Advertisement

Concentration, fractionation, and ecological risk assessment of heavy metals and phosphorus in surface sediments from lakes in N. Greece

  • Christophoros ChristophoridisEmail author
  • Emmanouil Evgenakis
  • Anna Bourliva
  • Lambrini Papadopoulou
  • Konstantinos Fytianos
Original Paper
  • 55 Downloads

Abstract

The presence of phosphorus (P) and heavy metals (HMs) in surface sediments originating from lakes Volvi, Kerkini, and Doirani (N. Greece), as well as their fractionation patterns, were investigated. No statistically significant differences in total P content were observed among the studied lakes, but notable differences were observed among sampling periods. HM contents in all lakes presented a consistent trend, i.e., Mn > Cr > Zn > Pb > Ni > Cu > Cd, while the highest concentrations were recorded in Lake Kerkini. Most of the HMs exceeded probable effect level value indicating a probable biological effect, while Ni in many cases even exceeded threshold effects level, suggesting severe toxic effects. P was dominantly bound to metal oxides, while a significant shift toward the labile fractions was observed during the spring period. The sum of potentially bioavailable HM fractions followed a downward trend of Mn > Cr > Pb > Zn > Cu > Ni > Cd for most lakes. The geoaccumulation index Igeo values of Cr, Cu, Mn, Ni, and Zn in all lakes characterized the sediments as “unpolluted,” while many sediments in lakes Volvi and Kerkini were characterized as “moderately to heavily polluted” with regard to Cd. The descending order of potential ecological risk \(E_{\text{r}}^{i}\) was Cd > Pb > Cu > Ni > Cr > Zn > Mn for all the studied lakes. Ni and Cr presented the highest toxic risk index values in all lake sediments. Finally, the role of mineralogical divergences among lake sediments on the contamination degree was signified.

Keywords

Phosphorus Heavy metals Lake sediments Speciation Pollution indicators 

Notes

Supplementary material

10653_2019_509_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1159 kb)

