Advertisement

Efficient Differentiation of Mycobacterium tuberculosis Strains of the W-Beijing Family from Russia using Highly Polymorphic VNTR Loci

  • O. V. Surikova
  • D. S. Voitech
  • G. Kuzmicheva
  • S. I. Tatkov
  • I. V. Mokrousov
  • O. V. Narvskaya
  • M. A. Rot
  • D. van Soolingen
  • M. L. FilipenkoEmail author
Article

Abstract

The W-Beijing family is a widespread Mycobacterium tuberculosis clonal lineage that frequently causes epidemic outbreaks. This family is genetically homogeneous and conserved, so ETR-VNTR (exact tandem repeat-variable number of tandem repeats) typing is insufficient for strain differentiation, due to a common ETR-A to E profile (42435). This leads to the false clustering in molecular epidemiological studies, especially in the regions of predominance of the W-Beijing family. In this study, we searched for VNTR loci with a high evolutionary rate of polymorphism in the W-Beijing genome. Here we further evaluated VNTR typing on a set of 99 Mycobacterium tuberculosis clinical isolates and reference strains. These isolates were characterized and classified into several genotype families based on three ETR loci (A, C, E) and eight additional loci [previously described as QUB (Queen’s University Belfast) or MIRU (Mycobacterial Interspersed Repetitive Units) or Mtubs]. Ninety-nine strains were divided into 74 VNTR-types, 51 isolates of the W-Beijing family identified by IS6110 RFLP-typing (the restriction fragment length polymorphism-typing) and/or spoligotyping were subdivided into 30 VNTR-types. HGDI (the Hunter–Gaston discriminatory index) for all studied loci was close to that of IS6110 RFLP typing, a “gold standard” method for subtyping M. tuberculosis complex strains. The QUB 26 and QUB 18 loci located in the PPE genes were highly polymorphic and more discriminative than other loci (HGDI is 0.8). Statistically significant increase of tandem repeats number in loci ETR-A, -E, QUB 26, QUB 18, QUB 11B, Mtub21 was revealed in the W-Beijing group compared to genetically divergent non-W-Beijing strains. Thirty-six isolates were subjected to IS6110 RFLP typing. The congruence between results of the IS6110 RFLP typing and 11-loci VNTR typing was estimated on 23 isolates of the W-Beijing family. These isolates were subdivided into 9 IS6110-RFLP types and 13 VNTR types. The poor profiles correlation (0.767) reflects the differences in the rate and type of evolution between genome regions targeted by IS6110-RFLP and VNTR typing. VNTR typing in proposed format is powerful tool for discrimination of M. tuberculosis strains with different level of genetic relationship.

