European Journal of Epidemiology

, Volume 21, Issue 7, pp 501–510

A meta-analysis of genotypes and haplotypes of methylenetetrahydrofolate reductase gene polymorphisms in acute lymphoblastic leukemia

  • Elias Zintzaras
  • Theocharis Koufakis
  • Panayiotis D. Ziakas
  • Paraskevi Rodopoulou
  • Stavroula Giannouli
  • Michael Voulgarelis
Article

Abstract

A meta-analysis of case–control studies that investigated the association between the C677T and/or A1298C polymorphisms in the methylenetetrahydrofolate reductase (MTHFR) gene and acute lymphoblastic leukemia (ALL) was carried out. Pooled odds ratios (OR) of various genetic contrasts of each polymorphism were estimated using random (RE) and fixed effects (FE) models. Pooled ORs for combined genotypes and haplotypes were estimated after adjustment for study effect using a log-linear model and the expectation–maximization algorithm in combination with log-linear modeling, respectively. The recessive model for allele 1298C produced a rather marginal association: RE OR: 0.67; 95% confidence interval (CI): 0.46–0.99 and FE OR: 0.64; 95% CI: 0.49–0.84. In Caucasians, the results of the recessive model for allele 1298C was consisted with a protective effect of ALL development: FE OR: 0.63; 95% CI: 0.46–0.87. In childhood ALL, according to the results of the allele contrast and the recessive model for 677T allele it was conceivable that a protective effect exist: RE OR = 0.74; 95% CI: 0.57–0.96 and RE OR: 0.69; 95% CI: 0.51–0.94, respectively. The combined genotypes produced significant pooled OR for the 677CC/1298CC relative to 677CC/1298AA (OR: 0.54; 95% CI: 0.36–0.80). The haplotype 677C/1298C might be more protective to ALL relative to haplotype 677C/1298A (OR: 0.77; 95% CI: 0.61–0.97). When studies not in Hardy–Weinberg equilibrium (HWE) were corrected to account for departures from HWE, then, the pattern of results remained the same. Overall, there is high heterogeneity between the studies in both polymorphisms. A differential magnitude of effect in large versus small studies and alteration of early extremes effects existed.

