Advertisement

Chemical signature and antimicrobial activity of Central Portuguese Natural Mineral Waters against selected skin pathogens

  • Ana Sofia Oliveira
  • Cátia Vicente Vaz
  • Ana Silva
  • Sandra Saraiva Ferreira
  • Sara Correia
  • Raquel Ferreira
  • Luiza Breitenfeld
  • José Martinez-de-Oliveira
  • Rita Palmeira-de-Oliveira
  • Cláudia Pereira
  • Maria Teresa Cruz
  • Ana Palmeira-de-OliveiraEmail author
Original Paper
  • 19 Downloads

Abstract

The common therapeutic indications of Portuguese Natural Mineral Waters (NMWs) are primarily for respiratory, rheumatic and musculoskeletal systems. However, these NMWs have been increasingly sought for dermatologic purposes. Opposing to what is observed in the major European Thermal Centres, there are few scientific evidences supporting the use of Portuguese NMWs for clinical applications. The aim of this study was to characterize the antimicrobial profile of individual NMWs from the central region of Portugal and correlate the results with their physicochemical characterization. An extensive multivariate analysis (principal component analysis) was also performed to further investigate this possible correlation. Six collection strains representing skin microbiota, namely Staphylococcus aureus, Escherichia coli, Corynebacterium amycolatum, Candida albicans, Staphylococcus epidermidis and Cutibacterium acnes, were analysed, and their antimicrobial profile was determined using Clinical and Laboratory Standards Institute M07-A10, M45-A2, M11-A6 and M27-A3 microdilution methods. Different NMWs presented different antimicrobial profiles against the strains used; the physicochemical composition of NMWs seemed to be correlated with the different susceptibility profiles. Cutibacterium acnes showed a particularly high susceptibility to all NMWs belonging sulphurous/bicarbonated/sodic ionic profile, exhibiting microbial reductions up to 65%. However, due to the complex physicochemical composition of each water an overall conclusion regarding the effect of a specific ion on the growth of different microorganisms is yet to be known.

Keywords

Natural Mineral Waters Physicochemical properties Antimicrobial activity Skin microbiota 

Notes

Acknowledgements

The authors would like to acknowledge all Thermal Centres involved in the project and the financial support provided by FEDER funds through the POCI—COMPETE 2020—Operational Programme Competitiveness and Internationalisation in Axis I—Strengthening research, technological development and innovation (Project POCI-01-0145-FEDER-007491) and National Funds by FCT—Foundation for Science and Technology (Project UID/Multi/00709/2013), Provere Termas Centro—Projeto Âncora de Inovação, co-funded by Centro 2020, Portugal 2020 and European Union funds.

Supplementary material

10653_2019_473_MOESM1_ESM.docx (58 kb)
Supplementary material 1 (DOCX 58 kb)

