European Journal of Epidemiology

, Volume 21, Issue 5, pp 351–358

Predictors of follow-up and assessment of selection bias from dropouts using inverse probability weighting in a cohort of university graduates

  • Alvaro Alonso
  • María Seguí-Gómez
  • Jokin de Irala
  • Almudena Sánchez-Villegas
  • Juan José Beunza
  • Miguel Ángel Martínez-Gonzalez


Dropouts in cohort studies can introduce selection bias. In this paper, we aimed (i) to assess predictors of retention in a cohort study (the SUN Project) where participants are followed-up through biennial mailed questionnaires, and (ii) to evaluate whether differential follow-up introduced selection bias in rate ratio (RR) estimates. The SUN Study recruited 9907 participants from December 1999 to January 2002. Among them, 8647 (87%) participants answered the 2-year follow-up questionnaire. The presence of missing information in key variables at baseline, being younger, smoker, a marital status different of married, being obese/overweight and a history of motor vehicle injury were associated with being lost to follow-up, while a self-reported history of cardiovascular disease predicted a higher retention proportion. To assess whether differential follow-up affected RR estimates, we studied the association between body mass index and the risk of hypertension, using inverse probability weighting (IPW) to adjust for␣confounding and selection bias. Obese individuals had a higher crude rate of hypertension compared with␣normoweight participants (RR = 6.4, 95% confidence interval (CI): 3.9–10.5). Adjustment for confounding using IPW attenuated the risk of hypertension associated to obesity (RR = 2.4, 95% CI: 1.1–5.3). Additional adjustment for selection bias did not modify the estimations. In conclusion, we show that the follow-up through mailed questionnaires of a geographically disperse cohort in Spain is possible. Furthermore, we show that despite existing differences between retained or lost to follow-up participants this may not necessarily have an important impact on the RR estimates of hypertension associated to obesity.


Attrition Body mass index Cohort studies Hypertension Inverse probability weighting Selection bias 



