholipids of 593 adults between 20 and 64 years of age were analyzed. Results Statistically significant positive associations were found between percentage predicted FEV1 (P = 0.0085) and FVC (P = 0.0267) and docosahexaenoic acid concentration in serum phospholipids in men. Dihomo-γ-linolenic acid content in serum phospholipids was significantly negatively associated with percentage predicted FEV1 (P = 0.0003) and FVC (P = 0.0045) and transformed dose-response slopes (P = 0.0488) in men. Palmitoleic acid was negatively associated with percentage predicted FEV1 (P = 0.0037) and FVC (P = 0.0029) in men. Other fatty acids in serum phospholipids did not consistently affect lung function parameters or bronchial hyperreactivity. Conclusion A high concentration of docosahexaenoic acid in serum phospholipids may have a protective effect on lung function. Because this long-chain n-3 polyunsaturated fatty acid is almost exclusively derived from marine oils, fish might have a beneficial effect on lung diseases.

Keywords

Bronchial hyperresponsiveness Lung function Fatty acids ECRHS 

Abbreviations

BHR

Bronchial hyperresponsiveness

COPD

Chronic obstructive pulmonary disease

LTB4

Leukotriene B4

PGE2

Prostaglandin E2

EPA

Eicosapentaenoic acid

DHA

Docosahexaenoic acid

PUFA

Polyunsaturated fatty acids

FEV1

Forced exspiratory volume in one second

FVC

Forced vital capacity

ECRHS

European community respiratory health survey

DRS

Dose-response slope

TDRS

Transformed dose-response slope

OR

Odds ratio

β

Regression coefficient

SE

Standard error

PUFA

Polyunsaturated fatty acids

wt/wt

Weight/weight

Notes

Acknowledgments

Sources of Support: Financially supported in part by German Research Council (Deutsche Forschungsgemeinschaft), Bonn, HEI 3294/1–1 and KO 912/8–1.

