European Journal of Epidemiology

, Volume 21, Issue 12, pp 859–867 | Cite as

A direct assessment of genetic contribution to the incidence of coronary infarct in the general population Greek EPIC cohort

  • Nikos Yiannakouris
  • Antonia Trichopoulou
  • Vassiliki Benetou
  • Theodora Psaltopoulou
  • Jose M. Ordovas
  • Dimitrios Trichopoulos
Cardiovascular Diseases

Abstract

To estimate the fraction of the incidence of coronary infarct attributable to the combined action of common genetic polymorphisms likely to be related to this condition, we conducted a case–control study nested within the Greek component of the European Prospective Investigation into Cancer and Nutrition. A total of 202 cases with a new, medically confirmed coronary infarct and 197 controls who had not developed an infarct by the time the corresponding case was diagnosed, were identified. A simple a priori score, relying on a total of 11 genetic polymorphisms was developed. Each polymorphism contributed 1 unit if the subject was homozygous for the high-risk allele, 0.5 units if the subject was heterozygous and 0 units if the subject was homozygous for the low-risk allele. Cases were over-represented in the presumed high genetic risk score values (chi square for trend = 10.18; p = 0.0014). The odds ratio to develop coronary infarct was 1.55 (95% confidence interval: 1.02–2.37) for score ≥3.0, and 2.02 (1.31–3.11) for score ≥3.5. In both instances the population fraction of the disease attributable to genetic predisposition exceeded 22%. Assuming a prior probability of at least 0.10 for the score to be predictive of coronary infarct risk, our findings are more likely than not to be truly positive. Our results, based on a simple score integrating the additive impact of 11 genetic polymorphisms, indicate that genetic predisposition accounts for a considerable fraction of the incidence of coronary infarct in the community.

Keywords

Coronary heart disease Coronary infarct Genetic predisposition Polymorphisms Score 