References

  1. Alomary, A. A., & Belhadj, S. (2007). Determination of heavy metals (Cd, Cr, Cu, Fe, Ni, Pb, Zn) by ICP-OES and their speciation in Algerian Mediterranean Sea sediments after a five-stage sequential extraction procedure. Environmental Monitoring and Assessment,135(1–3), 265–280.CrossRefGoogle Scholar
  2. Alvarez, M. B., Malla, M. E., & Batistoni, D. A. (2001). Comparative assessment of two sequential chemical extraction schemes for the fractionation of cadmium, chromium, lead and zinc in surface coastal sediments. Analytical and Bioanalytical Chemistry,369(1), 81–90.Google Scholar
  3. Atkinson, C. A., Jolley, D. F., & Simpson, S. L. (2007). Effect of overlying water pH, dissolved oxygen, salinity and sediment disturbances on metal release and sequestration from metal contaminated marine sediments. Chemosphere,69(9), 1428–1437.CrossRefGoogle Scholar
  4. Batley, G. E., & Gardner, D. (1978). A study of copper, lead and cadmium speciation in some estuarine and coastal marine waters. Estuarine and Coastal Marine Science,7(1), 59–70.CrossRefGoogle Scholar
  5. Bourliva, A., Christophoridis, C., Papadopoulou, L., Giouri, K., Papadopoulos, A., Mitsika, E., et al. (2017). Characterization, heavy metal content and health risk assessment of urban road dusts from the historic center of the city of Thessaloniki, Greece. Environmental Geochemistry and Health,39, 611–634.CrossRefGoogle Scholar
  6. Cavalcante, H., Araújo, F., Noyma, N. P., & Becker, V. (2018). Phosphorus fractionation in sediments of tropical semiarid reservoirs. Science of the Total Environment,619–620, 1022–1029.CrossRefGoogle Scholar
  7. CCME. (2002). Canadian Council of Ministers of the Environment, 2002. Winnipeg: Canadian Environmental Quality Guidelines.Google Scholar
  8. Chen, C.-W., Kao, C.-M., Chen, C.-F., & Dong, C.-D. (2007). Distribution and accumulation of heavy metals in the sediments of Kaohsiung Harbor, Taiwan. Chemosphere, 66(8), 1431–1440,  https://doi.org/10.1016/j.chemosphere.2006.09.030.CrossRefGoogle Scholar
  9. Chen, Y.-M., Gao, J.-B., Yuan, Y.-Q., Ma, J., & Yu, S. (2016). Relationship between heavy metal contents and clay mineral properties in surface sediments: Implications for metal pollution assessment. Continental Shelf Research,124, 125–133.CrossRefGoogle Scholar
  10. Cheng, H., Li, M., Zhao, C., Yang, K., Li, K., Peng, M., et al. (2015). Concentrations of toxic metals and ecological risk assessment for sediments of major freshwater lakes in China. Journal of Geochemical Exploration,157, 15–26.CrossRefGoogle Scholar
  11. Christophoridis, C., & Fytianos, K. (2006). Conditions affecting the release of phosphorus from surface lake sediments. Journal of Environmental Quality,35(4), 1181–1192.CrossRefGoogle Scholar
  12. Cook, H. E., Johnson, P. D., Matti, J. C., & Zemmels, I. (1975). Methods of sample preparation and X-ray diffraction data analysis, X-ray Mineralogy Laboratory, Deep Sea Drilling Project, University of California, Riverside. In D. E. Hayes, L. A. Frakes, et al. (Eds.), Init. Repts. DSDP (pp. 999-1007). 28: Washington (U.S. Govt. Printing Office).Google Scholar
  13. Cross, A. F., & Schlesinger, W. H. (1995). A literature review and evaluation of the. Hedley fractionation: Applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma,64(3), 197–214.CrossRefGoogle Scholar
  14. de Groot, C. J., & Golterman, H. L. (1990). Sequential fractionation of sediment phosphate. Hydrobiologia,192(2–3), 143–148.CrossRefGoogle Scholar
  15. Filipek, L. H., & Owen, R. M. (1979). Geochemical associations and grain-size partitioning of heavy metals in lacustrine sediments. Chemical Geology,26(1–2), 105–117.CrossRefGoogle Scholar
  16. Forstner, U., & Whitman, G. T. W. (1981). Metal pollution in the aquatic environment (p. 486). Berlin: Springer.CrossRefGoogle Scholar