References

  1. 1.
    Seaton A, Godden DJ, Brown K. Increase in asthma: a more toxic environment or a more susceptible population? Thorax 1994; 49(2):171–4.PubMedCrossRefGoogle Scholar
  2. 2.
    Black PN. The prevalence of allergic disease and linoleic acid in the diet. J Allergy Clin Immunol 1999;103(2 Pt 1):351–2.PubMedCrossRefGoogle Scholar
  3. 3.
    Kankaanpaa P, Sutas Y, Salminen S, et al. Dietary fatty acids and allergy. Ann Med 1999;31(4):282–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Weiss ST. Diet as a risk factor for asthma. Ciba Found Symp 1997;206:244–57.PubMedGoogle Scholar
  5. 5.
    Schwartz J. Role of polyunsaturated fatty acids in lung disease. Am J Clin Nutr 2000;71(1 Suppl):393S–6Google Scholar
  6. 6.
    Burney PG, Luczynska C, Chinn S, et al. The European Community Respiratory Health Survey. Eur Respir J 1994;7(5):954–60PubMedGoogle Scholar
  7. 7.
    Nowak D, Heinrich J, Jorres R, et al. Prevalence of respiratory symptoms, bronchial hyperresponsiveness and atopy among adults: west and east Germany. Eur Respir J 1996;9(12):2541–52.PubMedCrossRefGoogle Scholar
  8. 8.
    Trak-Fellermeier MA, Brasche S, Winkler G et al. Food and fatty acid intake and atopic disease in adults. Eur Respir J 2004;23(4):575–82.PubMedCrossRefGoogle Scholar
  9. 9.
    Chinn S, Jarvis D, Luczynska C, et al. Individual allergens as risk factors for bronchial responsiveness in young adults. Thorax 1998;53(8):662–7.PubMedGoogle Scholar
  10. 10.
    Leynaert B, Bousquet J, Henry C, et al. Is bronchial hyperresponsiveness more frequent in women than in men? A population-based study. Am J Respir Crit Care Med 1997; 156(5):1413–20.PubMedGoogle Scholar
  11. 11.
    Chinn S, Burney P, Jarvis D, et al. Variation in bronchial responsiveness in the European community respiratory health survey (ECRHS). Eur Respir J 1997;10(11):2495–501.PubMedCrossRefGoogle Scholar
  12. 12.
    Wassmer G, Jorres RA, Heinrich J, et al. The association between baseline lung function and bronchial responsiveness to methacholine. Eur J Med Res 1997;2(2):47–54.PubMedGoogle Scholar
  13. 13.
    Kolarovic L, Fournier NC. A comparison of extraction methods for the isolation of phospholipids from biological sources. Anal Biochem 1986;156(1):244–50.PubMedCrossRefGoogle Scholar
  14. 14.
    Carnielli VP, Pederzini F, Vittorangeli R, et al. Plasma and red blood cell fatty acid of very low birth weight infants fed exclusively with expressed preterm human milk. Pediatr Res 1996;39(4 Pt 1):671–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Weiland SK, von Mutius E, Husing A, et al. Intake of trans fatty acids and prevalence of childhood asthma and allergies in Europe. ISAAC Steering Committee. Lancet 1999; 353(9169):2040–1.PubMedCrossRefGoogle Scholar
  16. 16.
    Nagel G, Nieters A, Becker N, et al. The influence of the dietary intake of fatty acids and antioxidants on hay fever in adults. Allergy 2003;58(12):1277–84.PubMedCrossRefGoogle Scholar
  17. 17.
    Trak-Fellermeier MA, Brasche S, Winkler G, et al. Food and fatty acid intake and atopic disease in adults. Eur Respir J 2004;23(4):575–82.PubMedCrossRefGoogle Scholar
  18. 18.
    Leynaert B, Bousquet J, Henry C, et al. Is bronchial hyperresponsiveness more frequent in women than in men? A population-based study. Am J Respir Crit Care Med 1997;156(5):1413–20.PubMedGoogle Scholar
  19. 19.
    Shahar E, Boland LL, Folsom AR, et al. Docosahexaenoic acid and smoking-related chronic obstructive pulmonary disease. The Atherosclerosis Risk in Communities Study Investigators. Am J Respir Crit Care Med 1999;159(6):1780–5.PubMedGoogle Scholar
  20. 20.
    Woods RK, Raven JM, Walters EH, et al. Fatty acid levels and risk of asthma in young adults. Thorax 2004;59(2):105–10.PubMedCrossRefGoogle Scholar
  21. 21.
    Nagel G, Linseisen J. Dietary intake of fatty acids, antioxidants and selected food groups and asthma in adults. Eur J Clin Nutr 2005;59(1):8–15.PubMedCrossRefGoogle Scholar
  22. 22.
    Troisi RJ, Willett WC, Weiss ST, et al. A prospective study of diet and adult-onset asthma. Am J Respir Crit Care Med 1995;151(5):1401–8PubMedGoogle Scholar
  23. 23.
    Broadfield EC, McKeever TM, Whitehurst A, et al. A case-control study of dietary and erythrocyte membrane fatty acids in asthma. Clin Exp Allergy 2004;34(8):1232–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Butland BK, Fehily AM, Elwood PC. Diet, lung function, and lung function decline in a cohort of 2512 middle aged men. Thorax 2000;55(2):102–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Fluge O, Omenaas E, Eide GE, et al. Fish consumption and respiratory symptoms among young adults in a Norwegian community. Eur Respir J 1998;12(2):336–40.PubMedCrossRefGoogle Scholar
  26. 26.
    Woods RK, Walters EH, Raven JM, et al. Food and nutrient intakes and asthma risk in young adults. Am J Clin Nutr 2003;78(3):414–21.PubMedGoogle Scholar
  27. 27.
    Schwartz J, Weiss ST. The relationship of dietary fish intake to level of pulmonary function in the first National Health and Nutrition Survey (NHANES I). Eur Respir J 1994;7(10):1821–4.PubMedCrossRefGoogle Scholar
  28. 28.
    Schwartz J, Weiss ST. Dietary factors and their relation to respiratory symptoms. The Second National Health and Nutrition Examination Survey. Am J Epidemiol 1990;132(1):67–76.Google Scholar
