The provenance of deep groundwater and its relation to arsenic distribution in the northwestern Hetao Basin, Inner Mongolia

  • Shuai Liu
  • Huaming GuoEmail author
  • Hai Lu
  • Zhuo Zhang
  • Weiguang Zhao
Original Paper


High-arsenic (As) groundwater has been widely found throughout the world. The source of groundwater would determine spatial distribution of groundwater As. In order to trace the source of high-As deep groundwater (DGW, depths > 50 m), groundwater, sediments, and local bedrock samples were taken to investigate chemical and isotopic compositions in the Hetao Basin, China. Results showed that 87Sr/86Sr in DGW gradually decreased with the increase in As concentrations along the approximate flow path. In recharge-oxic zone (Zone I), DGW was mainly recharged by fissure water, influenced mostly by weathering of phyllite bedrock and meta-basalt. In groundwater flow-moderate reducing zone (Zone II), DGW was mainly related to incongruent dissolution of feldspar. However, in groundwater flow-reducing zone (Zone III), DGW was partly recharged from shallow groundwater (SGW) with depths < 50 m. The mixing contributions of SGW to DGW in Zone III mostly exceeded 80% during groundwater irrigation season. In Zone I, DGW As concentrations were mostly lower than 50 μg/L due to oxic conditions. In Zone II, the weakly alkaline pH and the decreasing Ca/Na resulting from incongruent dissolution of feldspar caused As desorption, which was the major contribution to As mobilization (As mostly > 200 μg/L). In Zone III, the recharge of SGW introduced labile organic matter to support reduction of Fe(III) oxyhydroxides/oxides and predominantly led to As release into groundwater (As > 300 μg/L). This study has provided insights into the source of high-As DGW and the effect of SGW mixing on As mobilization.


Deep groundwater High As Sources 87Sr/86Sr Hydrogeological processes 



The study was financially supported by the National Natural Science Foundation of China (Grant Nos. 41825017, 41672225 and 41502259), the Fundamental Research Funds for the Central Universities (Grant Nos. 2652017165 and 2652017193), and the Fok Ying-Tung Education Foundation, China (Grant No. 131017). Constructive comments provided by editors and two anonymous reviewers are much appreciated.

Supplementary material

10653_2019_433_MOESM1_ESM.doc (1.7 mb)
Supplementary material 1 (DOC 1776 kb)


  1. Acharyya, S. K., Lahiri, S., Raymahashay, B. C., & Bhowmik, A. (2000). Arsenic toxicity of groundwater in parts of the Bengal basin in India and Bangladesh: the role of Quaternary stratigraphy and Holocene sea-level fluctuation. Environmental Geology, 39, 1127–1137.CrossRefGoogle Scholar
  2. Appelo, C. A. J., Van Der Weiden, M. J. J., Tournassat, C., & Charlet, L. (2002). Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic. Environmental Science and Technology, 36, 3096–3103.CrossRefGoogle Scholar
  3. Barbieri, M. (2019). Isotopes in hydrology and hydrogeology. Water, 11(2), 291. Scholar
  4. Berner, E. K., & Berner, R. A. (1987). The global water cycle: Geochemistry and environment. Englewood Cliffs, NJ: Prentice-Hall Inc.Google Scholar
  5. BGS & DPHE. (2001). Arsenic contamination of groundwater in Bangladesh. In Kinniburgh, D. G., & Smedley, P. L. (Eds.), BGS Technical Report. WC/00/19.Google Scholar
  6. Boschetti, T., Awaleh, M. O., & Barbieri, M. (2018). Waters from the Djiboutian Afar: A review of strontium isotopic composition and a comparison with Ethiopian waters and Red Sea brines. Water, 10(11), 1700. Scholar
  7. Capo, R. C., Stewart, B. W., & Chadwick, O. A. (1998). Strontium isotopes as tracers of ecosystem processes: Theory and methods. Geoderma, 82, 197–225.CrossRefGoogle Scholar