  17. Francke, A., Wagner, B., Leng, M. J., et al. (2013). A late glacial to holocene record of environmental change from Lake Dojran (Macedonia, Greece). Climate of the Past,9, 481–498.CrossRefGoogle Scholar
  18. Fu, J., Zhao, C., Luo, Y., Liu, C., Liu, C., Kyzas, G., et al. (2014). Heavy metals in surface sediments of the Jialu River, China: Their relations to environmental factors. Journal of Hazardous Materials,270, 102–109.CrossRefGoogle Scholar
  19. Fytianos, K., & Kotzakioti, A. (2005). Sequential fractionation of phosphorus in lake sediments of Northern Greece. Environmental Monitoring and Assessment,100(1–3), 191–200.CrossRefGoogle Scholar
  20. Fytianos, K., & Lourantou, A. (2004). Speciation of elements in sediment samples collected at lakes Volvi and Koronia, N. Greece. Environment International,30(1), 11–17.CrossRefGoogle Scholar
  21. Gantidis, N., Pervolarakis, M., & Fytianos, K. (2007). Assessment of the quality characteristics of two lakes (Koronia and Volvi) of N. Greece. Environmental Monitoring and Assessment,125, 175–181.CrossRefGoogle Scholar
  22. Gasparatos, D., Massas, I., & Godelitsas, A. (2019). Fe–Mn concretions and nodules formation in redoximorphic soils and their role on soil phosphorus dynamics: Current knowledge and gaps. CATENA,182, 104106.CrossRefGoogle Scholar
  23. Guo, W., Huo, S., Xi, B., Zhang, J., & Wu, F. (2015). Heavy metal contamination in sediments from typical lakes in the five geographic regions of China: Distribution, bioavailability, and risk. Ecological Engineering,81, 243–255.CrossRefGoogle Scholar
  24. Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research,14, 975–1001.CrossRefGoogle Scholar
  25. Holdren, G. C., Jr., & Armstrong, D. E. (1980). Factors affecting phosphorus release from intact lake sediment cores. Environmental Science and Technology,14(1), 79–87.CrossRefGoogle Scholar
  26. Huang, J. J., Wang, C., Fang, B., Feng, L., Fang, F., Li, Z., et al. (2017). Characterization of phosphorus fractions in the soil of water-level-fluctuation zone and unflooded bankside in Pengxi River, Three Gorges Reservoir. Huanjing Kexue/Environmental Science,38(9), 3673–3681.Google Scholar
  27. Hupfer, M., Gächter, R., & Giovanoli, R. (1995). Transformation of phosphorus species in settling seston and during early sediment diagenesis. Aquatic Sciences,57(4), 305–324.CrossRefGoogle Scholar
  28. ISO. (2004). ISO 6878:2004 water quality—Determination of phosphorus—Ammonium molybdate spectrometric method.Google Scholar
  29. Jain, C. K. (2004). Metal fractionation study on bed sediments of River Yamuna, India. Water Research,38(3), 569–578.  https://doi.org/10.1016/j.watres.2003.10.042.CrossRefGoogle Scholar
  30. Jain, C. K., Gupta, H., & Chakrapani, G. J. (2008). Enrichment and fractionation of heavy metals in bed sediments of River Narmada, India. Environmental Monitoring and Assessment,141(1), 35–47.  https://doi.org/10.1007/s10661-007-9876-y.CrossRefGoogle Scholar
  31. Jain, C. K., Gurunadha-Rao, V. V. S., Prakash, B. A., Mahesh-Kumar, K., & Yoshida, M. (2010). Metal fractionation study on bed sediments of Hussainsagar Lake, Hyderabad, India. Environmental Monitoring and Assessment,166(1–4), 57–67.CrossRefGoogle Scholar
  32. Kaiserli, A., Voutsa, D., & Samara, C. (2002). Phosphorus fractionation in lake sediments—Lakes Volvi and Koronia, N. Greece. Chemosphere,46(8), 1147–1155.CrossRefGoogle Scholar
  33. Kalogridi, E.-C., Christophoridis, C., Bizani, E., Drimaropoulou, G., & Fytianos, K. (2014). Part II: Temporal and spatial distribution of multiclass pesticide residues in lake sediments of northern Greece: Application of an optimized MAE–LC–MS/MS pretreatment and analytical method. Environmental Science and Pollution Research,21, 7252–7262.CrossRefGoogle Scholar
  34. Li, F., Huang, J., Zeng, G., Yuan, X., Li, X., Liang, J., et al. (2013). Spatial risk assessment and sources identification of heavy metals in surface sediments from the Dongting Lake, Middle China. Journal of Geochemical Exploration,132, 75–83.CrossRefGoogle Scholar