  29. 29.
    Woods RK, Thien FC, Abramson MJ. Dietary marine fatty acids (fish oil) for asthma in adults and children. Cochrane Database Syst Rev 2002;(3):CD001283.Google Scholar
  30. 30.
    Wong KW. Clinical efficacy of n-3 fatty acid supplementation in patients with asthma. J Am Diet Assoc 2005;105(1):98–105.PubMedCrossRefGoogle Scholar
  31. 31.
    Kirsch CM, Payan DG, Wong MY et al. Effect of eicosapentaenoic acid in asthma. Clin Allergy 1988;18(2):177–87.PubMedCrossRefGoogle Scholar
  32. 32.
    Arm JP, Horton CE, Mencia-Huerta JM et al. Effect of dietary supplementation with fish oil lipids on mild asthma. Thorax 1988;43(2):84–92.PubMedGoogle Scholar
  33. 33.
    Serhan CN. Novel eicosanoid and docosanoid mediators: resolvins, docosatrienes, and neuroprotectins. Curr Opin Clin Nutr Metab Care 2005;8(2):115–21.PubMedCrossRefGoogle Scholar
  34. 34.
    Serhan CN. A search for endogenous mechanisms of anti-inflammation uncovers novel chemical mediators: missing links to resolution. Histochem Cell Biol 2004;122(4):305–21.PubMedCrossRefGoogle Scholar
  35. 35.
    Serhan CN. Novel omega—3-derived local mediators in anti-inflammation and resolution. Pharmacol Ther 2005;105(1):7–21.PubMedCrossRefGoogle Scholar
  36. 36.
    Hong S, Gronert K, Devchand PR, et al. Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. Autacoids in anti-inflammation. J Biol Chem 2003;278(17):14677–87.Google Scholar
  37. 37.
    Becklake MR, Kauffmann F. Gender differences in airway behaviour over the human life span. Thorax 1999;54(12):1119-38.PubMedCrossRefGoogle Scholar
  38. 38.
    Mueller JE, Frye C, Brasche S, et al. Association of hormone replacement therapy with bronchial hyper-responsiveness. Respir Med 2003;97(8):990–2.PubMedCrossRefGoogle Scholar
  39. 39.
    Carlson CL, Cushman M, Enright PL, et al. Hormone replacement therapy is associated with higher FEV1 in elderly women. Am J Respir Crit Care Med 2001;163(2):423–8.PubMedGoogle Scholar
  40. 40.
    Balzano G, Fuschillo S, Melillo G et al. Asthma and sex hormones. Allergy 2001;56(1):13–20.PubMedCrossRefGoogle Scholar
  41. 41.
    Arab L. Biomarkers of fat and fatty acid intake. J Nutr 2003;133(Suppl 3):925S–32.PubMedGoogle Scholar
  42. 42.
    Ma J, Folsom AR, Eckfeldt JH et al. Short- and long-term repeatability of fatty acid composition of human plasma phospholipids and cholesterol esters. The Atherosclerosis Risk in Communities (ARIC) Study Investigators. Am J Clin Nutr 1995;62(3):572–8.Google Scholar
  43. 43.
    Kew S, Mesa MD, Tricon S et al. Effects of oils rich in eicosapentaenoic and docosahexaenoic acids on immune cell composition and function in healthy humans. Am J Clin Nutr 2004;79(4):674–81.PubMedGoogle Scholar
  44. 44.
    Gibney MJ, Hunter B. The effects of short- and long-term supplementation with fish oil on the incorporation of n-3 polyunsaturated fatty acids into cells of the immune system in healthy volunteers. Eur J Clin Nutr 1993;47(4):255–9.PubMedGoogle Scholar
  45. 45.
    von Schacky C, Fischer S, Weber PC. Long-term effects of dietary marine omega-3 fatty acids upon plasma and cellular lipids, platelet function, and eicosanoid formation in humans. J Clin Invest 1985;76(4):1626–31.CrossRefGoogle Scholar
  46. 46.
    Di Stasi D, Bernasconi R, Marchioli R, et al. Early modifications of fatty acid composition in plasma phospholipids, platelets and mononucleates of healthy volunteers after low doses of n-3 polyunsaturated fatty acids. Eur J Clin Pharmacol 2004;60(3):183–90.PubMedCrossRefGoogle Scholar
  47. 47.
    Johnson MM, Swan DD, Surette ME et al. Dietary supplementation with gamma-linolenic acid alters fatty acid content and eicosanoid production in healthy humans. J Nutr 1997;127(8):1435–44.PubMedGoogle Scholar
  48. 48.
    Zeleniuch-Jacquotte A, Chajes V, Van Kappel AL, et al. Reliability of fatty acid composition in human serum phospholipids. Eur J Clin Nutr 2000;54(5):367–72.PubMedCrossRefGoogle Scholar
  49. 49.
    Koletzko B, Innis SM. Lipids. In: Tsang R, Uauy R, Koletzko B, Zlotkin S, editors. Nutrition of the preterm infant. Scientific basis and practical application. 2nd ed. Cincinnati: Digital Educ Publ; 2005. p 97–139.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Iris Kompauer
    • 1
    • 2
    • 3
    Email author
  • Hans Demmelmair
    • 4
  • Berthold Koletzko
    • 4
  • Gabriele Bolte
    • 5
  • Jakob Linseisen
    • 6
    • 7
  • Joachim Heinrich
    • 1
  1. 1.Institute of EpidemiologyGSF – National Research Center for Environment and HealthNeuherbergGermany
  2. 2.Institute of Medical Data Management, Biometrics and EpidemiologyLudwig-Maximilians University of MunichMunichGermany
  3. 3.Division of Epidemiology & Health ReportsDistrict of Stuttgart Government, State Health Office Baden-WuerttembergStuttgartGermany
  4. 4.Division of Metabolic Disorders and NutritionDr. von Haunersches KinderspitalMunichGermany
  5. 5.Department of Environmental HealthBavarian Health and Food Safety AuthorityOberschleissheimGermany
  6. 6.Unit of Human Nutrition and Cancer PreventionTU MunichGermany
  7. 7.Division of Clinical EpidemiologyGerman Cancer Research CentreHeidelbergGermany

Personalised recommendations