  8. Cartwright, I., Weaver, T., Cendón, D. I., & Swane, I. (2010). Environmental isotopes as indicators of inter-aquifer mixing, Wimmera region, Murray Basin, Southeast Australia. Chemical Geology, 277(3–4), 214–226.CrossRefGoogle Scholar
  9. Cartwright, I., Weaver, T., & Petrides, B. (2007). Controls on 87Sr/86Sr ratios of groundwater in silicate-dominated aquifers: SE Murray Basin, Australia. Chemical Geology, 246(1–2), 107–123.CrossRefGoogle Scholar
  10. Chowdhury, T. R., Basu, G. K., Mandal, B. K., Biswas, B. K., Samanta, G., Chowdhury, U. K., et al. (1999). Arsenic poisoning in the Ganges delta. Nature, 401, 545–546.CrossRefGoogle Scholar
  11. Christensen, J. N., Dafflon, B., Shiel, A. E., Tokunaga, T. K., Wan, J. M., Faybishenko, B., et al. (2018). Using strontium isotopes to evaluate the spatial variation of groundwater recharge. Science of the Total Environment, 637–638, 672–685.CrossRefGoogle Scholar
  12. Craig, H. (1961). Isotopic variations with meteoric water. Science, 133(1461), 1702–1703.CrossRefGoogle Scholar
  13. Do, S. H., Jo, Y. H., Park, J. Y., & Hong, S. H. (2014). As3+ removal by Ca–Mn–Fe3O4 with and without H2O2: Effects of calcium oxide in Ca–Mn–Fe3O4. Journal of Hazardous Materials, 280, 322–330.CrossRefGoogle Scholar
  14. Farina, F., & Stevens, G. (2011). Source controlled 87Sr/86Sr isotope variability in granitic magmas: The inevitable consequence of mineral-scale isotopic disequilibrium in the protolith. Lithos, 122(3–4), 189–200.CrossRefGoogle Scholar
  15. Faure, G. (1986). Principles of isotope geology (2nd ed., p. 589). New York: Wiley.Google Scholar
  16. Guo, H. M., Jia, Y. F., Wanty, R. B., Jiang, Y. X., Zhao, W. G., Xiu, W., et al. (2016a). Contrasting distributions of groundwater arsenic and uranium in the western Hetao basin, Inner Mongolia: Implication for origins and fate controls. Science of the Total Environment, 541, 1172–1190.CrossRefGoogle Scholar
  17. Guo, H. M., Li, X. M., Xiu, W., He, W., Cao, Y. S., Zhang, D., et al. (2019). Controls of organic matter bioreactivity on arsenic mobility in shallow aquifers of the Hetao Basin, P.R. China. Journal of Hydrology, 57, 448–459.CrossRefGoogle Scholar
  18. Guo, H. M., Liu, C., Lu, H., Wanty, R., Wang, J., & Zhou, Y. Z. (2013). Pathways of coupled arsenic and iron cycling in high arsenic groundwater of the Hetao basin, Inner Mongolia, China: An iron isotope approach. Geochimica et Cosmochimica Acta, 112, 130–145.CrossRefGoogle Scholar
  19. Guo, H. M., Liu, Z. Y., Ding, S. S., Hao, C. B., Xiu, W., & Hou, W. G. (2015). Arsenate reduction and mobilization in the presence of indigenous aerobic bacteria obtained from high arsenic aquifers of the Hetao basin, Inner Mongolia. Environmental Pollution, 203, 50–59.CrossRefGoogle Scholar
  20. Guo, H. M., Yang, S. Z., Tang, X. H., Li, Y., & Shen, Z. L. (2008). Groundwater geochemistry and its implications for arsenic mobilization in shallow aquifers of the Hetao Basin, Inner Mongolia. Science of the Total Environment, 393(1), 131–144.CrossRefGoogle Scholar
  21. Guo, H. M., Zhang, B., Li, Y., Berner, Z., Tang, X. H., Norra, S., et al. (2011). Hydrogeological and biogeochemical constrains of arsenic mobilization in shallow aquifers from the Hetao basin, Inner Mongolia. Environmental Pollution, 159, 876–883.CrossRefGoogle Scholar
  22. Guo, H. M., Zhang, D., Ni, P., Cao, Y. S., Li, F. L., Jia, Y. F., et al. (2017). On the scalability of hydrogeochemical factors controlling arsenic mobility in three major inland basins of P. R. China. Applied Geochemistry, 77, 15–23.CrossRefGoogle Scholar