References

  1. Abu-Ghazaleh, B. (2016). Effect of sodium chloride on subsequent survival of Staphylococcus aureus in various preservatives. Food and Nutrition Sciences,07, 955–963.CrossRefGoogle Scholar
  2. Achermann, Y., Goldstein, E. J. C., Coenye, T., & Shirtliffa, M. E. (2014). Propionibacterium acnes: From commensal to opportunistic biofilm-associated implant pathogen. Clinical Microbiology Reviews,27, 419–440.  https://doi.org/10.1128/CMR.00092-13.CrossRefGoogle Scholar
  3. Akiyama, H., Yamasaki, O., Tada, J., Kubota, K., & Arata, J. (2000). Antimicrobial effects of acidic hot-spring water on Staphylococcus aureus strains isolated from atopic dermatitis patients. Journal of Dermatological Science,24, 112–118.  https://doi.org/10.1016/S0923-1811(00)00091-8.CrossRefGoogle Scholar
  4. APHA. (2005). Standard methods for the examination of water and wastewater (21st ed.). Washington, DC: American Public Health Association.Google Scholar
  5. Araujo, A. R. T. S., Sarraguça, M. C., Ribeiro, M. P., & Coutinho, P. (2017). Physicochemical fingerprinting of thermal waters of Beira Interior region of Portugal. Environmental Geochemistry and Health,39, 483–496.  https://doi.org/10.1007/s10653-016-9829-x.CrossRefGoogle Scholar
  6. Belmares, J., Detterline, S., Pak, J. B., & Parada, J. P. (2007). Corynebacterium endocarditis species-specific risk factors and outcomes. BMC Infectious Diseases,7, 4.  https://doi.org/10.1186/1471-2334-7-4.CrossRefGoogle Scholar
  7. Braga, P. C., Ceci, C., Marabini, L., & Nappi, G. (2013). The antioxidant activity of sulphurous thermal water protects against oxidative DNA damage: A comet assay investigation. Drug Res (Stuttg),63, 198–202.  https://doi.org/10.1055/s-0033-1334894.CrossRefGoogle Scholar
  8. Brown, S. K., & Shalita, A. R. (1998). Acne vulgaris. Lancet,351, 1871–1876.CrossRefGoogle Scholar
  9. Cantista, P. (2008). O termalismo em Portugal. An Hidrol Medica,3, 79–107.Google Scholar
  10. Carbajo, J. M., & Maraver, F. (2017). Sulphurous mineral waters: New applications for health. Evidence-Based Complementary and Alternative Medicine.  https://doi.org/10.1155/2017/8034084.CrossRefGoogle Scholar
  11. Child, Dennis. (2006). The essentials of factor analysis (3rd ed.). New York, NY: Continuum International Publishing Group.Google Scholar
  12. CLSI. (2004). Methods for antimicrobial susceptibility testing of anaerobic bacteria (6th ed). CLSI Standard M11-A6. Wayne, PA: Clinical and Laboratory Standards Institute.Google Scholar
  13. CLSI. (2008). Reference method for broth dilution antifungal susceptibility testing of yeasts (3rd ed). CLSI Standard M27-A3. Wayne, PA: Clinical and Laboratory Standards Institute.Google Scholar
  14. CLSI. (2010). Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria (2nd ed). CLSI Standard M45-A2. Wayne, PA: Clinical and Laboratory Standards Institute.Google Scholar
  15. CLSI. (2015). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically (10th ed). CLSI Standard M07-A10. Wayne, PA: Clinical and Laboratory Standards Institute.Google Scholar
  16. Cogen, A. L., Nizet, V., & Gallo, R. L. (2008). Skin microbiota: A source of disease or defence? British Journal of Dermatology,158, 442–455.  https://doi.org/10.1111/j.1365-2133.2008.08437.x.CrossRefGoogle Scholar
  17. Cross, J. H., Bradbury, R. S., Fulford, A. J., Jallow, A. T., Wegmüller, R., Prentice, A. M., et al. (2015). Oral iron acutely elevates bacterial growth in human serum. Scientific Reports,5, 16670.  https://doi.org/10.1038/srep16670.CrossRefGoogle Scholar
  18. Direção Geral de Energia e Geologia. (2017). Frequência Termal em 2017. In: Direcção Geral de Energia e Geologia. Retrieved January 4, 2019, from http://www.dgeg.gov.pt/
  19. Direção-Geral da Saúde. (1989). Indicações Terapêuticas dos Estabelecimentos Termais Portugueses. In: Diário da Republica, 2a série, 23 Maio 1989. Retrieved January 9, 2019, https://www.dgs.pt/saude-ambiental/areas-de-intervencao/estabelecimentos-termais/legislacao-indicacoes-terapeuticas.aspx