  35. Li, F., Zhang, J., Liu, C., Xiao, M., & Wu, Z. (2018). Distribution, bioavailability and probabilistic integrated ecological risk assessment of heavy metals in sediments from Honghu Lake, China. Process Safety and Environmental Protection,116, 169–179.CrossRefGoogle Scholar
  36. Li, Y., Wang, X. L., Huang, G. H., Zhang, B. Y., & Guo, S. H. (2009). Adsorption of Cu and Zn onto Mn/Fe oxides and organic materials in the extractable fractions of river surficial sediments. Soil and Sediment Contamination: An International Journal,18(1), 87–101.CrossRefGoogle Scholar
  37. Lopez, D. L., Gierlowski-Kordesch, E., & Hollenkamp, C. (2010). Geochemical mobility and bioavailability of heavy metals in a lake affected by acid mine drainage: Lake Hope, Vinton County, Ohio. Water, Air, and Soil Pollution,213, 27–45.CrossRefGoogle Scholar
  38. Luo, Y. M., & Christie, P. (1998). Choice of extraction technique for soil reducible trace metals determines the subsequent oxidisable metal fraction in sequential extraction schemes. International Journal of Environmental Analytical Chemistry,72(1), 59–75.CrossRefGoogle Scholar
  39. MacDonald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater systems. Archives of Environmental Contamination and Toxicology,39, 20–31.CrossRefGoogle Scholar
  40. Modak, D. P., Singh, K. P., Chandra, H., & Ray, P. K. (1992). Mobile and bound forms of trace metals in sediments of the lower ganges. Water Research,26(11), 1541–1548.  https://doi.org/10.1016/0043-1354(92)90075-F.CrossRefGoogle Scholar
  41. Muller, G. (1979). Schwermetalle in den sedimenten des Rheins–Vera Enderungenseit. Umschau,79, 778–783.Google Scholar
  42. Nixdorf, B., Rektins, A., & Mischke, U. (2008). Standards and thresholds of the EU water framework directive (WFD)—phytoplankton and lakes. In M. Schmidt, J. Glasson, L. Emmelin, & H. Helbron (Eds.), Standards and thresholds for impact assessment (pp. 301–314). Berlin: Springer.CrossRefGoogle Scholar
  43. Ovakoglou, G., Alexandridis, T. K., Crisman, T. L., Skoulikaris, C., & Vergos, G. S. (2016). Use of MODIS satellite images for detailed lake morphometry: Application to basins with large water level fluctuations. International Journal of Applied Earth Observation and Geoinformation,51, 37–46.CrossRefGoogle Scholar
  44. Pardo, P., López-Sánchez, J. F., & Rauret, G. (1998). Characterisation, validation and comparison of three methods for the extraction of phosphate from sediments. Analytica Chimica Acta,376(2), 183–195.CrossRefGoogle Scholar
  45. Pertsemli, E., & Voutsa, D. (2007). Distribution of heavy metals in Lakes Doirani and Kerkini, Northern Greece. Journal of Hazardous Materials,148(3), 529–537.CrossRefGoogle Scholar
  46. Psenner, R., Boström, B., Dinka, M., Pettersson, K., Pucsko, R., & Sager, M. (1988). Fractionation of phosphorus in suspended matter and sediment. Archiv für Hydrobiologie Beihefte Ergebnisse der Limnologie,30, 98–103.Google Scholar
  47. Ranjbar, Jafarabadi A., Riyahi, Bakhtiyari A., Shadmehri, Toosi A., & Jadot, C. (2017). Spatial distribution, ecological and health risk assessment of heavy metals in marine surface sediments and coastal seawaters of fringing coral reefs of the Persian Gulf, Iran. Chemosphere,185(2017), 1090–1111.CrossRefGoogle Scholar
  48. Rath, P., Panda, U. C., Bhatta, D., & Sahu, K. C. (2009). Use of sequential leaching, mineralogy, morphology and multivariate statistical technique for quantifying metal pollution in highly polluted aquatic sediments—A case study: Brahmani and Nandira Rivers, India. Journal of Hazardous Materials,163(2), 632–644.  https://doi.org/10.1016/j.jhazmat.2008.07.048.CrossRefGoogle Scholar
  49. Ribeiro, D. C., Martins, G., Nogueira, R., Cruz, J. V., & Brito, A. G. (2008). Phosphorus fractionation in volcanic lake sediments (Azores—Portugal). Chemosphere,70(7), 1256–1263.CrossRefGoogle Scholar
