Advertisement

Hydrogeochemical baseline in a human-altered landscape of the central Pacific coast of Costa Rica

  • R. Sánchez-Gutiérrez
  • L. Mena-RiveraEmail author
  • R. Sánchez-Murillo
  • A. Fonseca-Sánchez
  • H. Madrigal-Solís
Original Paper
  • 41 Downloads

Abstract

Groundwater pollution in tropical and human-altered coastal landscapes is receiving novel attention due to decreasing in annual recharge as a consequence of recurrent droughts and overexploitation, whereby saline intrusion, point and diffuse source contamination, and water conflicts are common denominators. This study presents a detailed groundwater evaluation in a coastal aquifer within the central Pacific coast of Costa Rica. Three sampling campaigns including major ions, heavy metals, and fecal coliform analyses were conducted between July 2013 and March 2014 across 17 wells within the alluvial and fissured units of the Jacó aquifer. The groundwater system is classified as mixed HCO3–Ca2+–Mg2+ type. Coliforms presence was found in two wells, nearby Mona Creek headwaters and near the coastal line. Heavy metal concentrations were below quantification limits in most of the wells; however, chromium concentrations up to 6.56 μg/L were quantified within the coastal line and central portion of the alluvial aquifer in 20 out of the 48 samples. The spatial distribution of major ions (K+, Na+, Ca2+, Mg2+, Cl, SO42−, and HCO3) exhibited an increasing trend towards the central portion of the alluvial aquifer, which may be potentially associated with the large unregulated urban expansion, invoking a need of a continuous water quality monitoring program in this touristic hot spot. This study provides useful information for other similar coastal aquifers in Central America, whereby increasing population growth and unregulated touristic, industrial, and agricultural activities are posing a truly challenge to ensure water security and sustainability parallel to the economic development in a changing climate.

Keywords

Costa Rica Human-altered tropical coastal aquifer Hydrogeochemical processes Water quality 

Notes

Acknowledgements

This project was funded by the Research Office of Universidad Nacional, Costa Rica (SIA 0232-11) and the International Atomic Energy Agency (ARCAL RLA/7/016). We thank the Laboratory of Chemical Analysis, the Laboratory of Microbiology, and the Laboratory of Environmental Hydrology at Universidad Nacional, Costa Rica for helping with the chemical analyses, the microbiology screening, and the sampling logistics, respectively. We also thank C. Núñez-Solís and G. Moraga-López for their collaboration with the spatial analysis.

Author Contributions

R.S-G., L.M-R., A.F-S and H.M-S designed the study. R.S-G performed the experiments and data analysis with significant contribution of L.M-R and R.S-M. All the authors contributed to write the manuscript.

Supplementary material

10653_2019_501_MOESM1_ESM.docx (441 kb)
Supplementary file1 (DOCX 441 kb)