  23. Guo, H. M., Zhou, Y. Z., Jia, Y. F., Tang, X. H., Li, X. F., Shen, M. M., et al. (2016b). Sulfur cycling-related biogeochemical processes of arsenic mobilization in the Western Hetao Basin, China: Evidence from multiple isotope approaches. Environmental Science and Technology, 50(23), 12650–12659.CrossRefGoogle Scholar
  24. Hagedorn, B., & Whittier, R. B. (2015). Solute sources and water mixing in a flashy mountainous stream (Pahsimeroi River, U.S. Rocky Mountains): Implications on chemical weathering rate and groundwater–surface water interaction. Chemical Geology, 391, 123–137.CrossRefGoogle Scholar
  25. Han, D., Liang, X., Jin, M. G., Currell, M. J., Han, Y., & Song, X. (2009). Hydrogeochemical indicators of groundwater flow systems in the Yangwu River alluvial fan, Xinzhou Basin, Shanxi, China. Environmental Management, 44(2), 243–255.CrossRefGoogle Scholar
  26. Harrington, G. A., & Herczeg, A. L. (2003). The importance of silicate weathering of a sedimentary aquifer in arid Central Australia indicated by very high 87Sr/86Sr ratios. Chemical Geology, 199(3–4), 281–292.CrossRefGoogle Scholar
  27. Hosono, T., Nakano, T., Igeta, A., Tayasu, I., Tanaka, T., & Yachi, S. (2007). Impact of fertilizer on a small watershed of Lake Biwa: Use of sulfur and strontium isotopes in environmental diagnosis. Science of the Total Environment, 384(1–3), 342–354.CrossRefGoogle Scholar
  28. Inner Mongolia Institute of Hydrogeology. (1982). Hydrogeological setting and remediation: Approaches of soil salinity in the Hetao Basin, Inner Mongolia. Scientific Report. (in Chinese).Google Scholar
  29. Jia, Y. F., Guo, H. M., Jiang, Y. X., Wu, Y., & Zhou, Y. Z. (2014). Hydrogeochemical zonation and its implication for arsenic mobilization in deep groundwaters near alluvial fans in the Hetao Basin, Inner Mongolia. Journal of Hydrology, 518, 410–420.CrossRefGoogle Scholar
  30. Jin, L., Mukasa, S. B., Hamilton, S. K., & Walter, L. M. (2012). Impacts of glacial/interglacial cycles on continental rock weathering inferred using Sr/Ca and 87Sr/86Sr ratios in Michigan watersheds. Chemical Geology, 300–301, 97–108.CrossRefGoogle Scholar
  31. Khaska, M., La Salle, C. L. G., Sassine, L., Cary, L., Brufuier, O., & Verdoux, P. (2018). Arsenic and metallic trace elements cycling in the surface water–groundwater–soil continuum down-gradient from a reclaimed mine area: Isotopic imprints. Journal of Hydrology, 558, 341–355.CrossRefGoogle Scholar
  32. Khaska, M., La Salle, C. L. G., Verdoux, P., & Boutin, R. (2015). Tracking natural and anthropogenic origins of dissolved arsenic during surface and groundwater interaction in a post-closure mining context: Isotopic constraints. Journal of Contaminant Hydrology, 177–178, 122–135.CrossRefGoogle Scholar
  33. Lengfelder, F., Grupe, G., Stallauer, A., Huth, R., & Sollner, F. (2018). Modelling strontium isotopes in past biospheres—Assessment of bioavailable 87Sr/86Sr ratios in local archaeological vertebrates based on environmental signatures. Science of the Total Environment, 648, 236–252.CrossRefGoogle Scholar
  34. Li, J. X., Wang, Y. X., Xie, X. J., & DePaolo, D. J. (2016). Effects of water-sediment interaction and irrigation practices on iodine enrichment in shallow groundwater. Journal of Hydrology, 543, 293–304.CrossRefGoogle Scholar
  35. Li, M. D., Wang, Y. X., Li, P., Deng, Y. M., & Xie, X. J. (2014a). δ34S and δ18O of dissolved sulfate as biotic tracer of biogeochemical influences on arsenic mobilization in groundwater in the Hetao Plain, Inner Mongolia, China. Ecotoxicology, 23(10), 1958–1968.CrossRefGoogle Scholar
  36. Li, Y., Guo, H. M., & Hao, C. B. (2014b). Arsenic release from shallow aquifers of the Hetao basin, Inner Mongolia: Evidence from bacterial community in aquifer sediments and groundwater. Ecotoxicology, 23(10), 1900–1914.CrossRefGoogle Scholar