  50. Roig, N., Sierra, J., Moreno-Garrido, I., Nieto, E., Gallego, E. P., Schuhmacher, M., et al. (2016). Metal bioavailability in freshwater sediment samples and their influence on ecological status of river basins. Science of the Total Environment,540, 287–296.CrossRefGoogle Scholar
  51. Rydin, E. (2000). Potentially mobile phosphorus in Lake Erken sediment. Water Research,34(7), 2037–2042.CrossRefGoogle Scholar
  52. Samanidou, V., & Fytianos, K. (1987). Partitioning of heavy metals into selective chemical fractions in sediments from rivers in northern Greece. The Science of the Total Environment,67(2–3), 279–285.CrossRefGoogle Scholar
  53. Scheibye, K., Weisser, J., Borggaard, O. K., Larsen, M. M., Holm, P. E., Vammen, K., et al. (2014). Sediment baseline study of levels and sources of polycyclic aromatic hydrocarbons and heavy metals in Lake Nicaragua. Chemosphere,95, 556–565.CrossRefGoogle Scholar
  54. Selvam, A. P., Priya, S. L., Banerjee, K., Hariharan, G., Purvaja, R., & Ramesh, R. (2013). Heavy metal assessment using geochemical and statistical tools in the surface sediments of Vembanad Lake Southwest Coast of India. Environmental Monitoring and Assessment,184, 5899–5915.CrossRefGoogle Scholar
  55. Singovszka, E., Junakova, N., & Balintova, M. (2016). The effect of sediment grain size on heavy metal content in different depth in water reservoir Ruzin, Slovakia. Solid State Phenomena,244, 240–245.CrossRefGoogle Scholar
  56. Spagnoli, F., & Andresini, A. (2018). Biogeochemistry and sedimentology of Lago di Lesina (Italy). Science of the Total Environment,643, 868–883.CrossRefGoogle Scholar
  57. Stefanidis, P., & Stefanidis, S. (2012). Reservoir sedimentation and mitigationmeasures. Lakes and Reservoirs Research and Management,17(2), 113–117.CrossRefGoogle Scholar
  58. Stefanidis, P., Stefanidis, S., & Tziaftani, F. (2011). The threat of alluviation of lakes resulting from torrents (case study: Lake Volvi, north Greece). International Journal of Sustainable Development and Planning,6(3), 325–333.CrossRefGoogle Scholar
  59. Suresh, G., Sutharsan, P., Ramasamy, V., & Venkatachalapathy, R. (2012). Assessment of spatial distribution and potential ecological risk of the heavy metals in relation to granulometric contents of Veeranam lake sediments, India. Ecotoxicology and Environmental Safety,84, 117–124.CrossRefGoogle Scholar
  60. Tang, Z. W., Yue, Y., & Cheng, J. L. (2009). Pollution characteristics and risks of heavy metals in the sediments from the middle and small rivers in Wuhan. Journal of Soil and Water Conservation,23, 132–136.Google Scholar
  61. Tessier, A., Campbell, P. G. C., & Blsson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry,51(7), 844–851.CrossRefGoogle Scholar
  62. Thomas, R. P., Ure, A. M., Davidson, C. M., Littlejohn, D., Rauret, G., Rubio, R., et al. (1994). Three-stage sequential extraction procedure for the determination of metals in river sediments. Analytica Chimica Acta,286(3), 423–429.  https://doi.org/10.1016/0003-2670(94)85088-7.CrossRefGoogle Scholar
  63. Tian, Y., Zhang, H., Hao, H., Cui, S., Zhang, L., Zhao, L., et al. (2017). Relationships between phosphorus fractionations in sediments and phosphorus in overlying water in a constructed wetland: Impact of macrophytes. Desalination and Water Treatment,84, 180–189.CrossRefGoogle Scholar
  64. Tomlinson, D., Wilson, J., Harris, C., & Jeffrey, D. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresuntersuchungen,33, 566.CrossRefGoogle Scholar
  65. Union, E. (2000). Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. 2000/60/EC. E. Union.Google Scholar
  66. Vogler, P. (1965). Probleme der Phosphatanalytik in der Limnologie und ein neues Verfahren zur Bestimmung von gelöstem Orthophosphat neben kondensierten Phosphaten und organischen Phosphorsäureestern. Internationale Revue der gesamten Hydrobiologie und Hydrographie,50(1), 33–48.CrossRefGoogle Scholar