References

  1. Abboud, I. A. (2018). Geochemistry and quality of groundwater of the Yarmouk basin aquifer, north Jordan. Environmental Geochemistry and Health,40(4), 1405–1435.  https://doi.org/10.1007/s10653-017-0064-x.CrossRefGoogle Scholar
  2. Agudelo, C. (2005). Diagnóstico de las aguas subterráneas en las hojas Tárcoles, Herradura y Candelaria. San José, Costa Rica: Servicio Nacional de Aguas Subterráneas, Riego y Avenamiento (SENARA).Google Scholar
  3. Ahmadi, S., Jahanshahi, R., & Moeini, V. (2018). Assessment of hydrochemistry and heavy metals pollution in the groundwater of Ardestan mineral exploration area Iran. Environmental Earth Sciences,77(5), 1–13.  https://doi.org/10.1007/s12665-018-7393-7.CrossRefGoogle Scholar
  4. Ansari, J. A., & Umar, R. (2019). Evaluation of hydrogeochemical characteristics and groundwater quality in the quaternary aquifers of Unnao District, Uttar Pradesh, India. HydroResearch,1, 36–47.  https://doi.org/10.1016/j.hydres.2019.01.001.CrossRefGoogle Scholar
  5. Arellano, F., & Vargas, A. (2011). Casos de contaminación por intrusión salina en acuíferos costeros de la Península de Nicoya (Costa Rica). Revista Geológica de América Central.  https://doi.org/10.15517/rgac.v0i25.8540
  6. Arias, M. (1996). Evaluación del riesgo de contaminación del acuífero de Jacó, Cantón de Garabito, Puntarenas. San José, Costa Rica: Servicio Nacional de Aguas Subterráneas, Riego y Avenamiento (SENARA).Google Scholar
  7. Arias-Salguero, M. E. (2002). Aplicaciones geofísicas a la hidrogeología en Costa Rica. Revista Geológica de América Central,27, 11–20.  https://doi.org/10.15517/rgac.v0i27.7800.CrossRefGoogle Scholar
  8. Arias-Salguero, M. E., & Vargas, A. (2003). Geofísica aplicada al problema de la intrusión salina en los acuíferos costeros de Costa Rica. In J. A. López-Geta, J. Dios-Gómez, J. A. Orden, G. Ramos, & L. Rodríguez (Eds.), Tecnología de la intrusión de agua de mar en acuíferos costeros: países mediterráneos (pp. 163–167). Madrid: IGME.Google Scholar
  9. Aris, A. Z., Abdullah, M. H., Praveena, S. M., Yusoff, M. K., & Juahir, H. (2010). Extenuation of saline solutes in shallow aquifer of a small tropical island: A case study of Manukan Island North Borneo. Environment Asia,3(2), 84–92.  https://doi.org/10.14456/ea.2010.45.CrossRefGoogle Scholar
  10. Babcock, M., Wong-Parodi, G., Small, M. J., & Grossmann, I. (2016). Stakeholder perceptions of water systems and hydro-climate information in Guanacaste Costa Rica. Earth Perspectives,3(1), 3.  https://doi.org/10.1186/s40322-016-0035-x.CrossRefGoogle Scholar
  11. Calderón-Sánchez, H., & Madrigal-Solís, H & Reynolds-Vargas, J. (2002). Contaminación química y microbiológica del agua subterránea en la zona costera de Guanacaste. In J. Reynolds-Vargas (Ed.), Manejo Sostenible de las aguas subterráneas: un reto para el futuro (pp. 33–48). Costa Rica: UNED.Google Scholar
  12. Carretero, S., & Kruse, E. (2015). Iron and manganese content in groundwater on the northeastern coast of the Buenos Aires Province Argentina. Environmental Earth Sciences,73(5), 1983–1995.  https://doi.org/10.1007/s12665-014-3546-5.CrossRefGoogle Scholar
  13. Chandrasekar, N., Selvakumar, S., Srinivas, Y., John Wilson, J. S., Simon Peter, T., & Magesh, N. S. (2014). Hydrogeochemical assessment of groundwater quality along the coastal aquifers of southern Tamil Nadu India. Environmental Earth Sciences,71(11), 4739–4750.  https://doi.org/10.1007/s12665-013-2864-3.CrossRefGoogle Scholar
  14. Chebotarev, I. (1955). Metamorphism of natural waters in the crust of weathering—1. Geochimica et Cosmochimica Acta,8(1–2), 22–48.  https://doi.org/10.1016/0016-7037(55)90015-6.CrossRefGoogle Scholar