  20. dos Santos, A. L., Santos, D. O., de Freitas, C. C., Ferreira, B. L. A., Afonso, I. F., Rodrigues, C. R., et al. (2007). Staphylococcus aureus: Visiting a strain of clinical importance. Jornal Brasileiro de Patologia e Medicina Laboratorial,43, 413–423.  https://doi.org/10.1021/ed067p473.CrossRefGoogle Scholar
  21. Duguid, I. G., Evans, E., Brown, M. R. W., & Gilbert, P. (1992). Growth-rate-independent killing by ciprofloxacin of biofilm-derived staphylococcus epidermidis evidence for cell-cycle dependency. Journal of Antimicrobial Chemotherapy,30, 791–802.  https://doi.org/10.1093/jac/30.6.791.CrossRefGoogle Scholar
  22. Faga, A., Nicoletti, G., Gregotti, C., Finotti, V., Nitto, A., & Gioglio, L. (2012). Effects of thermal water on skin regeneration. International Journal of Molecular Medicine,29, 732–740.  https://doi.org/10.3892/ijmm.2012.917.CrossRefGoogle Scholar
  23. Ferreira, M. O., Costa, P. C., & Bahia, M. F. (2010). Effect of São Pedro do sul thermal water on skin irritation. International Journal of Cosmetic Science,32, 205–210.  https://doi.org/10.1111/j.1468-2494.2010.00527.x.CrossRefGoogle Scholar
  24. Gomes, C., Carretero, M. I., Pozo, M., Maraver, F., Cantista, P., Armijo, F., et al. (2013). Peloids and pelotherapy: Historical evolution, classification and glossary. Applied Clay Science,75–76, 28–38.  https://doi.org/10.1016/j.clay.2013.02.008.CrossRefGoogle Scholar
  25. Gomes, C., Rocha, F., Silva, E., Patinha, C., Forjaz, V., Terroso, D. (2010). Benefits of mud/clay and thermal spring water in the. In Environment 2010: Situation and Perspectives for the European Union (pp 1–5)Google Scholar
  26. Hercogova, J., Stanghellini, E., Tsoureli-Nikita, E., & Menchini, G. (2002). Inhibitory effects of Leopoldine spa water on inflammation caused by sodium lauryl sulphate. Journal of the European Academy of Dermatology and Venereology,16, 263–266.  https://doi.org/10.1046/j.1468-3083.2002.00451.x.CrossRefGoogle Scholar
  27. Hernández Torres, A., et al. (2006). Técnicas y tecnologías en hidrología médica e hidroterapia . Informe de Evaluación de Tecnologías Sanitarias, 50, Agencia de Evaluación de Tecnologías Sanitarias (AETS), Instituto de Salud Carlos III, Ministerio de Sanidad y Consumo. Madrid.  Google Scholar
  28. INFARMED - Instituto Nacional da Farmácia e do Medicamento. (2009). Farmacopeia portuguesa 9: edição oficial (9th ed.). Fundação Calouste Gulbenkian: Lisboa.Google Scholar
  29. Inoue, T., Inoue, S., & Kubota, K. (1999). Bactericidal activity of manganese and iodide ions against staphylococcus aureus: A possible treatment for acute atopic dermatitis. Acta Dermato Venereologica,79, 360–362.  https://doi.org/10.1080/000155599750010265.CrossRefGoogle Scholar
  30. Ki, V., & Rotstein, C. (2008). Bacterial skin and soft tissue infections in adults: A review of their epidemiology, pathogenesis, diagnosis, treatment and site of care. Canadian Journal of Infectious Diseases and Medical Microbiology,19, 173–184.CrossRefGoogle Scholar
  31. Ko, H. H. T., Lareu, R. R., Dix, B. R., & Hughes, J. D. (2018). In vitro antibacterial effects of statins against bacterial pathogens causing skin infections. European Journal of Clinical Microbiology and Infectious Diseases,37, 1125–1135.  https://doi.org/10.1007/s10096-018-3227-5.CrossRefGoogle Scholar
  32. Kühbacher, A., Burger-Kentischer, A., & Rupp, S. (2017). Interaction of Candida Species with the skin. Microorganisms,5, 32.  https://doi.org/10.3390/microorganisms5020032.CrossRefGoogle Scholar
  33. Lee, H. P., Choi, Y. J., Cho, K. A., Woo, S. Y., Yun, S. T., Lee, J. T., et al. (2012). Effect of spa spring water on cytokine expression in human keratinocyte HaCaT cells and on differentiation of CD4+ T cells. Annals of Dermatology,24, 324–336.  https://doi.org/10.5021/ad.2012.24.3.324.CrossRefGoogle Scholar
  34. Matz, H., Orion, E., & Wolf, R. (2003). Balneotherapy in dermatology. Dermatologic Therapy,16, 132–140.  https://doi.org/10.1046/j.1529-8019.2003.01622.x.CrossRefGoogle Scholar
  35. McCaig, L. F., McDonald, L. C., Mandal, S., & Jernigan, D. B. (2006). Staphylococcus aureus-associated skin and soft tissue infections in ambulatory care. Emerging Infectious Diseases,12, 1715–1723.  https://doi.org/10.3201/eid1211.060190.CrossRefGoogle Scholar