Abbreviations

APO

Apolipoprotein

CHD

Coronary heart disease

NOS

Endothelial nitric oxide synthase

EPIC

European Prospective Investigation into Cancer and Nutrition

FPRP

False positive report probability

GPS

Genetic predisposition scale

Hcy

Homocysteine

IL

Interleukin

LD

Linkage disequilibrium

LPL

Lipoprotein lipase

MTHFR

Methylenetetrahydrofolate reductase

NO

Nitric oxide

TNF

Tumor necrosis factor

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burton PR, Tobin MD, Hopper JL (2005) Key concepts in genetic epidemiology. Lancet 366: 941–951PubMedCrossRefGoogle Scholar
  2. 2.
    Teare DM, Barrett JH (2005) Genetic linkage studies. Lancet 336: 1036–44Google Scholar
  3. 3.
    Hattersley AT, McCarthy MI (2005) What makes a good genetic association study? Lancet 366: 1315–1323PubMedCrossRefGoogle Scholar
  4. 4.
    Song Y, Stampfer MJ, Liu S (2004) Meta-analysis: Apolipoprotein E genotypes and risk for coronary heart disease. Ann Intern Med 141: 137–147PubMedGoogle Scholar
  5. 5.
    Lai CQ, Parnell LD, Ordovas JM (2005) The APOA1/C3/A4/A5 gene cluster, lipid metabolism and cardiovascular disease risk. Curr Opin Lipidol 16: 153–166PubMedCrossRefGoogle Scholar
  6. 6.
    Wittrup HH, Tybjaerg-Hansen A, Nordestgaard BG (1999) Lipoprotein lipase mutations, plasma lipids and lipoproteins, and risk of ischemic heart disease. A meta-analysis. Circulation 99: 2901–2907PubMedGoogle Scholar
  7. 7.
    Klerk M, Verhoef P, Clarke R, Blom HJ, Kok FJ, Schouten EG (2002) MTHFR Studies Collaboration Group. MTHFR 677C→T polymorphism and risk of coronary heart disease: A meta-analysis. JAMA 288: 2023–2031PubMedCrossRefGoogle Scholar
  8. 8.
    Casas JP, Bautista LE, Humphries SE, Hingorani AD (2004) Endothelial nitric oxide synthase genotype and ischemic heart disease: Meta-analysis of 26 studies involving 23028 subjects. Circulation 109: 1359–1365PubMedCrossRefGoogle Scholar
  9. 9.
    Iacoviello L, Di Castelnuovo A, Gattone M, Pezzini A, Assanelli D, Lorenzet R, et al (2005) Polymorphisms of the interleukin-1beta gene affect the risk of myocardial infarction and ischemic stroke at young age and the response of mononuclear cells to stimulation in vitro. Arterioscler Thromb Vasc Biol 25: 222–227PubMedGoogle Scholar
  10. 10.
    Humphries SE, Luong LA, Ogg MS, Hawe E, Miller GJ (2001) The interleukin-6 −174G/C promoter polymorphism is associated with risk of coronary heart disease and systolic blood pressure in healthy men. Eur Heart J 22: 2243–2252PubMedCrossRefGoogle Scholar
  11. 11.
    Dedoussis GV, Panagiotakos DB, Vidra NV, Louizou E, Chrysohoou C, Germanos A, et al (2005) Association between TNF-alpha −308G > A polymorphism and the development of acute coronary syndromes in Greek subjects: the CARDIO2000-GENE Study. Genet Med 7: 411–416PubMedCrossRefGoogle Scholar
  12. 12.
    Trichopoulou A, Costacou T, Bamia C, Trichopoulos D (2003) Adherence to a Mediterranean diet and survival in a Greek population. N Engl J Med 348: 2599–2608PubMedCrossRefGoogle Scholar
  13. 13.
    Knoops KT, de Groot LC, Kromhout D, Perrin AE, Moreiras-Varela O, Menotti A, et al (2004) Mediterranean diet, lifestyle factors, and 10-year mortality in elderly European men and women: The HALE project. JAMA 292: 1433–1439PubMedCrossRefGoogle Scholar
  14. 14.
    Cordell HJ, Clayton DG (2005) Genetic association studies. Lancet 366: 1121–1131PubMedCrossRefGoogle Scholar
  15. 15.
    Davey Smith G, Ebrahim S (2003) ‘Mendelian randomization’: Can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol 32: 1–22PubMedCrossRefGoogle Scholar
  16. 16.
    Wacholder S, Chanock S, Garcia-Closas M, El Ghormli L, Rothman N (2004) Assessing the probability that a positive report is false: An approach for molecular epidemiology studies. J Natl Cancer Inst 96: 434–442PubMedCrossRefGoogle Scholar
  17. 17.
    Hsieh HJ, Walter SD (1988) The effect of non-differential exposure misclassification on estimates of the attributable and prevented fraction. Stat Med 7: 1073–1085PubMedCrossRefGoogle Scholar
  18. 18.
    Wacholder S, Benichou J, Heineman FE, Hartge P, Hoover NH (1994) Attributable Risk: Advantages of a broad definition of exposure. Am J Epidemiol 140: 303–309PubMedGoogle Scholar
  19. 19.
    MacMahon B, Trichopoulos D (1996) Epidemiology: Principles and Methods, Little Brown and Company, Boston, pp. 291–299Google Scholar
  20. 20.