  15. Chen, Y., Wang, L., Liang, T., Xiao, J., & Li, J. (2019). Major ion and dissolved heavy metal geochemistry, distribution, and relationship in the overlying water of Dongting Lake China. Environmental Geochemistry and Health,41(3), 1091–1104.  https://doi.org/10.1007/s10653-018-0204-y.CrossRefGoogle Scholar
  16. Custodio, E., & Llamas, M. R. (2001). Hidrología subterránea (2nd ed.). Barcelona: Ediciones Omega.Google Scholar
  17. de Garabito, M. (2007). Plan Regulador Urbano de la Ciudad de Jacó. San José, Costa Rica: Municipalidad de Garabito.Google Scholar
  18. Dias, J. A., Cearreta, A., Isla, F. I., & de Mahiques, M. M. (2013). Anthropogenic impacts on Iberoamerican coastal areas: Historical processes, present challenges, and consequences for coastal zone management. Ocean & Coastal Management,77, 80–88.  https://doi.org/10.1016/j.ocecoaman.2012.07.025.CrossRefGoogle Scholar
  19. Dieng, N. M., Orban, P., Otten, J., Stumpp, C., Faye, S., & Dassargues, A. (2017). Temporal changes in groundwater quality of the Saloum coastal aquifer. Journal of Hydrology: Regional Studies,9, 163–182.  https://doi.org/10.1016/j.ejrh.2016.12.082.CrossRefGoogle Scholar
  20. Edokpayi, J. N., Enitan, A. M., Mutileni, N., & Odiyo, J. O. (2018). Evaluation of water quality and human risk assessment due to heavy metals in groundwater around Muledane area of Vhembe District, Limpopo Province South Africa. Chemistry Central Journal,12(2), 1–16.  https://doi.org/10.1186/s13065-017-0369-y.CrossRefGoogle Scholar
  21. Esquivel-Hernández, G., Sánchez-Murillo, R., Birkel, C., & Boll, J. (2018). Climate and water conflicts coevolution from tropical development and hydro-climatic perspectives: A case study of Costa Rica. JAWRA Journal of the American Water Resources Association,54(2), 451–470.  https://doi.org/10.1111/1752-1688.12617.CrossRefGoogle Scholar
  22. Ferguson, G., & Gleeson, T. (2012). Vulnerability of coastal aquifers to groundwater use and climate change. Nature Climate Change.  https://doi.org/10.1038/nclimate1413.CrossRefGoogle Scholar
  23. Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Englewood Cliffs, NJ: Prentice-Hall Inc.Google Scholar
  24. Gibbs, R. J. (1970). Mechanisms controlling world water chemistry. Science,170(3962), 1088–1090.  https://doi.org/10.1126/science.170.3962.1088.CrossRefGoogle Scholar
  25. Gómez-Cruz, A., Madrigal-Solís, H., Núñez-Solís, C., Calderón-Sánchez, H., & Jiménez-Gavilán, P. (2019). Vulnerabilidad hidrogeológica en la zona costera de Jacó, Pacífico Central, Costa Rica. Revista Geográfica de América Central.,2(63), 141–163.  https://doi.org/10.15359/rgac.63-2.6.CrossRefGoogle Scholar
  26. Helsel, D. R. (2011). Statistics for censored environmental data using Minitab® and R. Hoboken, NJ: Wiley.  https://doi.org/10.1002/9781118162729.CrossRefGoogle Scholar
  27. Isa, N. M., Aris, A. Z., & Sulaiman, W. N. A. W. (2012). Extent and severity of groundwater contamination based on hydrochemistry mechanism of sandy tropical coastal aquifer. Science of The Total Environment,438, 414–425.  https://doi.org/10.1016/j.scitotenv.2012.08.069.CrossRefGoogle Scholar
  28. Isla, F. I. (2013). From touristic villages to coastal cities: The costs of the big step in Buenos Aires. Ocean & Coastal Management,77, 59–65.  https://doi.org/10.1016/j.ocecoaman.2012.02.005.CrossRefGoogle Scholar
  29. Khairy, H., & Janardhana, M. R. (2014). Hydrogeochemistry and quality of groundwater of coastal unconfined aquifer in Amol-Ghaemshahr plain, Mazandaran Province Northern Iran. Environmental Earth Sciences,71(11), 4767–4782.  https://doi.org/10.1007/s12665-013-2868-z.CrossRefGoogle Scholar
  30. Kshetrimayum, K. S., & Hegeu, H. (2016). The state of toxicity and cause of elevated Iron and Manganese concentrations in surface water and groundwater around Naga Thrust of Assam-Arakan basin Northeastern India. Environmental Earth Sciences,75(7), 604.  https://doi.org/10.1007/s12665-016-5372-4.CrossRefGoogle Scholar
