Advertisement

Effects of three biochars on copper immobilization and soil microbial communities in a metal-contaminated soil using a metallophyte and two agricultural plants

  • Sebastián Meier
  • Francisca Moore
  • María-Eugenia González
  • Jorge Medina
  • Pedro Campos
  • Naser Khan
  • Jonathan Cumming
  • Mario Sanhueza
  • Jaime Mejías
  • Arturo Morales
  • Juan Hirzel
  • Alex SeguelEmail author
Original Paper
  • 31 Downloads

Abstract

Biochar (BC) is a porous, carbonaceous material produced by slow pyrolysis of biomass under oxygen-limited conditions. BC production has been attracting research interest because it modifies soil physicochemical characteristics and improves the growth of plants in problem soils. These benefits may be best actualized for soils contaminated by metals, where remediation is hampered by metal toxicity to both plants and soil microbial communities. The objectives of this study were to evaluate the impact of the addition of chicken manure biochar (CMB), oat hull biochar (OHB), or pine bark biochar (PBB) on copper (Cu) bioavailability in a Cu-contaminated soil, the effectiveness of these BCs promoting plant growth, and its effects on soil microbial communities supporting these plants. A sandy soil (338 mg Cu kg−1) was amended with CMB, OHB, and PBB, and the metallophyte Oenothera picensis or the agricultural species Solanum lycopersicum and Lolium perenne were grown for 3 months. The BCs produced an increase in soil pH, reduced the exchangeable Cu, and increased Cu bound to organic matter and residual fractions. All BCs enhanced the quality of contaminated soil and increased the plant biomass production, notably for S. lycopersicum, which grew until 12 times more than plants in non-amended soil. While BC addition reduced the concentration of Cu in soil pore water, the amendment did not reduce the concentrations of Cu in shoot tissues. BC additions also stimulated soil microorganisms, increasing basal respiration and DHA activity and modifying microbial communities, especially in soils supporting L. perenne. These results indicate that BCs represent an effective tool to remediate Cu-contaminated sandy soils.

Keywords

Soil amendments Metal-contaminated soils Immobilization Microorganisms 

Notes

Acknowledgements

This research was supported by Fondecyt Project Number 11150480.