Keywords

Epidemiology Molecular typing Mycobacterium tuberculosis VNTR W-Beijing 

Abbreviations

DR

direct repeat

ETR

exact tandem repeat

HGDI

the Hunter–Gaston discriminatory index

MIRU

mycobacterial interspersed repetitive units

QUB

Queen’s University Belfast

RFLP-typing

the restriction fragment length polymorphism-typing

VNTR

variable number of tandem repeats

References

  1. 1.
    Betts, JC, Quan, S, Lewis, AP, Thomas, PJ, Duncan, K, McAdam, RA,  et al. 2000Comparison of the proteome of Mycobacterium tuberculosis strain H37Rv with clinical isolate CDC 1551Microbiology14632053216PubMedGoogle Scholar
  2. 2.
    Sreevatsan, S, Pan, X, Stockbauer, KE,  et al. 1997Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionary recent global disseminationProc Natl Acad Sci USA9498699874CrossRefPubMedGoogle Scholar
  3. 3.
    Embden, JD, Cave, MD, Crawford, JT,  et al. 1993Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: Recommendations for a standardized methodologyJ Clin Microbiol31406409PubMedGoogle Scholar
  4. 4.
    Soolingen, D 2001Molecular epidemiology of tuberculosis and other mycobacterial infections: Main methodologies and achievementsJ Intern Med249126PubMedGoogle Scholar
  5. 5.
    Kamerbeek, J, Schouls, L, Kolk, A, Agterveld, M,  et al. 1997Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiologyJ Clin Microbiol35907914PubMedGoogle Scholar
  6. 6.
    Gutacker, MM, Smoot, JC, Migliaccio, CA,  et al. 2002Genome-wide analysis of synonymous single nucleotide polymorphisms in Mycobacterium tuberculosis complex organisms: Resolution of genetic relationships among closely related microbial strainsGenetics16215331543PubMedGoogle Scholar
  7. 7.
    Kremer, K, Soolingen, D, Frothingham, R,  et al. 1999Comparison of methods based on different molecular epidemiological markers for typing of Mycobacterium tuberculosis complex strains: Interlaboratory study of discriminatory power and reproducibilityJ Clin Microbiol3726072618PubMedGoogle Scholar
  8. 8.
    Cole, ST, Brosch, R, Parkhill, J,  et al. 1998Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequenceNature393537544PubMedGoogle Scholar
  9. 9.
    Frothingham, R, Meeker-O’Connell, WA 1998Genetic diversity in the Mycobacterium tuberculosis complex based on variable numbers of tandem DNA repeatsMicrobiology14411891196PubMedCrossRefGoogle Scholar
  10. 10.
    Barlow, RE, Gascoyne-Binzi, DM, Gillespie, SH,  et al. 2001Comparison of variable number tandem repeat and IS6110-restriction fragment length polymorphism analyses for discrimination of high- and low-copy-number IS6110 Mycobacterium tuberculosis isolatesJ Clin Microbiol3924532457CrossRefPubMedGoogle Scholar
  11. 11.
    Cowan, LS, Mosher, L, Diem, L, Massey, JP, Crawford, JT,  et al. 2002Variable number tandem repeat typing of Mycobacterium tuberculosis isolates with low-copy numbers of IS6110 by using mycobacterial interspersed repetitive unitsJ Clin Microbiol4015921602CrossRefPubMedGoogle Scholar
  12. 12.
    Filliol, I, Ferdinand, S, Negroni, L, Sola, C, Rastogi, N,  et al. 2000Molecular typing of Mycobacterium tuberculosis based on variable number of tandem DNA repeats (VNTRs) used alone, and in association with spoligotypingJ Clin Microbiol3825202524PubMedGoogle Scholar
  13. 13.
    Fleche, P, Fabre, M, Denoeud, F, Koeck, JL, Vergnaud, G,  et al. 2002High resolution, on-line identification of strains from the Mycobacterium tuberculosis complex based on tandem repeat typingBMC Microbiol237PubMedGoogle Scholar
  14. 14.
    Lee, AS, Tang, LL, Lim, IH, Bellamy, R, Wong, SY,  et al. 2002Discrimination of single-copy IS6110 DNA fingerprints of Mycobacterium tuberculosis isolates by high-resolution minisatellite-based typingJ Clin Microbiol40657659PubMedGoogle Scholar
  15. 15.
    Mazars, E, Lesjean, S, Banuls, AL,  et al. 2001High-resolution minisatellite-based typing as a portable approach to global analysis of Mycobacterium tuberculosis molecular epidemiologyProc Natl Acad Sci USA9819011906CrossRefPubMedGoogle Scholar