Keywords

Genotypes Haplotypes Hardy–Weinberg equilibrium Leukemia Log-linear model Meta-analysis MTHFR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen CL, Liu Q, Pui CH, et al. 1997; Higher frequency of glutathione S-transferase deletions in black children with acute lymphoblastic leukemia Blood 89:1701–1707PubMedGoogle Scholar
  2. 2.
    Sinnett D, Krajinovic M, Labuda D, 2000 Genetic susceptibility to childhood acute lymphoblastic leukemia Leuk Lymphoma 38:447–462PubMedGoogle Scholar
  3. 3.
    Wiemels JL, Smith RN, Taylor GM, Eden OB, Alexander FE, Greaves MF 2001 United Kingdom Childhood Cancer Study investigators. Methylenetetrahydrofolate reductase (MTHFR polymorphisms and risk of molecularly defined subtypes of childhood acute leukemia Proc Natl Acad Sci USA 98:4004–4009PubMedCrossRefGoogle Scholar
  4. 4.
    Robien K, Ulrich CM 2003 5,10-Methylenetetrahydrofolate reductase polymorphisms and leukemia risk: aHuGE minireview Am J Epidemiol 157:571–582PubMedCrossRefGoogle Scholar
  5. 5.
    Duthie SJ, McMillan P 1997 Uracil misincorporation in human DNA detected using single cell gel electrophoresis Carcinogenesis 18:1709–1714PubMedCrossRefGoogle Scholar
  6. 6.
    Blount BC, Mack MM, Wehr CM, et al. 1997 Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: Implications for cancer and neuronal damage Proc Natl Acad Sci USA 94:3290–3295PubMedCrossRefGoogle Scholar
  7. 7.
    Ueland PM, Hustad S, Schneede J, Refsum H, Vollset SE 2000 Biological and clinical implications of the MTHFR C677T polymorphism Trends Pharmacol Sci 22:195–201CrossRefGoogle Scholar
  8. 8.
    Frosst P, Blom HJ, Milos R, et al. 1995 A candidate genetic risk factor for vascular disease: A common mutation in methylenetetrahydrofolate reductase Nat Genet 10:111–113PubMedCrossRefGoogle Scholar
  9. 9.
    Botto LD, Yang Q 2000 5,10-Methylenetetrahydrofolate reductase gene variants and congenital anomalies: A HuGE review Am J Epidemiol 151:862–877PubMedGoogle Scholar
  10. 10.
    Selhub J 1999 Homocysteine metabolism Annu Rev Nutr 19:217–246PubMedCrossRefGoogle Scholar
  11. 11.
    Kang SS, Wong PW, Susmano A, Sora J, Norusis M, Ruggie N 1991 Thermolabile methylenetetrahydrofolate reductase: An inherited risk factor for coronary artery disease Am J Hum Genet 48:536–545PubMedGoogle Scholar
  12. 12.
    van der Put NM, Steegers-Theunissen RP, Frosst P, et al. 1995; Mutated methylenetetrahydrofolate reductase as a risk factor for spina bifida Lancet 346:1070–1071 PubMedCrossRefGoogle Scholar
  13. 13.
    van Meurs JB, Dhonukshe-Rutten RA, Pluijm SM, et al. 2004; Homocysteine levels and the risk of osteoporotic fracture N Engl J Med. 350(20):2033–2041PubMedCrossRefGoogle Scholar
  14. 14.
    McLean RR, Jacques PF, Selhub J, et al. 2004 Homocysteine as a predictive factor for hip fracture in older persons N Engl J Med. 350(20):2042–2049PubMedCrossRefGoogle Scholar
  15. 15.
    Freeman JM, Finkelstein JD, Mudd SH 1975; Folate-responsive homocystinuria and “schizophrenia”. A defect in methylation due to deficient 5,10-methylenetetrahydrofolate reductase activity N Engl J Med 292:491–496PubMedCrossRefGoogle Scholar
  16. 16.
    Weisberg I, Tran P, Christensen B, Sibani S, Rozen R 1998; A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity Mol Genet Metab 64:169–172PubMedCrossRefGoogle Scholar
  17. 17.
    Lievers KJ, Kluijtmans LA, Heil SG, et al. 2001 A 31 bp VNTR in the cystathionine beta-synthase (CBS) gene is associated with reduced CBS activity and elevated post-load homocysteine levels Eur J Hum Genet 9:583–589PubMedCrossRefGoogle Scholar
  18. 18.
    van der Put NM, Gabreels F, Stevens EM, et al. 1998; A second common mutation in the methylenetetrahydrofolate reductase gene: An additional risk factor for neural-tube defects? Am J Hum Genet 62:1044–1051PubMedCrossRefGoogle Scholar
  19. 19.
    Chiusolo P, Reddiconto G, Cimino G, et al. 2004; Methylenetetrahydrofolate reductase genotypes do not play a role in acute lymphoblastic leukaemia pathogenesis in the Italian population Haematologica 89:139–144PubMedGoogle Scholar
  20. 20.
    Zintzaras E, Ioannidis JP 2004; Heterogeneity testing in meta-analysis of genome searches Genet Epidemiol 24:1–15Google Scholar
