The mechanisms of biochar interactions with microorganisms in soil

  • Andrey V. GorovtsovEmail author
  • Tatiana M. Minkina
  • Saglara S. Mandzhieva
  • Leonid V. Perelomov
  • Gerhard Soja
  • Inna V. Zamulina
  • Vishnu D. Rajput
  • Svetlana N. Sushkova
  • Dinesh Mohan
  • Jun Yao
Original Paper


Biochar, a carbonaceous material, is increasingly used in the remediation of the anthropogenically polluted soils and the restoration of their ecological functions. However, the interaction mechanisms among biochar, inorganic and organic soil properties and soil biota are still not very clear. The effect of biochar on soil microorganisms is very diverse. Several mechanisms of these interactions were suggested. However, a well acceptable mechanism of biochar effect on soil microorganisms is still missing. Therefore, efforts were made to examine and proposed a mechanism of the interactions between biochar and microorganisms, as well as existing problems of biochar impacts on main groups of soil enzymes, the composition of the microbiota and the detoxification (heavy metals) and degradation (polycyclic aromatic hydrocarbons) of soil pollutants. The data on the process of biochar colonization by microorganisms and the effect of volatile pyrolysis products released by biochar on the soil microbiota were analysed in detail. The effects of biochar on the physico-chemical properties of soils, the content of mineral nutrients and the response of microbial communities to these changes are also discussed. The information provided here may contribute to the solution of the feasibility, effectiveness and safety of the biochar questions to enhance the soil fertility and to detoxify pollutants in soils.


Biochar Bacteria Remediation Co-sorbents Pollution 



This research was supported by projects of Ministry of Education and Science of Russia, No. 6.6222.2017/8.9 BP, Grant of the President of Russian Federation, No. MK-2973.2019.4, RFBR No. 19-29-05265 mk.


  1. Abujabhah, I. S., Doyle, R. B., Bound, S. A., & Bowman, J. P. (2018). Assessment of bacterial community composition, methanotrophic and nitrogen-cycling bacteria in three soils with different biochar application rates. Journal of Soils and Sediments, 18(1), 148–158.CrossRefGoogle Scholar
  2. Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., et al. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99, 19–33.CrossRefGoogle Scholar
  3. Aller, D., Rathke, S., Laird, D., Cruse, R., & Hatfield, J. (2017). Impacts of fresh and aged biochars on plant available water and water use efficiency. Geoderma, 307, 114–121.CrossRefGoogle Scholar
  4. Al-Wabel, M. I., Al-Omran, A., El-Naggar, A. H., Nadeem, M., & Usman, A. R. (2013). Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresource Technology, 131, 374–379.CrossRefGoogle Scholar
  5. Ameur, D., Zehetner, F., Johnen, S., Jöchlinger, L., Pardeller, G., Wimmer, B., et al. (2018). Activated biochar alters activities of carbon and nitrogen acquiring soil enzymes. Pedobiologia, 69, 1–10. Scholar
  6. Amini, S., Ghadiri, H., Chen, C., & Marschner, P. (2015). Salt-affected soils, reclamation, carbon dynamics, and biochar: A review. Journal of Soils and Sediments, 16(3), 939–953.CrossRefGoogle Scholar
  7. Andrade, C. A. D., Bibar, M. P. S., Coscione, A. R., Pires, A. M. M., & Soares, Á. G. (2015). Mineralization and effects of poultry litter biochar on soil cation exchange capacity. Pesquisa Agropecuária Brasileira, 50(5), 407–416.CrossRefGoogle Scholar
  8. Andrenelli, M. C., Maienza, A., Genesio, L., Miglietta, F., Pellegrini, S., Vaccari, F. P., et al. (2016). Field application of pelletized biochar: Short term effect on the hydrological properties of a silty clay loam soil. Agricultural Water Management, 163, 190–196.CrossRefGoogle Scholar