  16. 16.
    Norkina, OV, Kinsht, VN, Mokrousov, IV, Kurunov, YuN, Krasnov, VA, Filipenko, ML,  et al. 2003Genetic diversity of Mycobacterium tuberculosis strains in Siberian region of Russia and estimation of the disease distribution risk factors by molecular epidemiology methodsMol Gen Mikrobiol Virusol3918PubMedGoogle Scholar
  17. 17.
    Savine, E, Warren, R, Spuy, GD,  et al. 2002Stability of variable number tandem repeats of mycobacterial interspersed repetitive units from 12 loci in serial isolates of Mycobacterium tuberculosis J Clin Microbiol4045614566CrossRefPubMedGoogle Scholar
  18. 18.
    Skuce, RA, McCorry, TP, McCarroll, JF,  et al. 2002Discrimination of Mycobacterium tuberculosis complex bacteria using novel VNTR-PCR targetsMicrobiology148519528PubMedGoogle Scholar
  19. 19.
    Smittipat, N, Palittapongarnpim, P 2000Identification of possible loci of variable number of tandem repeats in Mycobacterium tuberculosis Tuber Lung Dis806974CrossRefPubMedGoogle Scholar
  20. 20.
    Supply, P, Mazars, E, Lesjean, S, Vincent, V, Gicquel, B, Locht, C,  et al. 2000Variable human minisatellite-like regions in the Mycobacterium tuberculosis genomeMol Microbiol36762771CrossRefPubMedGoogle Scholar
  21. 21.
    Sola, C, Filliol, I, Legrand, E,  et al. 2003Genotyping of the Mycobacterium tuberculosis complex using MIRUs: Association with VNTR and spoligotyping for molecular epidemiology and evolutionary geneticsInfect Genet Evol3125133CrossRefPubMedGoogle Scholar
  22. 22.
    Sola, C, Filliol, I, Legrand, E, Mokrousov, I, Rastogi, N,  et al. 2001 Mycobacterium tuberculosis phylogeny reconstruction based on combined numerical analysis with IS1081, IS6110, VNTR and DR-based spoligotyping suggests the existence of two new phylogeographical cladesJ Mol Evol53680689CrossRefPubMedGoogle Scholar
  23. 23.
    Supply, P, Lesjean, S, Savine, E, Kremer, K, Soolingen, D, Locht, C,  et al. 2001Automated high-throughput genotyping for study of global epidemiology of Mycobacterium tuberculosis based on mycobacterial interspersed repetitive unitsJ Clin Microbiol3935633571CrossRefPubMedGoogle Scholar
  24. 24.
    Bifani, PJ, Mathema, B, Kurepina, NE, Kreiswirth, BN,  et al. 2002Global dissemination of the Mycobacterium tuberculosis W-Beijing family strainsTrends Microbiol104552PubMedGoogle Scholar
  25. 25.
    Glynn, JR, Whiteley, J, Bifani, PJ, Kremer, K, Soolingen, D,  et al. 2002Worldwide occurrence of Beijing/W strains of Mycobacterium tuberculosis: A systematic reviewEmerg Infect Dis8843849PubMedGoogle Scholar
  26. 26.
    Narvskaya, O, Otten, T, Limeschenko, E,  et al. 2002Nosocomial outbreak of multidrug-resistant tuberculosis caused by a strain of Mycobacterium tuberculosis W-Beijing family in St. Petersburg, RussiaEur J Clin Microbiol Infect Dis21596602CrossRefPubMedGoogle Scholar
  27. 27.
    Bifani, PJ, Mathema, B, Liu, Z,  et al. 1999Identification of a W variant outbreak of Mycobacterium tuberculosis via population-based molecular epidemiologyJAMA28223212327CrossRefPubMedGoogle Scholar
  28. 28.
    Saitou, N, Nei, M 1987The neighbor-joining method: A new method for reconstructing phylogenetic treesMol Biol Evol4406425PubMedGoogle Scholar
  29. 29.
    Sneath, PHA, Sokal, R 1973Numerical Taxonomy: The Principles and Practices of ClassificationFreemanSan FranciscoGoogle Scholar
  30. 30.
    Hunter, PR, Gaston, MA 1988Numerical index of the discriminatory ability of typing systems: An application of Simpson’s index of diversityJ Clin Microbiol2624652466PubMedGoogle Scholar
  31. 31.
    Caminero, JA, Pena, MJ, Campos-Herrero, MI,  et al. 2001Epidemiological evidence of the spread of a Mycobacterium tuberculosis strain of the Beijing genotype on Gran Canaria IslandAm J Respir Crit Care Med16411651170PubMedGoogle Scholar
  32. 32.
    Mokrousov, I, Filliol, I, Legrand, E,  et al. 2002Molecular characterization of multiple-drug-resistant Mycobacterium tuberculosis isolates from North-Western Russia and analysis of rifampin resistance using RNA/RNA mismatch analysis as compared to the Line Probe Assay and sequencing of the rpoB geneRes Microbiol153213219PubMedGoogle Scholar