  31. Kuzdas, C., Wiek, A., Warner, B., Vignola, R., & Morataya, R. (2014). Sustainability appraisal of water governance regimes: The case of Guanacaste Costa Rica. Environmental Management,54(2), 205–222.  https://doi.org/10.1007/s00267-014-0292-0.CrossRefGoogle Scholar
  32. Li, Z., Wang, G., Wang, X., Wan, L., Shi, Z., Wanke, H., et al. (2018). Groundwater quality and associated hydrogeochemical processes in Northwest Namibia. Journal of Geochemical Exploration,186, 202–214.  https://doi.org/10.1016/j.gexplo.2017.12.015.CrossRefGoogle Scholar
  33. Lu, Y., Tang, C., Chen, J., & Yao, H. (2016). Assessment of major ions and heavy metals in groundwater: A case study from Guangzhou and Zhuhai of the Pearl River Delta China. Frontiers of Environmental Science,10(2), 340–351.  https://doi.org/10.1007/s11707-015-0513-8.CrossRefGoogle Scholar
  34. Solís, H., Fonseca-Sánchez, A., Calderón-Sánchez, H., Gómez-Cruz, A., & Nuñez-Solís, C. (2019). Design of a monitoring network as a participative management tool: Physical and chemical quality of groundwater in three sub-basins in the Central Valley of Costa Rica. Uniciencia,33(1), 43–60.  https://doi.org/10.15359/ru.33-1.4.CrossRefGoogle Scholar
  35. Mangimbulude, J. C., Goeltom, M. T., van Breukelen, B. M., van Straalen, N. M., & Röling, W. F. M. (2016). Hydrochemical characterization of a tropical, coastal aquifer affected by landfill leachate and seawater intrusion. Asian Journal of Water, Environment and Pollution,13(4), 49–57.  https://doi.org/10.3233/AJW-160038.CrossRefGoogle Scholar
  36. Mena-Rivera, L., & -Vega, J. (2018). Assessment of drinking water suitability in low income rural areas: A case study in Sixaola, Costa Rica. Journal of Water and Health,16(3), 403–413.  https://doi.org/10.2166/wh.2018.203.CrossRefGoogle Scholar
  37. Michael, H. A., Post, V. E. A., Wilson, A. M., & Werner, A. D. (2017). Science, society, and the coastal groundwater squeeze. Water Resources Research.  https://doi.org/10.1002/2017WR020851.CrossRefGoogle Scholar
  38. Miller, J. N., & Miller, J. C. (2010). Statistics and chemometrics for analytical chemistry (6th ed.). Essex, England: Pearson Education.Google Scholar
  39. Ministerio, de, Salud, de Costa Rica (, MINSA, & ). (2015). Reglamento para la calidad del agua potable: decreto 38924-S. La Gaceta,170, 1–49.Google Scholar
  40. Modibo, A., & Xueyu, L. (2018). Heavy metals and nitrate to validate groundwater sensibility assessment based on DRASTIC models and GIS: Case of the upper Niger and the Bani basin in Mali. Journal of African Earth Sciences,147, 199–210.  https://doi.org/10.1016/j.jafrearsci.2018.06.019.CrossRefGoogle Scholar
  41. Moore, W. S. (2010). The effect of submarine groundwater discharge on the ocean. Annual Review of Marine Science,2(1), 59–88.  https://doi.org/10.1146/annurev-marine-120308-081019.CrossRefGoogle Scholar
  42. Motevalli, A., Moradi, H. R., & Javadi, S. (2018). A Comprehensive evaluation of groundwater vulnerability to saltwater up-coning and sea water intrusion in a coastal aquifer (case study: Ghaemshahr-juybar aquifer). Journal of Hydrology,557, 753–773.  https://doi.org/10.1016/j.jhydrol.2017.12.047.CrossRefGoogle Scholar
  43. Mtoni, Y., Mjemah, I. C., Bakundukize, C., Van Camp, M., Martens, K., & Walraevens, K. (2013). Saltwater intrusion and nitrate pollution in the coastal aquifer of Dar es Salaam Tanzania. Environmental Earth Sciences,70(3), 1091–1111.  https://doi.org/10.1007/s12665-012-2197-7.CrossRefGoogle Scholar
  44. Instituto Nacional de Estadística y Censos (INEC). (2011). X Censo Nacional de Población y VI de Vivienda: Resultados Generales. San José: Instituto Nacional de Estadística y Censos.Google Scholar