  9. Arshad, M., Khan, A. H. A., Hussain, I., Anees, M., Iqbal, M., Soja, G., et al. (2017). The reduction of chromium (VI) phytotoxicity and phytoavailability to wheat (Triticum aestivum L.) using biochar and bacteria. Applied Soil Ecology, 114, 90–98.CrossRefGoogle Scholar
  10. Bandara, T., Herath, I., Kumarathilaka, P., Seneviratne, M., Seneviratne, G., Rajakaruna, N., et al. (2017). Role of woody biochar and fungal-bacterial co-inoculation on enzyme activity and metal immobilization in serpentine soil. Journal of Soils and Sediments, 17(3), 665–673.CrossRefGoogle Scholar
  11. Beesley, L., Jimenez, E. M., & Eyles, J. L. G. (2010). Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environment Pollution, 158, 2282–2287.CrossRefGoogle Scholar
  12. Blanco-Canqui, H. (2017). Biochar and soil physical properties. Soil Science Society of America Journal, 81, 687.CrossRefGoogle Scholar
  13. Brewer, C. E., & Brown, R. C. (2012). Biochar. In A. Sayigh (Ed.), Comprehensive renewable energy (pp. 357–384). Oxford: Elsevier.CrossRefGoogle Scholar
  14. Budai, A., Rasse, D. P., Lagomarsino, A., Lerch, T. Z., & Paruch, L. (2016). Biochar persistence, priming and microbial responses to pyrolysis temperature series. Biology and Fertility of Soils, 52(6), 749–761.CrossRefGoogle Scholar
  15. Bueno, C., Fraceto, L., & Rosa, A. (2018). Biochar influence the production and release of Exopolysaccharides on plant growth promoting bacteria. Chemical Engineering Transactions, 65, 823–828.Google Scholar
  16. Burrell, L. D., Zehetner, F., Rampazzo, N., Wimmer, B., & Soja, G. (2016). Long-term effects of biochar on soil physical properties. Geoderma, 282, 96–102.CrossRefGoogle Scholar
  17. Buss, W., & Mašek, O. (2016). High-VOC biochar—Effectiveness of post-treatment measures and potential health risks related to handling and storage. Environmental Science and Pollution Research, 23(19), 19580–19589.CrossRefGoogle Scholar
  18. Buss, W., Mašek, O., Graham, M., & Wüst, D. (2015). Inherent organic compounds in biochar–their content, composition and potential toxic effects. Journal of Environmental Management, 156, 150–157.CrossRefGoogle Scholar
  19. Caesar-TonThat, T., Lenssen, A. W., Caesar, A. J., Sainju, U. M., & Gaskin, J. F. (2010). Effects of tillage on microbial populations associated to soil aggregation in dryland spring wheat system. European Journal of Soil Biology, 46(2), 119–127.CrossRefGoogle Scholar
  20. Case, S. D., McNamara, N. P., Reay, D. S., & Whitaker, J. (2012). The effect of biochar addition on N2O and CO2 emissions from a sandy loam soil–The role of soil aeration. Soil Biology & Biochemistry, 51, 125–134.CrossRefGoogle Scholar
  21. Chen, B., Yuan, M., & Qian, L. (2012). Enhanced bioremediation of PAH-contaminated soil by immobilized bacteria with plant residue and biochar as carriers. Journal of Soils and Sediments, 12(9), 1350–1359.CrossRefGoogle Scholar
  22. Chen, D., Liu, X., Bian, R., Cheng, K., Zhang, X., Zheng, J., et al. (2018a). Effects of biochar on availability and plant uptake of heavy metals–A meta-analysis. Journal of Environmental Management, 222, 76–85.CrossRefGoogle Scholar
  23. Chen, J., Dong, J., Chang, J., Guo, T., Yang, Q., Jia, W., et al. (2018b). Characterization of an Hg(II)-volatilizing Pseudomonas sp. strain, DC-B1, and its potential for soil remediation when combined with biochar amendment. Ecotoxicology and Environmental Safety, 163, 172–179.CrossRefGoogle Scholar
  24. Chen, L., Zheng, H., & Wang, Z. Y. (2013). The formation of toxic compounds during biochar production. Applied Mechanics and Materials, 361, 867–870.CrossRefGoogle Scholar
  25. Chen, S., Rotaru, A. E., Shrestha, P. M., Malvankar, N. S., Liu, F., Fan, W., et al. (2014a). Promoting interspecies electron transfer with biochar. Scientific Reports, 4, 5019.CrossRefGoogle Scholar