  37. Liu, N. J., Deng, Y. M., & Wu, Y. (2017). Arsenic, iron and organic matter in quaternary aquifer sediments from western Hetao Basin, Inner Mongolia. Journal of Earth Science, 28(3), 473–483.CrossRefGoogle Scholar
  38. Ma, B., Jin, M. G., Liang, X., & Li, J. (2017). Groundwater mixing and mineralization processes in a mountain–oasis–desert basin, northwest China: Hydrogeochemistry and environmental tracer indicators. Hydrogeology Journal. Scholar
  39. McArthur, J. M., Ravenscroft, P., & Sracek, O. (2011). Aquifer arsenic source. Nature Geoscience, 4, 655–656.CrossRefGoogle Scholar
  40. McNutt, R. H. (2000). Strontium isotopes. In P. G. Cook & A. L. Herczec (Eds.), Environmental tracers in subsurface hydrology (pp. 233–260). Boston: Kluwer Academic Publishers.CrossRefGoogle Scholar
  41. Migaszewski, Z. M., Gałuszka, A., & Dołęgowska, S. (2018). Arsenic in the Wiśniówka acid mine drainage area (south-central Poland)—Mineralogy, hydrogeochemistry, remediation. Chemical Geology, 493, 491–503.CrossRefGoogle Scholar
  42. Moore, L. J., Murphy, T. J., Barnes, I. L., & Paulsen, P. J. (1982). Absolute isotopic abundance ratios and atomic weight of a reference sample of strontium. Journal of Research of National Bureau of Standards, 87(1), 1–8.CrossRefGoogle Scholar
  43. Polizzotto, M. L., Harvey, C. F., Li, G., Badruzzman, B., Ali, A., Newville, M., et al. (2006). Solid-phases and desorption processes of arsenic within Bangladesh sediments. Chemical Geology, 228, 97–111.CrossRefGoogle Scholar
  44. Postma, D., Pham, T. K. T., Sø, H. U., Hoang, V. H., Vi, M. L., Nguyen, T. T., et al. (2016). A model for the evolution in water chemistry of an arsenic contaminated aquifer over the last 6000 years, Red River floodplain, Vietnam. Geochimica et Cosmochimica Acta, 195, 277–292.CrossRefGoogle Scholar
  45. Qiu, G. H., Gao, T. Y., Hong, J., Luo, Y., Liu, L. H., Tan, W. F., et al. (2018). Mechanisms of interaction between arsenian pyrite and aqueous arsenite under anoxic and oxic conditions. Geochimica et Cosmochimica Acta, 228, 205–219.CrossRefGoogle Scholar
  46. Qu, S., Wang, G. C., Shi, Z. M., Xu, Q. Y., Guo, Y. Y., Ma, L., et al. (2018). Using stable isotopes (δD, δ18O, δ34S and 87Sr/86Sr) to identify sources of water in abandoned mines in the Fengfeng coal mining district, northern China. Hydrogeology Journal, 26(5), 1443–1453.CrossRefGoogle Scholar
  47. Rasul, S., Munir, A., Hossain, Z., Khan, A., Alauddin, M., & Hussam, A. (2002). Electrochemical measurement and speciation of inorganic arsenic in groundwater of Bangladesh. Talanta, 58, 33–43.CrossRefGoogle Scholar
  48. Ravenscroft, P. (2007). Predicting the global distribution of natural arsenic contamination of groundwater. Symposium on arsenic: The geography of a global problem. London: Rayal Geographical Society.Google Scholar
  49. Ravenscroft, P., McArthur, J. M., & Hoque, B. A. (2001). Geochemical and palaeohydrological controls on pollution of groundwater by arsenic. In W. R. Chappell, C. O. Abernathy, & R. Calderon (Eds.), Arsenic exposure and health effects IV (pp. 53–78). Oxford: Elsevier Science Ltd.Google Scholar
  50. Richards, L. A., Magnone, D., Boyce, A. J., Casaueva-Mcarenco, M. J., van Dongen, B. E., Ballentine, C. J., et al. (2018). Delineating sources of groundwater recharge in an arsenic-affected Holocene aquifer in Cambodia using stable isotope-based mixing models. Journal of Hydrology, 557, 321–334.CrossRefGoogle Scholar
  51. Rivett, M. O., Buss, S. R., Morgan, P., Smith, J. W. N., & Bemment, C. D. (2008). Nitrate attenuation in groundwater: A review of biogeochemical controlling processes. Water Research, 42, 4215–4232.CrossRefGoogle Scholar