References

  1. Acuña, J. J., Jorquera, M. A., Barra, P. J., Crowley, D. E., & de la Luz Mora, M. (2013). Selenobacteria selected from the rhizosphere as a potential tool for Se biofortification of wheat crops. Biology and Fertility of Soils, 49(2), 175–185.  https://doi.org/10.1007/s00374-012-0705-2 CrossRefGoogle Scholar
  2. Adriano, D. C., Wenzel, W. W., Vangronsveld, J., & Bolan, N. S. (2004). Role of assisted natural remediation in environmental cleanup. Geoderma, 122(2–4), 121–142.  https://doi.org/10.1016/j.geoderma.2004.01.003.CrossRefGoogle Scholar
  3. Ahmad, M., Ok, Y. S., Kim, B.-Y., Ahn, J.-H., Lee, Y. H., Zhang, M., et al. (2016). Impact of soybean stover- and pine needle-derived biochars on Pb and As mobility, microbial community, and carbon stability in a contaminated agricultural soil. Journal of Environmental Management, 166, 131–139.  https://doi.org/10.1016/j.jenvman.2015.10.006 CrossRefGoogle Scholar
  4. Ahmad, M., Soo Lee, S., Yang, J. E., Ro, H. M., Han Lee, Y., & Sik Ok, Y. (2012). Effects of soil dilution and amendments (mussel shell, cow bone, and biochar) on Pb availability and phytotoxicity in military shooting range soil. Ecotoxicology and Environmental Safety, 79, 225–231.  https://doi.org/10.1016/j.ecoenv.2012.01.003.CrossRefGoogle Scholar
  5. Anderson, T., & Domsch, K. (1990). Application of ecophysiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories. Soil Biology & Biochemistry, 22, 251–255.CrossRefGoogle Scholar
  6. Atkinson, C. J., Fitzgerald, J. D., & Hipps, N. A. (2010). Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant and Soil, 337(1–2), 1–18.  https://doi.org/10.1007/s11104-010-0464-5.CrossRefGoogle Scholar
  7. Beesley, L., Moreno-Jimenez, E., Gomez-Eyles, J. L., Harris, E., Robinson, B., & Sizmur, T. (2011). A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environmental Pollution, 159(12), 3269–3282.  https://doi.org/10.1016/j.envpol.2011.07.023.CrossRefGoogle Scholar
  8. Burns, R. G., DeForest, J. L., Marxsen, J., Sinsabaugh, R. L., Stromberger, M. E., Wallenstein, M. D., et al. (2013). Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biology & Biochemistry.  https://doi.org/10.1016/j.soilbio.2012.11.009.CrossRefGoogle Scholar
  9. Cornejo, P., Meier, S., Borie, G., Rillig, M. C., & Borie, F. (2008). Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration. Science of the Total Environment, 406, 154–160.  https://doi.org/10.1016/j.scitotenv.2008.07.045.CrossRefGoogle Scholar
  10. Domene, X., Mattana, S., Hanley, K., Enders, A., & Lehmann, J. (2014). Medium-term effects of corn biochar addition on soil biota activities and functions in a temperate soil cropped to corn. Soil Biology & Biochemistry, 72, 152–162.  https://doi.org/10.1016/j.soilbio.2014.01.035.CrossRefGoogle Scholar
  11. Frey-Klett, P., Burlinson, P., Deveau, A., Barret, M., Tarkka, M., & Sarniguet, A. (2011). Bacterial-fungal interactions: Hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiology and Molecular Biology Reviews, 75(4), 583–609.  https://doi.org/10.1128/mmbr.00020-11.CrossRefGoogle Scholar
  12. Giller, K. E., Witter, E., & Mcgrath, S. P. (1998). Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review. Soil Biology & Biochemistry, 30(10–11), 1389–1414.  https://doi.org/10.1016/S0038-0717(97)00270-8.CrossRefGoogle Scholar
  13. Gu, Y., Wang, P., & Kong, C. H. (2009). Urease, invertase, dehydrogenase and polyphenoloxidase activities in paddy soil influenced by allelopathic rice variety. European Journal of Soil Biology, 45(5–6), 436–441.  https://doi.org/10.1016/j.ejsobi.2009.06.003.CrossRefGoogle Scholar
  14. Hass, A., Gonzalez, J. M., Lima, I. M., Godwin, H. W., Halvorson, J. J., & Boyer, D. G. (2012). Chicken manure biochar as liming and nutrient source for acid Appalachian soil. Journal of Environmental Quality, 41(4), 1096–1106.  https://doi.org/10.2134/Jeq2011.0124.CrossRefGoogle Scholar
  15. Igalavithana, A. D., Lee, S. E., Lee, Y. H., Tsang, D. C. W., Rinklebe, J., Kwon, E. E., et al. (2017). Heavy metal immobilization and microbial community abundance by vegetable waste and pine cone biochar of agricultural soils. Chemosphere, 174, 593–603.  https://doi.org/10.1016/j.chemosphere.2017.01.148.CrossRefGoogle Scholar