  36. Meylan, P., Lang, C., Mermoud, S., Johannsen, A., Norrenberg, S., Hohl, D., et al. (2017). Skin colonization by Staphylococcus aureus precedes the clinical diagnosis of atopic dermatitis in infancy. J Invest Dermatol,137, 2497–2504.  https://doi.org/10.1016/j.jid.2017.07.834.CrossRefGoogle Scholar
  37. Nicoletti, G., Saler, M., Pellegatta, T., Tresoldi, M., Bonfanti, V., Malovini, A., et al. (2017). Ex vivo regenerative effects of a spring water. Biomed Reports,7, 508–514.  https://doi.org/10.3892/br.2017.1002.CrossRefGoogle Scholar
  38. Nouri, M., & Titley, K. (2003). Paediatrics—A review of the antibacterial effect of fluoride. Oral Health,93, 8–12.Google Scholar
  39. Nunes, S., & Tamura, B. (2012). Revisão histórica das águas termais. Surgical & Cosmetic Dermatology,3, 252–258.Google Scholar
  40. Otto, M. (2009). Staphylococcus epidermidis—the ‘accidental’ pathogen. Nature Reviews Microbiology,7, 555–567.  https://doi.org/10.1038/nrmicro2182.Staphylococcus.CrossRefGoogle Scholar
  41. Patruta, S. I., & Hörl, W. H. (1999). Iron and infection. Kidney International,55, S125–S130.  https://doi.org/10.1046/J.1523-1755.1999.055SUPPL.69125.X.CrossRefGoogle Scholar
  42. Petkovšek, Ž., Eleršič, K., Gubina, M., Žgur-Bertok, D., & Erjavec, M. S. (2009). Virulence potential of Escherichia coli isolates from skin and soft tissue infections. Journal of Clinical Microbiology,47, 1811–1817.  https://doi.org/10.1128/JCM.01421-08.CrossRefGoogle Scholar
  43. Quattrini, S., Pampaloni, B., & Brandi, M. L. (2016). Natural mineral waters: Chemical characteristics and health effects. Clinical Cases in Mineral and Bone Metabolism,13, 173–180.  https://doi.org/10.11138/ccmbm/2016.13.3.173.CrossRefGoogle Scholar
  44. Rebelo, M., da Silva, E. F., & Rocha, F. (2015). Characterization of Portuguese thermo-mineral waters to be applied in peloids maturation. Environmental Earth Sciences,73, 2843–2862.  https://doi.org/10.1007/s12665-014-3670-2.CrossRefGoogle Scholar
  45. Richard, M. J., Guiraud, P., Arnaud, J., Cadi, R., Monjo, A. M., Richard, A., et al. (2010). Pouvoir antioxydant d’une eau thermale séléniée sur des fibroblastes cutanés humains diploides. Journal français d’hydrologie,22, 119–125.  https://doi.org/10.1051/water/19912201119.CrossRefGoogle Scholar
  46. Ridaura, V. K., Bouladoux, N., Claesen, J., Chen, Y. E., Byrd, A. L., Constantinides, M. G., et al. (2018). Contextual control of skin immunity and inflammation by Corynebacterium. Journal of Experimental Medicine,215, 785–799.  https://doi.org/10.1084/jem.20171079.CrossRefGoogle Scholar
  47. Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics (5th ed.). Boston, MA: Allyn & Bacon/Pearson Education.Google Scholar
  48. Underhill, D. M., & Iliev, I. D. (2014). The mycobiota: Interactions between commensal fungi and the host immune system. Nature Reviews Immunology,14, 405–416.CrossRefGoogle Scholar
  49. Van Loveren, C. (2001). Antimicrobial activity of fluoride and its in vivo importance: Identification of research questions. Caries Research,35, 65–70.  https://doi.org/10.1159/000049114.CrossRefGoogle Scholar
  50. Zalas, P., Mikucka, A., & Gospodarek, E. (2004). Antibiotic sensitivity of Corynebacterium amycolatum. Medycyna Doswiadczalna I Mikrobiologia,56, 327–334.Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Health Sciences Research Centre (CICS-UBI)University of Beira InteriorCovilhãPortugal
  2. 2.Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
  3. 3.Department of Mathematics and Center of Mathematics and ApplicationsUniversity of Beira InteriorCovilhãPortugal
  4. 4.Faculty of Health SciencesUniversity of Beira InteriorCovilhãPortugal
  5. 5.Child and Woman’s Health DepartmentCova da Beira Hospital CentreCovilhãPortugal
  6. 6.Labfit–Health Products Research and Development LdaUBImedicalCovilhãPortugal
  7. 7.Faculty of MedicineUniversity of CoimbraCoimbraPortugal
  8. 8.Faculty of PharmacyUniversity of CoimbraCoimbraPortugal

Personalised recommendations