    Eichner JE, Dunn ST, Perveen G, Thompson DM, Stewart KE, Stroehla BC (2002) Apolipoprotein E polymorphism and cardiovascular disease: A HuGE review. Am J Epidemiol 155: 487–495PubMedCrossRefGoogle Scholar
  21. 21.
    Russo GT, Meigs JB, Cupples LA, Demissie S, Otvos JD, Wilson PW, et al (2001) Association of the Sst-I polymorphism at the APOC3 gene locus with variations in lipid levels, lipoprotein subclass profiles and coronary heart disease risk: The Framingham offspring study. Atherosclerosis 158: 173–181PubMedCrossRefGoogle Scholar
  22. 22.
    Szalai C, Keszei M, Duba J, Prohaszka Z, Kozma GT, Csaszar A, et al (2004) Polymorphism in the promoter region of the apolipoprotein A5 gene is associated with an increased susceptibility for coronary artery disease. Atherosclerosis 173: 109–114PubMedCrossRefGoogle Scholar
  23. 23.
    Van Bockxmeer FM, Liu Q, Mamotte C, Burke V, Taylor R (2001) Lipoprotein lipase D9N, N291S and S447X polymorphisms: Their influence on premature coronary heart disease and plasma lipids. Atherosclerosis 157: 123–129PubMedCrossRefGoogle Scholar
  24. 24.
    Wald DS, Law M, Morris JK (2002) Homocysteine, cardiovascular disease: Evidence on causality from a meta-analysis. Br Med J 325: 1202–1208CrossRefGoogle Scholar
  25. 25.
    Casas JP, Bautista LE, Smeeth L, Sharma P, Hingorani AD (2005) Homocysteine and stroke: Evidence on a causal link from mendelian randomization. Lancet 365: 224–232PubMedGoogle Scholar
  26. 26.
    Lewis SJ, Ebrahim S, Davey Smith G (2005) Meta-analysis of MTHFR 677 C→T polymorphism and coronary heart disease: Does totality of evidence support causal role for homocysteine and preventive potential of folate? Br Med J 331: 1053–1058CrossRefGoogle Scholar
  27. 27.
    Jachymova M, Horky K, Bultas J, Kozich V, Jindra A, Peleska J, et al (2001) Association of the Glu298Asp polymorphism in the endothelial nitric oxide synthase gene with essential hypertension resistant to conventional therapy. Biochem Biophys Res Commun 284: 426–430PubMedCrossRefGoogle Scholar
  28. 28.
    Shimasaki Y, Yasue H, Yoshimura M, Nakayama M, Kugiyama K, Ogawa H, et al (1998) Association of the missense Glu298Asp variant of the endothelial nitric oxide synthase gene with myocardial infarction. J Am Coll Cardiol 31: 1506–1510PubMedCrossRefGoogle Scholar
  29. 29.
    Hingorani AD, Liang CF, Fatibene J, Lyon A, Monteith S, Parsons A, et al (1999) A common variant of the endothelial nitric oxide synthase (Glu298→Asp) is a major risk factor for coronary artery disease in the UK. Circulation 100: 1515–1520PubMedGoogle Scholar
  30. 30.
    Cesari M, Penninx BW, Newman AB, Kritchevsky SB, Nicklas BJ, Sutton-Tyrrell K, et al (2003) Inflammatory markers and onset of cardiovascular events: Results from the Health ABC study. Circulation 108: 2317–2322PubMedCrossRefGoogle Scholar
  31. 31.
    Jenny NS, Tracy RP, Ogg MS, Luong le A, Kuller LH, Arnold AM, et al (2002) In the elderly, interleukin-6 plasma levels and the −174G > C polymorphism are associated with the development of cardiovascular disease. Arterioscler Thromb Vasc Biol 22: 2066–2071PubMedCrossRefGoogle Scholar
  32. 32.
    Georges JL, Loukaci V, Poirier O, Evans A, Luc G, Arveiler D, et al (2001) Interleukin-6 gene polymorphisms and susceptibility to myocardial infarction: the ECTIM study. Etude Cas-Temoin de l’Infarctus du Myocarde. J Mol Med 79: 300–305PubMedCrossRefGoogle Scholar
  33. 33.
    Sookoian SC, Gonzalez C, Pirola CJ (2005) Meta-analysis on the G–308A tumor necrosis factor {alpha} gene variant and phenotypes associated with the metabolic syndrome. Obes Res 13: 2122–2131PubMedCrossRefGoogle Scholar
  34. 34.
    Davey Smith G, Ebrahim S, Lewis S, Hansell AL, Palmer LJ, Burton PR (2005) Genetic epidemiology and public health: hope, hype, and future prospects. Lancet 366: 484–498Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Nikos Yiannakouris
    • 1
  • Antonia Trichopoulou
    • 2
  • Vassiliki Benetou
    • 2
  • Theodora Psaltopoulou
    • 2
  • Jose M. Ordovas
    • 3
  • Dimitrios Trichopoulos
    • 4
  1. 1.Harokopio University of AthensAthensGreece
  2. 2.Department of Hygiene and EpidemiologyUniversity of Athens Medical SchoolAthensGreece
  3. 3.Nutrition and Genomics Laboratory, Jean Mayer – US Department of AgricultureHuman Nutrition Research Center on Aging (HNRCA) at Tufts UniversityBostonUSA
  4. 4.Department of EpidemiologyHarvard School of Public HealthBostonUSA

Personalised recommendations