European Journal of Epidemiology

, Volume 21, Issue 12, pp 855–858

From counterfactuals to sufficient component causes and vice versa

Commentary

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Flanders WD. On the relationship of sufficient component cause models with potential outcome (counterfactual) models. EJEP 2006; (in press)Google Scholar
  2. 2.
    Hume D. An Enquiry Concerning Human Understanding (1748). Reprinted LaSalle, IL: Open Court Press, 1958Google Scholar
  3. 3.
    Lewis D (1973) Causation. J. Phil. 70: 556–567CrossRefGoogle Scholar
  4. 4.
    Lewis D (1973) Counterfactuals. Harvard University Press, CambridgeGoogle Scholar
  5. 5.
    Neyman J (1990) Sur les applications de la thar des probabilities aux experiences Agaricales: Essay des principle (1923). Excerpts reprinted in English (Dabrowska D, Speed T, Trans.) in Statistical Science 5: 463–472Google Scholar
  6. 6.
    Rubin DB (1974) Estimating causal effects of treatments in randomized and nonrandomized studies. J. Educ. Psychol. 66: 688–701CrossRefGoogle Scholar
  7. 7.
    Rubin DB (1978) Bayesian inference for causal effects: The role of randomization. Ann. Stat. 6: 34–58Google Scholar
  8. 8.
    Robins JM (1986) A new approach to causal inference in mortality studies with sustained exposure period - application to control of the healthy worker survivor effect. Math. Model. 7: 1393–1512CrossRefGoogle Scholar
  9. 9.
    Robins JM (1987) Addendum to a new approach to causal inference in mortality studies with sustained exposure period—application to control of the healthy worker survivor effect. Comput. Math. Appl. 14: 923–945CrossRefGoogle Scholar
  10. 10.
    Pearl J (1995) Causal diagrams for epidemiologic research. Biometrika 82: 669–688CrossRefGoogle Scholar
  11. 11.
    Greenland S, Pearl J, Robins JM (1999) Causal diagrams for epidemiologic research. Epidemiology 10: 37–48PubMedCrossRefGoogle Scholar
  12. 12.
    Greenland S, Brumback B (2002) An overview of relations among causal modelling methods. Int. J. Epidemiol. 31: 1030–1037PubMedCrossRefGoogle Scholar
  13. 13.
    Robins JM, Greenland S (2000) Comment on “Causal inference without counterfactuals” by Dawid AP. J. Am. Stat. Assoc. – Theory and Methods 95: 477–482CrossRefGoogle Scholar
  14. 14.
    Mackie JL (1965) Causes and conditions. Am. Philos. Q. 2: 245–255Google Scholar
  15. 15.
    Rothman KJ (1976) Causes. Am. J. Epidemiol. 104: 587–592PubMedGoogle Scholar
  16. 16.
    Greenland S, Poole C (1988) Invariants and noninvariants in the concept of interdependent effects. Scand J. Work Environ. Health 14:125–129PubMedGoogle Scholar
  17. 17.
    Aickin M. Causal Analysis in Biomedicine and Epidemiology Based on Minimal Sufficient Causation. New York: Marcel Dekker, 2002Google Scholar
  18. 18.
    Novick LR, Cheng PW (2004) Assessing interactive causal influence. Psychol. Rev. 111: 455–485PubMedCrossRefGoogle Scholar
  19. 19.
    Hernán MA (2004) A definition of causal effect for epidemiological research. J. Epidemiol. Community Health 58: 265–271PubMedCrossRefGoogle Scholar
  20. 20.
    Rothman K, Greenland S (1998) Modern Epidemiology, 2nd edn. Lippincott-Raven, PhiladelphiaGoogle Scholar
  21. 21.
    Koopman J (1981) Interaction between discrete causes. Am. J. Epidemiol. 113: 716–724PubMedGoogle Scholar
  22. 22.
    VanderWeele TJ, Robins JM. Biologic interactions and their identification. (September 2006). COBRA Preprint Series. http://biostats.bepress.com/cobraGoogle Scholar
  23. 23.
    VanderWeele TJ, Robins JM. A theory of sufficient cause interactions. (September 2006). COBRA Preprint Series. http://biostats.bepress.com/cobraGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of Health StudiesUniversity of ChicagoChicagoUSA
  2. 2.Department of EpidemiologyHarvard School of Public HealthBostonUSA

Personalised recommendations