  16. Iwamoto, T., Tani, K., Nakamura, K., Suzuki, Y., Kitagawa, M., Eguchi, M., et al. (2000). Monitoring impact of in situ biostimulation treatment on groundwater bacterial community by DGGE. FEMS Microbial Ecology, 32, 129–141.CrossRefGoogle Scholar
  17. Jones, D. L., Edwards-Jones, G., & Murphy, D. V. (2011). Biochar mediated alterations in herbicide breakdown and leaching in soil. Soil Biology & Biochemistry, 43(4), 804–813.CrossRefGoogle Scholar
  18. Khodadad, C. L. M., Zimmerman, A. R., Green, S. J., Uthandi, S., & Foster, J. S. (2011). Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments. Soil Biology & Biochemistry, 43(2), 385–392.CrossRefGoogle Scholar
  19. Lehmann, J., & Joseph, S. (2009). Biochar for environmental management: Science and technology. London: Earthscan.Google Scholar
  20. Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota—A review. Soil Biology & Biochemistry, 43(9), 1812–1836.  https://doi.org/10.1016/j.soilbio.2011.04.022.CrossRefGoogle Scholar
  21. Lu, H., Li, Z., Fu, S., Méndez, A., Gascó, G., & Paz-Ferreiro, J. (2015). Combining phytoextraction and biochar addition improves soil biochemical properties in a soil contaminated with Cd. Chemosphere, 119, 209–216.  https://doi.org/10.1016/j.chemosphere.2014.06.024.CrossRefGoogle Scholar
  22. Lucchini, P., Quilliam, R. S., DeLuca, T. H., Vamerali, T., & Jones, D. L. (2014). Does biochar application alter heavy metal dynamics in agricultural soil? Agriculture, Ecosystems & Environment, 184, 149–157.  https://doi.org/10.1016/j.agee.2013.11.018.CrossRefGoogle Scholar
  23. McIntosh, J. L. (1969). Bray and Morgan soil test extractants modified for testing acid soils from different parent materials. Agronomy Journal, 61, 259–265.CrossRefGoogle Scholar
  24. Meier, S., Curaqueo, G., Khan, N., Bolan, N., Cea, M., Eugenia, G. M., et al. (2017a). Chicken-manure-derived biochar reduced bioavailability of copper in a contaminated soil. Journal of Soils and Sediments.  https://doi.org/10.1007/s11368-015-1256-6.CrossRefGoogle Scholar
  25. Meier, S., Curaqueo, G., Khan, N., Bolan, N., Rilling, J., Vidal, C., et al. (2015). Effects of biochar on copper immobilization and soil microbial communities in a metal-contaminated soil. Journal of Soils and Sediments.  https://doi.org/10.1007/s11368-015-1224-1.CrossRefGoogle Scholar
  26. Meier, S., Curaqueo, G., Khan, N., Bolan, N., Rilling, J., Vidal, C., et al. (2017b). Effects of biochar on copper immobilization and soil microbial communities in a metal-contaminated soil. Journal of Soils and Sediments.  https://doi.org/10.1007/s11368-015-1224-1.CrossRefGoogle Scholar
  27. Moore, F., González, M.-E., Khan, N., Curaqueo, G., Sanchez-Monedero, M., Rilling, J., et al. (2017). Copper immobilization by biochar and microbial community abundance in metal-contaminated soils. Science of the Total Environment.  https://doi.org/10.1016/j.scitotenv.2017.10.223.CrossRefGoogle Scholar
  28. Oustriere, N., Marchand, L., Galland, W., Gabbon, L., Lottier, N., Motelica, M., et al. (2016). Influence of biochars, compost and iron grit, alone and in combination, on copper solubility and phytotoxicity in a Cu-contaminated soil from a wood preservation site. Science of the Total Environment, 566, 816–825.  https://doi.org/10.1016/j.scitotenv.2016.05.091.CrossRefGoogle Scholar
  29. Park, J. H., Choppala, G. K., Bolan, N. S., Chung, J. W., & Chuasavathi, T. (2011). Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant and Soil, 348, 439–451.  https://doi.org/10.1007/s11104-011-0948-y.CrossRefGoogle Scholar
  30. Pietikäinen, J., Kiikkilä, O., & Fritze, H. (2000). Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos, 89, 231–242.CrossRefGoogle Scholar
  31. Rutigliano, F. A., Romano, M., Marzaioli, R., Baglivo, I., Baronti, S., Miglietta, F., et al. (2014). Effect of biochar addition on soil microbial community in a wheat crop. European Journal of Soil Biology, 60, 9–15.  https://doi.org/10.1016/j.ejsobi.2013.10.007.CrossRefGoogle Scholar
  32. Sadzawka, A., Carrasco, M. A., Grez, R., Mora, M., Flores, H., Neaman, A., et al. (2006). Métodos de análisis recomendados para los suelos de Chile. Santiago de Chile: Instituto de Investigaciones Agropecuarias.Google Scholar