  52. Santoni, S., Huneau, F., Garel, E., Aquilina, L., Vergnaud-Ayraud, V., Labasque, T., et al. (2016). Strontium isotopes as tracers of water-rocks interactions, mixing processes and residence time indicator of groundwater within the granite-carbonate coastal aquifer of Bonifacio (Corsica, France). Science of the Total Environment, 573, 233–246.CrossRefGoogle Scholar
  53. Shand, P., Darbyshire, D. P. F., Gooddy, D., & Haria, A. H. (2007). 87Sr/86Sr as an indicator of flowpaths and weathering rates in the Plynlimon experimental catchments, Wales, UK. Chemical Geology, 236(3–4), 247–265.CrossRefGoogle Scholar
  54. Shand, P., Darbyshire, D. P. F., Love, A. J., & Edmunds, W. M. (2009). Sr isotopes in natural waters: Applications to source characterisation and water–rock interaction in contrasting landscapes. Applied Geochemistry, 24(4), 574–586.CrossRefGoogle Scholar
  55. Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568.CrossRefGoogle Scholar
  56. Su, X. S., Wu, C. Y., Dong, W. H., & Hou, G. C. (2011). Strontium isotope evolution mechanism of the Cretaceous groundwater in Ordos Desert Plateau. Journal of Chengdu University of Technology (Science & Technology Edition), 38(3), 348–358. (in Chinese with English abstract).Google Scholar
  57. Tanboonchuy, V., Grisdanurak, N., & Liao, C. H. (2012). Background species effect on aqueous arsenic removal by nano zero-valent iron using fractional factorial design. Journal of Hazardous Materials, 205–206, 40–46.CrossRefGoogle Scholar
  58. Uliana, M. M., Banner, J. L., & Sharp, J. M., Jr. (2007). Regional groundwater flow paths in Trans-Pecos, Texas inferred from oxygen, hydrogen, and strontium isotopes. Journal of Hydrology, 334(3–4), 334–346.CrossRefGoogle Scholar
  59. van Geen, A., Zheng, Y., Versteeg, R., Stute, M., Horneman, A., Dhar, R., et al. (2003). Spatial variability of arsenic in 6000 tube wells in a 25 km2 area of Bangladesh. Water Resource Research, 39, 1140–1155.Google Scholar
  60. Vinson, D. S., McIntosh, J. C., Dwyer, G. S., & Vengosh, A. (2011). Arsenic and other oxyanion-forming trace elements in an alluvial basin aquifer: Evaluating sources and mobilization by isotopic tracers (Sr, B, S, O, H, Ra). Applied Geochemistry, 26(8), 1364–1376.CrossRefGoogle Scholar
  61. Wang, Y., Pi, K., Fendorf, S., Deng, Y., & Xie, X. (2019). Sedimentogenesis and hydrobiogeochemistry of high arsenic Late Pleistocene-Holocene aquifer systems. Earth-Science Reviews, 89, 79–98.CrossRefGoogle Scholar
  62. Wang, Y. X., Guo, Q. H., Su, C. L., & Ma, T. (2006). Strontium isotope characterization and major ion geochemistry of karst water flow, Shentou, northern China. Journal of Hydrology, 328(3–4), 592–603.CrossRefGoogle Scholar
  63. Wang, Y. X., Shvartsev, S. L., & Su, C. L. (2009). Genesis of arsenic/fluoride-enriched soda water: A case study at Datong, northern China. Applied Geochemistry, 24, 641–649.CrossRefGoogle Scholar
  64. Warner, N., Lgourna, Z., Bouchaou, L., Boutaleb, S., Tagma, T., Hsaissoune, M., et al. (2013). Integration of geochemical and isotopic tracers for elucidating water sources and salinization of shallow aquifers in the sub-Saharan Drâa Basin, Morocco. Applied Geochemistry, 34, 140–151.CrossRefGoogle Scholar
  65. Wen, B., Zhou, J. W., Zhou, A. G., Liu, C. F., & Xie, L. N. (2016). Sources, migration and transformation of antimony contamination in the water environment of Xikuangshan, China: Evidence from geochemical and stable isotope (S, Sr) signatures. Science of the Total Environment, 569–570, 114–122.CrossRefGoogle Scholar