  45. Ngasala, T. M., Masten, S. J., & Phanikumar, M. S. (2019). Science of the total environment impact of domestic wells and hydrogeologic setting on water quality in peri-urban Dar es Salaam, Tanzania. Science of the Total Environment,686, 1238–1250.  https://doi.org/10.1016/j.scitotenv.2019.05.202.CrossRefGoogle Scholar
  46. Norat-Ramírez, J., Lázaro, P., Hernández-Delgado, E. A., & -Torres, H. (2019). A septic waste index model to measure the impact of septic tanks on coastal water quality and coral reef communities in Rincon Puerto Rico. Ocean and Coastal Management,169(7), 201–213.  https://doi.org/10.1016/j.ocecoaman.2018.12.016.CrossRefGoogle Scholar
  47. Orozco, R. (2015). Propuesta de manejo de uso y cobertura de la tierra para la reducción del riesgo de contaminación del acuífero costero Jacó, Pacífico Central, Costa Rica. (Tesis de Licenciatura). Universidad Nacional, Heredia, Costa Rica.Google Scholar
  48. Oyem, H. H., Oyem, I. M., & Usese, A. I. (2015). Iron, manganese, cadmium, chromium, zinc and arsenic groundwater contents of Agbor and Owa communities of Nigeria. SpringerPlus,4(1), 104.  https://doi.org/10.1186/s40064-015-0867-0.CrossRefGoogle Scholar
  49. Palmucci, W., Rusi, S., & Di Curzio, D. (2016). Mobilisation processes responsible for iron and manganese contamination of groundwater in Central Adriatic Italy. Environmental Science and Pollution Research,23(12), 11790–11805.  https://doi.org/10.1007/s11356-016-6371-4.CrossRefGoogle Scholar
  50. Pazand, K., Khosravi, D., Ghaderi, M. R., & Rezvanianzadeh, M. R. (2018). Identification of the hydrogeochemical processes and assessment of groundwater in a semi-arid region using major ion chemistry: A case study of Ardestan basin in Central Iran. Groundwater for Sustainable Development,6, 245–254.  https://doi.org/10.1016/j.gsd.2018.01.008.CrossRefGoogle Scholar
  51. Petheram, C., Bristow, K. L., & Nelson, P. N. (2008). Understanding and managing groundwater and salinity in a tropical conjunctive water use irrigation district. Agricultural Water Management,95(10), 1167–1179.  https://doi.org/10.1016/j.agwat.2008.04.016.CrossRefGoogle Scholar
  52. Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water-analyses. Transactions, American Geophysical Union,25(6), 914.  https://doi.org/10.1029/TR025i006p00914.CrossRefGoogle Scholar
  53. Programa, Estado de la, Nación, & (PEN). (2015). Estado de la Nación en Desarrollo Humano Sostenible. San José, Costa Rica: PEN.Google Scholar
  54. R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed Apr 2018.
  55. Rachid, G., Fadel, M., Najm, M., & Alameddine, I. (2017). Towards a framework for the assessment of saltwater intrusion in coastal aquifers. Environmental Impact Assessment Review.  https://doi.org/10.1016/j.eiar.2017.08.001.CrossRefGoogle Scholar
  56. Rice, E. W., Baird, R. B., Eaton, A. D., & Clesceri, L. S. (Eds.). (2012). Standard Methods for the Examination of Water and Wastewater (22nd Ed.). Washington, DC: American Public Health Association, American Water Works Association, Water Environment Federation.Google Scholar
  57. Saldarriaga-Noreña, H., de la Garza-Rodríguez, I., Waliszewski, S., -Urbina, E., Amador-Muñoz, O., Dávila, M., et al. (2014). Chemical evaluation of groundwater from supply wells in the state of Coahuila, México. Journal of Water Resource and Protection,06(01), 49–54.  https://doi.org/10.4236/jwarp.2014.61008.CrossRefGoogle Scholar
  58. Sánchez-Murillo, R., Birkel, C., Welsh, K., Esquivel-Hernández, G., Corrales-Salazar, J., Boll, J., et al. (2016). Key drivers controlling stable isotope variations in daily precipitation of Costa Rica: Caribbean Sea versus Eastern Pacific Ocean moisture sources. Quaternary Science Reviews,131, 250–261.  https://doi.org/10.1016/j.quascirev.2015.08.028.CrossRefGoogle Scholar