  21. 21.
    Zintzaras E, Ioannidis JP 2005; HEGESMA: Genome search meta-analysis and heterogeneity testing Bioinformatics 21:3672–3673PubMedCrossRefGoogle Scholar
  22. 22.
    Higgins JP, Thompson SG, Deeks JJ, Altman DG 2003; Measuring inconsistency in meta analyses Br Med J 327:557–560CrossRefGoogle Scholar
  23. 23.
    Whitehead A 2002 Meta-analysis of Controlled Clinical Trials Wiley ChichesterGoogle Scholar
  24. 24.
    Lau J, Antman EM, Jimenez-Silva J, Kupelnick B, Mosteller F, Chalmers TC 1992; Cumulative meta-analysis of therapeutic trials for myocardial infarction N Engl J Med 327:248–254PubMedCrossRefGoogle Scholar
  25. 25.
    Whitehead A 1997 A prospectively planned cumulative meta-analysis applied to a series of concurrent clinical trials Stat Med 16:2901–2913PubMedCrossRefGoogle Scholar
  26. 26.
    Ioannidis JP, Trikalinos TA, Ntzani EE, Contopoulos-Ioannidis DG, 2003; Genetic associations in large versus small studies: An empirical assessment Lancet 361:567–571PubMedCrossRefGoogle Scholar
  27. 27.
    Terwilliger J, Ott J, 1994 Handbook for Human Genetic Linkage Johns Hopkins University Press BaltimoreGoogle Scholar
  28. 28.
    Thakkinstian A, D’Este C, Attia J 2004 Haplotype analysis of VDR gene polymorphisms: A meta analysis Osteoporos Int 5:729–734Google Scholar
  29. 29.
    Weir BS 1996 Genetic Data Analysis II: Methods for Discrete Population Genetic Data Sinauer Associates Sunderland, MAGoogle Scholar
  30. 30.
    Lewis PO, Zaykin D. Genetic Data Analysis: Computer Program for the Analysis of Allelic Data. Version 1.0 (d16c). Free program distributed by the authors over the internet from http://lewis.eeb.uconn.edu/lewishome/software.htmlGoogle Scholar
  31. 31.
    Trikalinos TA, Salanti G, Khoury MJ, Ioannidis JP 2006 Impact of violations and deviations in Hardy-Weinberg equilibrium on postulated gene-disease associations Am J Epidemiol 163:300–309PubMedCrossRefGoogle Scholar
  32. 32.
    Schaid DJ, Jacobsen SJ, 1999 Biased tests of association: Comparisons of allele frequencies when departing from Hardy-Weinberg proportions Am J Epidemiol 149:706–711PubMedGoogle Scholar
  33. 33.
    Zintzaras E, Hadjigeorgiou GM 2004 Association of paraoxonase 1 gene polymorphisms with risk of Parkinson’s disease: A meta-analysis J Hum Genet 49:474–481PubMedCrossRefGoogle Scholar
  34. 34.
    Zintzaras E, Stefanidis I, Santos M, Vidal F 2006; Do alcohol-metabolizing enzyme gene polymorphisms increase the risk of alcoholism and alcoholic liver disease? Hepatology 43:352–361PubMedCrossRefGoogle Scholar
  35. 35.
    Zintzaras E, Stefanidis I 2005 Association between the GLUT1 gene polymorphism and the risk of diabetic nephropathy: A meta-analysis J Hum Genet 50:84–91PubMedCrossRefGoogle Scholar
  36. 36.
    Krajinovic M, Lamothe S, Labuda D, et al. 2004 Role of MTHFR genetic polymorphisms in the susceptibility to childhood acute lymphoblastic leukemia Blood 103:252–257PubMedCrossRefGoogle Scholar
  37. 37.
    Schnakenberg E, Mehles A, Cario G, et al. 2005; Polymorphisms of methylenetetrahydrofolate reductase (MTHFR) and susceptibility to pediatric acute lymphoblastic leukaemia in a German study population BMC Med Genet 6:23PubMedCrossRefGoogle Scholar
  38. 38.
    Franco RF, Simoes BP, Tone LG, Gabellini SM, Zago MA, Falcao RP 2001 The methylenetetrahydrofolate reductase C677T gene polymorphism decreases the risk of childhood acute lymphocytic leukaemia Br J Haematol 115:616–618PubMedCrossRefGoogle Scholar
  39. 39.
    Skibola CF, Smith MT, Kane E, et al. 1999; Polymorphisms in the methylenetetrahydrofolate reductase gene are associated with susceptibility to acute leukemia in adults Proc Natl Acad Sci USA 96:12810–12815PubMedCrossRefGoogle Scholar
  40. 40.
    Chatzidakis K, Goulas A, Athanasiadou-Piperopoulou F, Fidani L, Koliouskas D, Mirtsou V. Methylenetetrahydrofolate reductase C677T polymorphism: Association with risk for childhood acute lymphoblastic leukemia and response during the initial phase of chemotherapy in Greek patients. Pediatr Blood Cancer 2005 [Epub ahead of print]Google Scholar
  41. 41.