  26. Chen, Z., Xiao, X., Chen, B., & Zhu, L. (2014b). Quantification of chemical states, dissociation constants and contents of oxygen-containing groups on the surface of biochars produced at different temperatures. Environmental Science and Technology, 49(1), 309–317.CrossRefGoogle Scholar
  27. Cheng, H., Jones, D. L., Hill, P., Bastami, M. S., & Tu, C. L. (2018). Influence of biochar produced from different pyrolysis temperature on nutrient retention and leaching. Archives of Agronomy and Soil Science, 64(6), 850–859.CrossRefGoogle Scholar
  28. Chincholkar, S. B., Chaudhari, B. L., Talegaonkar, S. K., & Kothari, R. M. (2000). Microbial iron chelators: A sustainable tool for the biocontrol of plant diseases. In R. K. Upadhyay, K. G. Mukerji, & B. P. Chamola (Eds.), Biocontrol potential and its exploitation in sustainable agriculture (pp. 49–70). Boston, MA: Springer.CrossRefGoogle Scholar
  29. Clough, T. J., Condron, L. M., Kammann, C., & Müller, C. (2013). A review of biochar and soil nitrogen dynamics. Agronomy, 3(2), 275–293.CrossRefGoogle Scholar
  30. Cornelissen, G., & Hale, S. E. (2017). Polycyclic aromatic hydrocarbons in biochar. In B. Singh, M. C. Arbestain, & J. Lehmann (Eds.), Biochar: A guide to analytical methods (p. 126).Google Scholar
  31. Costerton, J. W., Cheng, K. J., Geesey, G. G., Ladd, T. I., Nickel, J. C., Dasgupta, M., et al. (1987). Bacterial biofilms in nature and disease. Annual Reviews in Microbiology, 41(1), 435–464.CrossRefGoogle Scholar
  32. Crowe, J. D., & Olsson, S. (2001). Induction of laccase activity in Rhizoctonia solani by antagonistic Pseudomonas fluorescens strains and a range of chemical treatments. Applied and Environmental Microbiology, 67(5), 2088–2094.CrossRefGoogle Scholar
  33. Dan, T., Qu, Z., Mang-Mang, G., Bo, L., & Yi-Jia, L. (2015). Experimental study of influence of biochar on different texture soil hydraulic characteristic parameters and moisture holding properties. Polish Journal of Environmental Studies, 24, 1435–1442.Google Scholar
  34. DeLuca, T. H., Gundale, M. J., MacKenzie, M. D., & Jones, D. L. (2015). Biochar effects on soil nutrient transformations. Biochar for Environmental Management: Science, Technology and Implementation, 2, 421–454.Google Scholar
  35. Demisie, W., Liu, Z., & Zhang, M. (2014). Effect of biochar on carbon fractions and enzyme activity of red soil. Catena, 121, 214–221.CrossRefGoogle Scholar
  36. Ding, Y., Liu, Y., Liu, S., Li, Z., Tan, X., Huang, X., et al. (2016). Biochar to improve soil fertility. A review. Agronomy for Sustainable Development, 36, 36.CrossRefGoogle Scholar
  37. Donlan, R. M. (2002). Biofilms: Microbial life on surfaces. Emerging Infectious Diseases, 8(9), 881.CrossRefGoogle Scholar
  38. Downie, A., Crosky, A., & Munroe, P. (2009). Physical properties of biochar. In J. Lehmann & S. Joseph (Eds.), Biochar for environmental management: Science and technology (pp. 13–32). Earthscan in the UK and USA.Google Scholar
  39. Dunnigan, L., Ashman, P. J., Zhang, X., & Kwong, C. W. (2018). Production of biochar from rice husk: Particulate emissions from the combustion of raw pyrolysis volatiles. Journal of Cleaner Production, 172, 1639–1645.CrossRefGoogle Scholar
  40. Dutta, T., Kwon, E., Bhattacharya, S. S., Jeon, B. H., Deep, A., Uchimiya, M., et al. (2017). Polycyclic aromatic hydrocarbons and volatile organic compounds in biochar and biochar-amended soil: A review. Gcb Bioenergy, 9(6), 990–1004.CrossRefGoogle Scholar
  41. EBC (2012) European biochar certificate—Guidelines for a sustainable production of biochar. European Biochar Foundation (EBC), Arbaz, Switzerland. Version 8E of 1st January 2019.