  66. Winkel, L. H. E., Pham, T. K. T., Vi, M. L., Stengel, C., Amini, M., Nguyen, T. H., et al. (2011). Arsenic pollution of groundwater in Vietnam exacerbated by deep aquifer exploitation for more than a century. Proceedings of the National Academy of Sciences USA, 108, 1246–1251.CrossRefGoogle Scholar
  67. Xie, X. J., Wang, Y. X., Ellis, A., Su, C. L., Li, J. X., Li, M. D., et al. (2013). Delineation of groundwater flow paths using hydrochemical and strontium isotope composition: A case study in high arsenic aquifer systems of the Datong basin, northern China. Journal of Hydrology, 476, 87–96.CrossRefGoogle Scholar
  68. Yang, Y. C., Shen, Z. L., Weng, D. G., Hou, G. C., Zhao, Z. D., Wang, D., et al. (2009). Oxygen and hydrogen isotopes of waters in the Ordos basin, China: Implications for recharge of groundwater in the north of Cretaseous groundwater basin. Acta Geologica Sinica, 83, 103–113.CrossRefGoogle Scholar
  69. Yu, Q., Wang, Y. X., Xie, X. J., Currell, M., Pi, K. F., & Yu, M. (2015). Effects of short-term flooding on arsenic transport in groundwater system: A case study of the Datong Basin. Journal of Geochemical Exploration, 158, 1–9.CrossRefGoogle Scholar
  70. Yuan, R. Q., Liu, G. Q., Zhang, X. L., & Gao, H. W. (2006). Features of hydrogen and oxygen isotopes in groundwater of the shallow part of Yellow river delta. Journal of ShanDong University (Natural science), 41, 138–143. (in Chinese with English abstract).Google Scholar
  71. Yuan, R. X., Guo, H. M., Zhang, D., Li, Y., Zhang, Y. L., & Cao, W. G. (2017). Soluble components of sediments and their relation with dissolved arsenic in aquifers from the Hetao Basin, Inner Mongolia. Journal of Soils Sediments, 17(12), 2899–2911.CrossRefGoogle Scholar
  72. Zhang, G., Liu, H., Liu, R., & Qu, J. (2009). Adsorption behavior and mechanism of arsenate at Fe–Mn binary oxide/water interface. Journal of Hazardous Materials, 168(2–3), 820–825.CrossRefGoogle Scholar
  73. Zhang, Z., Guo, H. M., Zhao, W. G., Liu, S., Cao, Y. S., & Jia, Y. F. (2018). Influences of groundwater extraction on flow dynamics and arsenic levels in the western Hetao Basin, Inner Mongolia, China. Hydrogeology Journal, 26(5), 1499–1512.CrossRefGoogle Scholar
  74. Zhao, Q., Su, X. S., Kang, B., Zhang, Y., Wu, X. C., & Liu, M. Y. (2017). A hydrogeochemistry and multi-isotope (Sr, O, H, and C) study of groundwater salinity origin and hydrogeochemcial processes in the shallow confined aquifer of northern Yangtze River downstream coastal plain, China. Applied Geochemistry, 86, 49–58.CrossRefGoogle Scholar
  75. Zhou, Y. Z., Guo, H. M., Zhang, Z., Lu, H., Jia, Y. F., & Cao, Y. S. (2018). Characteristics and implication of stable carbon isotope in high arsenic groundwater systems in the northwest Hetao Basin, Inner Mongolia, China. Journal of Asian Earth Sciences, 163, 70–79.CrossRefGoogle Scholar
  76. Zielinski, M., Dopieralska, J., Belka, Z., Walczak, A., Siepak, M., & Jakubowicz, M. (2016). Sr isotope tracing of multiple water sources in a complex river system, Notec River, central Poland. Science of the Total Environment, 548–549, 307–316.CrossRefGoogle Scholar
  77. Zobrist, J., Dowdle, P. R., Davis, J. A., & Oremland, R. S. (2000). Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate. Environmental Science and Technology, 34, 4747–4753.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Biogeology and Environmental GeologyChina University of GeosciencesBeijingPeople’s Republic of China
  2. 2.School of Water Resources and EnvironmentChina University of Geosciences (Beijing)BeijingPeople’s Republic of China
  3. 3.The National Institute of MetrologyBeijingPeople’s Republic of China

Personalised recommendations