  59. Seddique, A. A., Masuda, H., Anma, R., Bhattacharya, P., Yokoo, Y., & Shimizu, Y. (2019). Hydrogeochemical and isotopic signatures for the identification of seawater intrusion in the paleobeach aquifer of Cox ’ s Bazar city and its surrounding. Groundwater for Sustainable Development,9, 100215.  https://doi.org/10.1016/j.gsd.2019.100215.CrossRefGoogle Scholar
  60. Singaraja, C., Chidambaram, S., Prasanna, M. V., Thivya, C., & Thilagavathi, R. (2014). Statistical analysis of the hydrogeochemical evolution of groundwater in hard rock coastal aquifers of Thoothukudi district in Tamil Nadu India. Environmental Earth Sciences,71(1), 451–464.  https://doi.org/10.1007/s12665-013-2453-5.CrossRefGoogle Scholar
  61. Souid, F., Agoubi, B., Telahigue, F., Chahlaoui, A., & Kharroubi, A. (2018). Groundwater salinization and seawater intrusion tracing based on lithium concentration in the shallow aquifer of Jerba Island, southeastern Tunisia. Journal of African Earth Sciences,138, 233–246.  https://doi.org/10.1016/j.jafrearsci.2017.11.013.CrossRefGoogle Scholar
  62. Vera, I., -Tapia, I., & Enriquez, C. (2012). Effects of drought and subtidal sea-level variability on salt intrusion in a coastal karst aquifer. Marine and Freshwater Research,63(6), 485.  https://doi.org/10.1071/MF11270.CrossRefGoogle Scholar
  63. Ward, J. H. (1963). Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association, 58(253), 236–244. https://www.jstor.org/stable/2282967 CrossRefGoogle Scholar
  64. Weng, H.-X., Qin, Y.-C., & Chen, X.-H. (2007). Elevated iron and manganese concentrations in groundwater derived from the Holocene transgression in the Hang-Jia-Hu Plain China. Hydrogeology Journal,15(4), 715–726.  https://doi.org/10.1007/s10040-006-0119-z.CrossRefGoogle Scholar
  65. White, E., & Kaplan, D. (2017). Restore or retreat? Saltwater intrusion and water management in coastal wetlands. Ecosystem Health and Sustainability,3(1), e01258.  https://doi.org/10.1002/ehs2.1258.CrossRefGoogle Scholar
  66. World Health Organization (WHO). (2011). Guidelines for drinking water quality (4th ed.). Geneva: World Health Organization.Google Scholar
  67. Xu, J., Chen, Y., Li, W., Zhang, L., Hong, Y., Bi, X., et al. (2012). Statistical analysis of groundwater chemistry of the Tarim River lower reaches. Northwest China: Environmental Earth Sciences.  https://doi.org/10.1007/s12665-011-1161-2 CrossRefGoogle Scholar
  68. Yeomans, K. A., & Golder, P. A. (1982). The Guttman–Kaiser criterion as a predictor of the number of common factors. The Statistician,31(3), 221.  https://doi.org/10.2307/2987988.CrossRefGoogle Scholar
  69. Yidana, S. M., Bawoyobie, P., Sakyi, P., & Fynn, O. F. (2018). Evolutionary analysis of groundwater flow: Application of multivariate statistical analysis to hydrochemical data in the Densu Basin, Ghana. Journal of African Earth Sciences,138, 167–176.  https://doi.org/10.1016/j.jafrearsci.2017.10.026.CrossRefGoogle Scholar
  70. Zhang, Y., Xu, M., Li, X., Qi, J., Zhang, Q., Guo, J., et al. (2018). Hydrochemical characteristics and multivariate statistical analysis of natural water system: A case study in Kangding County Southwestern China. Water,10(1), 80.  https://doi.org/10.3390/w10010080.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2020

Authors and Affiliations

  1. 1.Laboratory of Chemical Analysis, School of ChemistryUniversidad Nacional, Costa RicaHerediaCosta Rica
  2. 2.Water Resources Management Laboratory, School of ChemistryUniversidad Nacional, Costa RicaHerediaCosta Rica
  3. 3.Stable Isotope Research Group, School of ChemistryUniversidad Nacional, Costa RicaHerediaCosta Rica
  4. 4.Laboratory of Environmental Hydrology, School of Biological SciencesUniversidad Nacional, Costa RicaHerediaCosta Rica

Personalised recommendations