  42. Egamberdieva, D., Hua, M., Reckling, M., Wirth, S., & Bellingrath-Kimura, S. D. (2018). Potential effects of biochar-based microbial inoculants in agriculture. Environmental Sustainability, 1(1), 19–24.CrossRefGoogle Scholar
  43. European Commission JRC 66955. (2011). Joint Research Center—Institute for Reference Material and Measurements. Polycyclic Aromatic Hydrocarbons (PAHs) factsheet—4th Edn. Ed. Donata Lerda, 27 pp.Google Scholar
  44. Fang, G., Gao, J., Liu, C., Dionysiou, D. D., Wang, Y., & Zhou, D. (2014). Key role of persistent free radicals in hydrogen peroxide activation by biochar: Implications to organic contaminant degradation. Environmental Science and Technology, 48(3), 1902–1910.CrossRefGoogle Scholar
  45. Fang, G., Liu, C., Gao, J., Dionysiou, D. D., & Zhou, D. (2015). Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation. Environmental Science and Technology, 49(9), 5645–5653.CrossRefGoogle Scholar
  46. Farrell, M., Kuhn, T. K., Macdonald, L. M., Maddern, T. M., Murphy, D. V., Hall, P. A., et al. (2013). Microbial utilisation of biochar-derived carbon. Science of the Total Environment, 465, 288–297.CrossRefGoogle Scholar
  47. Fernandez, P., Grimalt, J. O., & Vilanova, R. M. (2002). Atmospheric gas/particle partitioning of polycyclic aromatic hydrocarbons in high mountain regions of Europe. Environmental Science and Technology, 36, 1162–1168.CrossRefGoogle Scholar
  48. Fidel, R. B., Laird, D. A., & Spokas, K. A. (2018). Sorption of ammonium and nitrate to biochars is electrostatic and pH-dependent. Scientific Reports, 8, 17627.CrossRefGoogle Scholar
  49. Foster, R. C. (1988). Microenvironment of soil microorganisms. Biology and Fertility of Soils, 6, 189–203.CrossRefGoogle Scholar
  50. Fox, A., Kwapinski, W., Griffiths, B. S., & Schmalenberger, A. (2014). The role of sulfur-and phosphorus-mobilizing bacteria in biochar-induced growth promotion of Lolium perenne. FEMS Microbiology Ecology, 90(1), 78–91.CrossRefGoogle Scholar
  51. Freddo, A., Cai, C., & Reid, B. J. (2012). Environmental contextualisation of potential toxic elements and polycyclic aromatic hydrocarbons in biochar. Environmental Pollution, 171, 18–24.CrossRefGoogle Scholar
  52. Frey, S. D. (2015). The spatial distribution of soil biota. In E. A. Paul (Ed.), Soil microbiology, ecology, and biochemistry (pp. 223–244). London: Academic Press.CrossRefGoogle Scholar
  53. Gao, S., DeLuca, T. H., & Cleveland, C. C. (2019). Biochar additions alter phosphorus and nitrogen availability in agricultural ecosystems: A meta-analysis. Science of the Total Environment, 654, 463–472.CrossRefGoogle Scholar
  54. Ghidotti, M., Fabbri, D., & Hornung, A. (2016). Profiles of volatile organic compounds in biochar: Insights into process conditions and quality assessment. ACS Sustainable Chemistry and Engineering, 5(1), 510–517.CrossRefGoogle Scholar
  55. Gibson, C., Berry, T. D., Wang, R., Spencer, J. A., Johnston, C. T., Jiang, Y., et al. (2016). Weathering of pyrogenic organic matter induces fungal oxidative enzyme response in single culture inoculation experiments. Organic Geochemistry, 92, 32–41.CrossRefGoogle Scholar
  56. Gibson, C., Hatton, P. J., Bird, J. A., Nadelhoffer, K., Le Moine, J., & Filley, T. (2018). Tree taxa and pyrolysis temperature interact to control pyrogenic organic matter induced native soil organic carbon priming. Soil Biology & Biochemistry, 119, 174–183.CrossRefGoogle Scholar
  57. Głodowska, M., Schwinghamer, T., Husk, B., & Smith, D. (2017). Biochar based inoculants improve soybean growth and nodulation. Agricultural Science, 8, 1048–1064.CrossRefGoogle Scholar
  58. Gong, W., Liu, X., Tao, L., Xue, W., Fu, W., & Cheng, D. (2014). Reduction of nitrobenzene with sulfides catalyzed by the black carbons from crop-residue ashes. Environmental Science and Pollution Research, 21(9), 6162–6169.CrossRefGoogle Scholar
  59. Gorbov, S. N., Bezuglova, O. S., Varduni, T. V., Gorovtsov, A. V., Tagiverdiev, S. S., & Hildebrant, Y. A. (2015). Genotoxicity and contamination of natural and anthropogenically transformed soils of the city of Rostov-on-Don with heavy metals. Eurasian Soil Science, 48(12), 1383–1392.CrossRefGoogle Scholar