body mass index


confidence interval




inverse probability weighting


metabolic equivalent


rate ratio


Seguimiento Universidad de Navarra


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Delgado-Rodríguez M, Llorca J 2004; Bias J Epidemiol Community Health 58: 635–641PubMedCrossRefGoogle Scholar
  2. 2.
    Greenland S 1977; Response and follow-up bias in cohort studies Am J Epidemiol 106: 184–187PubMedGoogle Scholar
  3. 3.
    Chatfield MD, Brayne CE, Matthews FE 2005; A systematic literature review of attrition between waves in longitudinal studies in the elderly shows a consistent pattern of dropout between differing studies J Clin Epidemiol 58: 13–19PubMedCrossRefGoogle Scholar
  4. 4.
    Hernán MA, Hernández-Díaz S, Robins JM 2004; A structural approach to selection bias Epidemiology 15: 615–625PubMedCrossRefGoogle Scholar
  5. 5.
    Greenland S 1998; Basic methods for sensitivity analysis and external adjustment In: Rothman KJ, Greenland S, (eds.) Modern Epidemiology Lippincott Williams and Wilkins Philadelphia 343–357Google Scholar
  6. 6.
    Hernán MA, Robins JM. Estimating causal effects from epidemiologic data. J Epidemiol Community Health 2006; (in press).Google Scholar
  7. 7.
    Colditz GA, Manson JE, Hankinson SE 1997; The Nurses’ Health Study: 20-year contributing to the understanding of health among women J Womens Health 6: 49–62PubMedCrossRefGoogle Scholar
  8. 8.
    Koh-Banerjee P, Wang Y, Hu FB, Spiegelman D, Willett WC, Rimm EB 2004; Changes in body weight and body fat distribution as risk factors for clinical diabetes in US men Am J Epidemiol 159: 1150–1159PubMedCrossRefGoogle Scholar
  9. 9.
    Russell C, Palmer JR, Adams-Campbell LL, Rosenberg L 2001; Follow-up of a large cohort of black women Am J Epidemiol 154: 845–853PubMedCrossRefGoogle Scholar
  10. 10.
    Hunt JR, White E 1998; Retaining and tracking cohort study members Epidemiol Rev 20: 57–70PubMedGoogle Scholar
  11. 11.
    Martínez-González MA, Sánchez-Villegas A, de Irala-Estévez J, Martí A, Martínez JA 2002; Mediterranean diet and stroke: Objectives and design of the SUN Project Nutr Neurosci 5: 65–73CrossRefGoogle Scholar
  12. 12.
    Martín-Moreno JM, Boyle P, Gorgojo L et al. 1993; Development and validation of a food frequency questionnaire in Spain Int J Epidemiol 22: 512–519PubMedCrossRefGoogle Scholar
  13. 13.
    Ainsworth BE, Haskell WL, Whitt MC et al. 2000; Compendium of physical activities: An update of activity codes and MET intensities Med Sci Sports Exerc 32: S498–S504PubMedCrossRefGoogle Scholar
  14. 14.
    Bes-Rastrollo M, Pérez Valdivieso JR, Sánchez-Villegas A, Alonso A, Martínez-González MA. Validación del peso e índice de masa corporal auto-declarados de los participantes de una cohorte de graduados universitarios. Rev Esp Obes 2005; 3: 352–358.Google Scholar
  15. 15.
    Alonso A, Beunza JJ, Delgado-Rodríguez M, Martínez-González MA 2005; Validation of self reported diagnosis of hypertension in a cohort of university graduates in Spain BMC Public Health 5: 94PubMedCrossRefGoogle Scholar
  16. 16.
    Robins JM, Hernán MA, Brumback B 2000; Marginal structural models and causal inference in epidemiology Epidemiology 11: 550–560PubMedCrossRefGoogle Scholar
  17. 17.
    World Health Organization. 2000. Obesity: Preventing and Managing the Global Epidemic World Health Organization GenevaGoogle Scholar
  18. 18.
    Hernán MA 2004; A definition of causal effect for epidemiologic research J Epidemiol Community Health 58: 265–271PubMedCrossRefGoogle Scholar
  19. 19.
    Cole SR, Hernán MA, Robins JM et al. 2003; Effect of highly active antiretroviral therapy on time to acquired immunodeficiency syndrome or death using marginal structural models Am J Epidemiol 158: 687–694PubMedCrossRefGoogle Scholar
  20. 20.
    García M, Fernández E, Schiaffino A, Borrell C, Martí M, Borrás JM 2004; Attrition in a population-based cohort eight years after baseline interview: The Cornella Health Interview Survey Follow-up (CHIS.FU) Study Ann Epidemiol 15: 98–104CrossRefGoogle Scholar
  21. 21.
    Zunzunegui MV, Beland F, Gutierrez Cuadra P 2001; Loss to follow-up in a longitudinal study on aging in Spain J Clin Epidemiol 54: 501–510PubMedCrossRefGoogle Scholar
  22. 22.
    Matthews FE, Chatfield MD, Freeman C, McCracken C, Brayne CE, MRC CFAS. Attrition and bias in the MRC cognitive function and ageing study: An epidemiological investigation. BMC Public Health 2004; 4: 12–21Google Scholar
  23. 23.
    Pirzada A, Yan LL, Garside DB, Schiffer L, Dyer AR, Daviglus ML 2004; Response rates to a questionnaire 26 years after baseline examination with minimal interim participant contact and baseline differences between respondents and nonrespondents Am J Epidemiol 159: 94–101PubMedCrossRefGoogle Scholar
  24. 24.
    Twisk J, de Vente W 2002; Attrition in longitudinal studies. How to deal with missing data J Clin Epidemiol 55: 329–337PubMedCrossRefGoogle Scholar
  25. 25.
    Whelton PK, He J, Appel LJ et al. 2002; Primary prevention of hypertension: Clinical and public health advisory from the National High Blood Pressure Education Program JAMA 288: 1882–1888PubMedCrossRefGoogle Scholar
  26. 26.
    Hernán MA, Hernández-Díaz S, Werler MM, Mitchell AA 2002; Causal knowledge as a prerequisite for confounding evaluation: An application to birth defects epidemiology Am J Epidemiol 155: 176–184PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Alvaro Alonso
    • 1
    • 2
  • María Seguí-Gómez
    • 1
    • 3
  • Jokin de Irala
    • 1
  • Almudena Sánchez-Villegas
    • 1
    • 4
  • Juan José Beunza
    • 1
  • Miguel Ángel Martínez-Gonzalez
    • 1
  1. 1.Department of Preventive Medicine and Public HealthSchool of Medicine, University of NavarraPamplonaSpain
  2. 2.Department of EpidemiologyHarvard School of Public HealthBostonUSA
  3. 3.Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreUSA
  4. 4.Department of Clinical SciencesUniversity of Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain

Personalised recommendations