    Oliveira E, Alves S, Quental S, et al. 2005 The MTHFR C677T and A1298C polymorphisms and susceptibility to childhood acute lymphoblastic leukemia in Portugal J Pediatr Hematol Oncol 27:425–429PubMedCrossRefGoogle Scholar
  42. 42.
    Balta G, Yuksek N, Ozyurek E, et al. 2003; Characterization of MTHFR, GSTM1, GSTT1, GSTP1, and CYPIA1 genotypes in childhood acute leukemia Am J Hematol 73:154–160PubMedCrossRefGoogle Scholar
  43. 43.
    Silverman EK, Palmer LJ, 2000; Case-control association studies for the genetics of complex respiratory diseases Am J Respir Cell Mol Biol 22:645–648PubMedGoogle Scholar
  44. 44.
    Xu J, Turner A, Little J, Bleecker ER, Meyers DA, 2002; Positive results in association studies are associated with departure from Hardy-Weinberg equilibrium: Hint for genotyping error? Hum Genet 111:573–574PubMedCrossRefGoogle Scholar
  45. 45.
    Zintzaras E 2006 Methylenetetrahydrofolate reductase (MTHFR) gene and susceptibility to breast cancer: A meta-analysis Clin Genet 69: 327–336PubMedCrossRefGoogle Scholar
  46. 46.
    Zintzaras E, Chatzoulis DZ, Karabatsas CH, Stefanidis I 2005 The relationship between C677T methylenetetrahydrofolate reductase gene polymorphism and retinopathy in type 2 diabetes: A meta-analysis J Hum Genet 50:267–275PubMedCrossRefGoogle Scholar
  47. 47.
    Zintzaras E. C677T and A1298C methylenetetrahydrofolate reductase (MTHFR) gene polymorphisms in schizophrenia, bipolar disorder and depression: A meta-analysis of genetic association studies. Psychiatric Genet 2006; 16: 105–115Google Scholar
  48. 48.
    Zintzaras E. Association of methylenetetrahydrofolate reductase (MTHFR) polymorphisms with genetic susceptibility to gastric cancer: a meta-analysis. J Hum Genet 2006 [Epub ahead of print]Google Scholar
  49. 49.
    Egger M, Davey SG, Schneider M, Minder C 1997; Bias in meta-analysis detected by a simple, graphical test Br Med J 315:629–634Google Scholar
  50. 50.
    Begg CB, Mazumdar N. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994; 50: 1088–1101Google Scholar
  51. 51.
    Muncer S, 2002; Response to: ‘Power dressing and meta-analysis: Incorporating power analysis into meta-analysis J Adv Nursing 38:274–280CrossRefGoogle Scholar
  52. 52.
    Kono S, Chen K 2005; Genetic polymorphisms of methylenetetrahydrofolate reductase and colorectal cancer and adenoma Cancer Sci 96:535–542PubMedCrossRefGoogle Scholar
  53. 53.
    Lau J, Ioannidis JP, Schmid CH 1998 Summing up evidence: One answer is not always enough Lancet 351:123–127PubMedCrossRefGoogle Scholar
  54. 54.
    Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG, 2001; Replication validity of genetic association studies Nat Genet 29:306–309PubMedCrossRefGoogle Scholar
  55. 55.
    Ioannidis JP 2003 Genetic associations: False or true? Trends Mol Med 9(4):135–138PubMedCrossRefGoogle Scholar
  56. 56.
    Ioannidis JP, Trikalinos TA 2005 Early extreme contradictory estimates may appear in published research: The Proteus phenomenon in molecular genetics research and randomized trials J Clin Epidemiol 58:543–549PubMedCrossRefGoogle Scholar
  57. 57.
    Skibola CF, Smith MT, Hubbard A, et al. 2002; Polymorphisms in the thymidylate synthase and serine hydroxymethyltransferase genes and risk of adult acute lymphocytic leukemia Blood 99:3786–3791PubMedCrossRefGoogle Scholar
  58. 58.
    Choumenkovitch SF, Selhub J, Wilson PW, Rader JI, Rosenberg IH, Jacques PF, 2002; Folic acid intake from fortification in United States exceeds predictions J Nutr 132:2792–2798PubMedGoogle Scholar
  59. 59.
    Clayton D, McKeigue PM 2001; Epidemiological methods for studying genes and environmental factors in complex diseases Lancet 358:1356–1360PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Elias Zintzaras
    • 1
    • 3
  • Theocharis Koufakis
    • 1
  • Panayiotis D. Ziakas
    • 1
    • 2
  • Paraskevi Rodopoulou
    • 1
  • Stavroula Giannouli
    • 2
  • Michael Voulgarelis
    • 2
  1. 1.Evidence-Based Medicine Unit, Department of BiomathematicsUniversity of Thessaly School of MedicineLarissaGreece
  2. 2.Department of Medicine PathophysiologyUniversity of Athens School of MedicineAthensGreece
  3. 3.Department of BiomathematicsUniversity of Thessaly School of MedicineLarissa Greece

Personalised recommendations