  33. 33.
    Mokrousov, I, Narvskaya, O, Otten, T,  et al. 2002Phylogenetic reconstruction within Mycobacterium tuberculosis Beijing genotype in northwestern RussiaRes Microbiol153629637PubMedGoogle Scholar
  34. 34.
    Park, YK, Bai, GH, Kim, SJ 2000Restriction fragment length polymorphism analysis of Mycobacterium tuberculosis isolated from countries in the western pacific regionJ Clin Microbiol38191197PubMedGoogle Scholar
  35. 35.
    Soolingen, D, Qian, L, Haas, PEW,  et al. 1995Predominance of a single genotype of Mycobacterium tuberculosis in countries of East AsiaJ Clin Microbiol3332343238PubMedGoogle Scholar
  36. 36.
    Kurepina, NE, Sreevatsan, S, Plikaytis, BB,  et al. 1998Characterization of the phylogenetic distribution and chromosomal insertion sites of five IS6110 elements in Mycobacterium tuberculosis: Non-random integration in the dnaA–dnaN regionTuberc Lung Dis793142Google Scholar
  37. 37.
    Kreiswirth B, Moss A. In: Rom WN, Garay SM (eds), Tuberculosis. Boston, MA: Little Brown & Co Inc, Boston, 1996: 199–209Google Scholar
  38. 38.
    Portaels, F, Rigouts, L, Bastian, I 1999Addressing multidrug-resistant tuberculosis in penitentiary hospitals and in the general population of the former Soviet UnionInt J Tuberc Lung Dis3582588PubMedGoogle Scholar
  39. 39.
    Toungoussova, OS, Mariandyshev, A, Bjune, G, Sandven, P, Caugant, DA 2003Molecular epidemiology and drug resistance of Mycobacterium tuberculosis isolates in the Archangel prison in Russia: Predominance of the W-Beijing clone familyClin Infect Dis37665672CrossRefPubMedGoogle Scholar
  40. 40.
    Kurepina, N, Ramaswamy, S, Shashkina, EF, Sloutsky, AM, Blinova, LN, Mishustin, SP 2001The sequence analysis of the pncA gene determining the PZA-resistance in the predominant M. tuberculosis strains isolated in the Tomsk penitentiary system, Western Siberia, RussiaInt J Tuberc Lung Dis541Google Scholar
  41. 41.
    Drobniewski, F, Balabanova, Y, Ruddy, M,  et al. 2002Rifampin- and multidrug-resistant tuberculosis in Russian civilians and prison inmates: Dominance of the Beijing strain familyEmerg Infect Dis813201326PubMedGoogle Scholar
  42. 42.
    Bifani, P, Mathema, B, Campo, M,  et al. 2001Molecular identification of streptomycin monoresistant Mycobacterium tuberculosis related to multidrug-resistant W strainEmerg Infect Dis7842848PubMedCrossRefGoogle Scholar
  43. 43.
    Spurgiesz, RS, Quitugua, TN, Smith, KL,  et al. 2003Molecular typing of Mycobacterium tuberculosis by using nine novel variable-number tandem repeats across the Beijing family and low-copy-number IS6110 isolatesJ Clin Microbiol4142244230CrossRefPubMedGoogle Scholar
  44. 44.
    Rad, ME, Bifani, P, Martin, C,  et al. 2003Mutations in putative mutator genes of Mycobacterium tuberculosis strains of the W-Beijing familyEmerg Infect Dis9838845PubMedGoogle Scholar
  45. 45.
    Rocha, EP, Matic, I, Taddei, F 2002Over-representation of repeats in stress response genes: A strategy to increase versatility under stressful conditions?Nucl Acids Res3018861894PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • O. V. Surikova
    • 1
  • D. S. Voitech
    • 1
  • G. Kuzmicheva
    • 2
  • S. I. Tatkov
    • 2
  • I. V. Mokrousov
    • 3
  • O. V. Narvskaya
    • 3
  • M. A. Rot
    • 1
  • D. van Soolingen
    • 4
  • M. L. Filipenko
    • 1
    Email author
  1. 1.Pharmacogenomics GroupInstitute of Chemical Biology and Fundamental Medicine, SB RASNovosibirskRussia
  2. 2.Laboratory of Molecular Biology of TuberculosisState Research Center of Virology and Biotechnology “Vector”NovosibirskRussia
  3. 3.Laboratory of Molecular MicrobiologySt. Petersburg Pasteur InstituteSt. PetersburgRussia
  4. 4.Reference Laboratory for MycobacteriologyNational Institute of Public Health and the EnvironmentBilthovenThe Netherlands

Personalised recommendations