  33. Salazar, S., Sánchez, L. E., Alvarez, J., Valverde, A., Galindo, P., Igual, J. M., et al. (2011). Correlation among soil enzyme activities under different forest system management practices. Ecological Engineering, 37(8), 1123–1131.  https://doi.org/10.1016/j.ecoleng.2011.02.007.CrossRefGoogle Scholar
  34. Seguel, A., Cumming, J. R., Klugh-Stewart, K., Cornejo, P., & Borie, F. (2013). The role of arbuscular mycorrhizas in decreasing aluminium phytotoxicity in acidic soils: A review. Mycorrhiza, 23(3), 167–183.  https://doi.org/10.1007/s00572-013-0479-x.CrossRefGoogle Scholar
  35. Shackley, S., Carter, S., Knowles, T., Middelink, E., Haefele, S., Sohi, S., et al. (2012). Sustainable gasification-biochar systems? A case-study of rice-husk gasification in Cambodia, Part I: Context, chemical properties, environmental and health and safety issues. Energy Policy, 42, 49–58.  https://doi.org/10.1016/j.enpol.2011.11.026.CrossRefGoogle Scholar
  36. Singh, J., & Singh, D. (2005). Dehydrogenase and phosphomonoenterase activities in groundnut (Arachis hypogacea L.) field after diazinon, imidacloprid and lindane treatments. Chemosphere, 60, 32–42.CrossRefGoogle Scholar
  37. Smith, J. L., Collins, H. P., & Bailey, V. L. (2010). The effect of young biochar on soil respiration. Soil Biology & Biochemistry, 42(12), 2345–2347.  https://doi.org/10.1016/j.soilbio.2010.09.013.CrossRefGoogle Scholar
  38. Tan, K. H. (2005). Soil Sampling, Preparation, and Analysis. Boca Raton, FL: CRC Press.  https://doi.org/10.1201/9781482274769.CrossRefGoogle Scholar
  39. Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential Extraction Procedure for the Speciation of Particulate Trace Metals. Analytical Chemistry, 51, 844–851.  https://doi.org/10.1021/ac50043a017 CrossRefGoogle Scholar
  40. Thies, J., & Rillig, M. C. (2009). Characteristics of biochar: biological properties. In J. Lehmann & S. Joseph (Eds.), Biochar for environmental management. London: Earthscan.Google Scholar
  41. USEPA. (2007). Microwave assisted acid digestion of sediments, sludges, soils and oils. Washington, DC: Environmental Protection Agency.Google Scholar
  42. Xu, T., Lou, L. P., Luo, L., Cao, R. K., Duan, D. C., & Chen, Y. X. (2012). Effect of bamboo biochar on pentachlorophenol leachability and bioavailability in agricultural soil. Science of the Total Environment, 414, 727–731.  https://doi.org/10.1016/j.scitotenv.2011.11.005.CrossRefGoogle Scholar
  43. Yuan, J. H., Xu, R. K., Wang, N., & Li, J. Y. (2011). Amendment of acid soils with crop residues and biochars. Pedosphere, 21(3), 302–308.CrossRefGoogle Scholar
  44. Zhang, X., Wang, H., He, L., Lu, K., Sarmah, A., Li, J., et al. (2013). Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environmental Science and Pollution Research, 20(12), 8472–8483.  https://doi.org/10.1007/s11356-013-1659-0.CrossRefGoogle Scholar
  45. Zhao, S., Feng, C., Wang, D., Liu, Y., & Shen, Z. (2013). Salinity increases the mobility of Cd, Cu, Mn, and Pb in the sediments of Yangtze Estuary: Relative role of sediments’ properties and metal speciation. Chemosphere, 91(7), 977–984.  https://doi.org/10.1016/j.chemosphere.2013.02.001.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Sebastián Meier
    • 1
  • Francisca Moore
    • 1
  • María-Eugenia González
    • 2
  • Jorge Medina
    • 2
    • 3
  • Pedro Campos
    • 2
    • 3
  • Naser Khan
    • 4
  • Jonathan Cumming
    • 5
  • Mario Sanhueza
    • 6
  • Jaime Mejías
    • 1
  • Arturo Morales
    • 1
  • Juan Hirzel
    • 7
  • Alex Seguel
    • 2
    • 3
    Email author
  1. 1.Instituto de Investigaciones AgropecuariasINIA CarillancaTemucoChile
  2. 2.Scientific and Technological Bioresource Nucleus, BIOREN-UFROUniversidad de La FronteraTemucoChile
  3. 3.Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSAUniversidad de La FronteraTemucoChile
  4. 4.NBERC, School of Natural and Built EnvironmentsUniversity of South AustraliaMawson LakesAustralia
  5. 5.Department of BiologyWest Virginia UniversityMorgantownUSA
  6. 6.Pharmacy FacultyUniversidad de ConcepciónConcepciónChile
  7. 7.Instituto de Investigaciones AgropecuariasINIA QuilamapuChillánChile

Personalised recommendations