  67. Vouvé, F., Buscail, R., Aubert, D., Labadie, P., Chevreuil, M., Canal, C., et al. (2014). Bages-Sigean and Canet-St Nazaire lagoons (France): Physico-chemical characteristics and contaminant concentrations (Cu, Cd, PCBs and PBDEs) as environmental quality of water and sediment. Environmental Science and Pollution Research,21(4), 3005–3020.  https://doi.org/10.1007/s11356-013-2229-1.CrossRefGoogle Scholar
  68. Vrhovnik, P., Smuc, N. R., Dolenec, T., Serafimovski, T., & Dolenec, M. (2013). An evaluation of trace metal distribution and environmental risk in sediments from the Lake Kalimanci (FYR Macedonia). Environmental Earth Sciences,70, 761–775.CrossRefGoogle Scholar
  69. Wang, Y., Yang, L., Kong, L., Liu, E., Wang, L., & Zhu, J. (2015). Spatial distribution, ecological risk assessment and source identification for heavy metals in surface sediments from Dongping Lake Shandong, East China. CATENA,125, 200–205.CrossRefGoogle Scholar
  70. Water, G. M. O. E.-S. S. F. (2014a). River basin management plan for Eastern Macedonia.Google Scholar
  71. Water, G. M. O. E.-S. S. F. (2014b). River basin management plan for central Macedonia.Google Scholar
  72. Wong, C. S. C., Wu, S. C., Duzgoren-Aydin, N. S., Aydin, A., & Wong, M. H. (2007). Trace metal contamination of sediments in an e-waste processing village in China. Environmental Pollution,145(2), 434–442.  https://doi.org/10.1016/j.envpol.2006.05.017.CrossRefGoogle Scholar
  73. Yu, S., & Li, X.-D. (2011). Distribution, availability, and sources of trace metals in different particle size fractions of urban soils in Hong Kong: Implications for assessing the risk to human health. Environmental Pollution,159, 1317–1326.CrossRefGoogle Scholar
  74. Yu, T., Zhang, Y., Meng, W., & Hu, X. N. (2012). Characterization of heavy metals in water and sediments in Taihu Lake, China. Environmental Monitoring and Assessment,184, 4367–4382.CrossRefGoogle Scholar
  75. Zacharias, I., Bertachas, I., Skoulikidis, N., et al. (2002). Greek Lakes: Limnological overview. Lakes and Reservoirs: Research and Management,7, 55–62.CrossRefGoogle Scholar
  76. Zakir, H. M., Shikazono, N., & Otomo, K. (2008). Geochemical distribution of trace metals and assessment of anthrapogenic pollution in sediments of Old Nakagawa River, Tokyo, Japan. American Journal of Environmental Sciences,6, 661–672.Google Scholar
  77. Zhang, G., Bai, J., Zhao, Q., Lu, Q., Jia, J., & Wen, X. (2016). Heavy metals in wetland soils along a wetland-forming chronosequence in the Yellow River Delta of China: Levels, sources and toxic risks. Ecological Indicators,69, 331–339.CrossRefGoogle Scholar
  78. Zhang, Y., Han, Y., Yang, J., Zhu, L., & Zhong, W. (2017). Toxicities and risk assessment of heavy metals in sediments of Taihu Lake, China, based on sediment quality guidelines. Journal of Environmental Sciences,62, 31–38.CrossRefGoogle Scholar
  79. Zhang, Z., Liu, Y. L., & Duan, X. J. (2006). Research on remarkable affecting factors of phosphorus releasing from sediment in Shuanglong Lake. Journal of Plant Resources and Environment,15(2), 16–19.Google Scholar
  80. Zhou, Q., Gibson, C. E., & Zhu, Y. (2000). Evaluation of phosphorus bioavailability in sediments of three contrasting lakes in China and the UK. Chemosphere,42(2), 221–225.CrossRefGoogle Scholar
  81. Zhu, Y., Zou, X., Feng, S., & Tang, H. (2006). The effect of grain size on the Cu, Pb, Ni, Cd speciation and distribution in sediments: A case study of Dongping Lake, China. Environmental Geology,50(5), 753–759.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2020

Authors and Affiliations

  1. 1.Environmental Pollution Control Laboratory, Chemistry DepartmentAristotle University of ThessalonikiThessaloníkiGreece
  2. 2.School of GeologyAristotle University of ThessalonikiThessaloníkiGreece
  3. 3.Department of Mineralogy-Petrology-Economic Geology, School of GeologyAristotle University of ThessalonikiThessaloníkiGreece

Personalised recommendations