  60. Gorovtsov, A. V., Sazykin, I. S., & Sazykina, M. A. (2018). The influence of heavy metals, polyaromatic hydrocarbons, and polychlorinated biphenyls pollution on the development of antibiotic resistance in soils. Environmental Science and Pollution Research, 25(10), 9283–9292.CrossRefGoogle Scholar
  61. Graber, E. R., Harel, Y. M., Kolton, M., Cytryn, E., Silber, A., David, D. R., et al. (2010). Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant and Soil, 337(1–2), 481–496.CrossRefGoogle Scholar
  62. Gul, S., Whalen, J. K., Thomas, B. W., Sachdeva, V., & Deng, H. (2015). Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agriculture, Ecosystems & Environment, 206, 46–59.CrossRefGoogle Scholar
  63. Günal, E., Erdem, H., & Demirbaş, A. (2018). Effects of three biochar types on activity of β-glucosidase enzyme in two agricultural soils of different textures. Archives of Agronomy and Soil Science, 64(14), 1963–1974.CrossRefGoogle Scholar
  64. Gupta, R., Yadav, S. S., Verma, S. K., & Dubey, S. K. (2018). Siderophore production and biocontrol potential of rhizobium isolated from non-traditional leguminous crop in MP. International Journal of Pure & Applied Bioscience, 6(2), 142–145.CrossRefGoogle Scholar
  65. Hagemann, N., Joseph, S., Schmidt, H. P., Kammann, C. I., Harter, J., Borch, T., et al. (2017). Organic coating on biochar explains its nutrient retention and stimulation of soil fertility. Nature Communications, 8(1), 1089.CrossRefGoogle Scholar
  66. Hale, L., Luth, M., & Crowley, D. (2015). Biochar characteristics relate to its utility as an alternative soil inoculum carrier to peat and vermiculite. Soil Biology & Biochemistry, 81, 228–235.CrossRefGoogle Scholar
  67. Hale, S. E., Lehmann, J., Rutherford, D., Zimmerman, A. R., Bachmann, R. T., Shitumbanuma, V., et al. (2012). Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars. Environmental Science and Technology, 46(5), 2830–2838.CrossRefGoogle Scholar
  68. Hammer, E. C., Forstreuter, M., Rillig, M. C., & Kohler, J. (2015). Biochar increases arbuscular mycorrhizal plant growth enhancement and ameliorates salinity stress. Applied Soil Ecology, 96, 114–121.CrossRefGoogle Scholar
  69. Hardie, M., Clothier, B., Bound, S., Oliver, G., & Close, D. (2014). Does biochar influence soil physical properties and soil water availability? Plant and Soil, 376(1–2), 347–361.CrossRefGoogle Scholar
  70. Harris, K., Gaskin, J., Cabrera, M., Miller, W., & Das, K. C. (2013). Characterization and mineralization rates of low temperature peanut hull and pine chip biochars. Agronomy, 3(2), 294–312.CrossRefGoogle Scholar
  71. Haselwandter, K. (1995). Mycorrhizal fungi: Siderophore production. Critical Reviews in Biotechnology, 15(3–4), 287–291.CrossRefGoogle Scholar
  72. Holmes, D. E., Shrestha, P. M., Walker, D. J., Dang, Y., Nevin, K. P., Woodard, T. L., et al. (2017). Metatranscriptomic evidence for direct interspecies electron transfer between Geobacter and Methanothrix species in methanogenic rice paddy soils. Applied and Environmental Microbiology. Scholar
  73. IARC. (1983a). Polynuclear aromatic compounds. Part I: Chemical, environmental and experimental data. Lyon: International Agency for Research on Cancer.Google Scholar
  74. IARC (International Agency for Research on Cancer). (1983b). IARC monographs on the evaluation of the carcino genic risk of chemicals to humans. Polynuclear aromatic compounds. Part I. Chemical, environmental and experimental data (Vol. 32). France: Lyon.Google Scholar
  75. IBI standardized product definition and product testing guidelines for biochar that is used in soil (Version of Nov. 23, 2015).Google Scholar
  76. Ibrahim, H. M., Al-Wabel, M. I., Usman, A. R., & Al-Omran, A. (2013). Effect of Conocarpus biochar application on the hydraulic properties of a sandy loam soil. Soil Science, 178(4), 165–173.CrossRefGoogle Scholar
  77. Igalavithana, A. D., Lee, S. E., Lee, Y. H., Tsang, D. C., Rinklebe, J., Kwon, E. E., et al. (2017). Heavy metal immobilization and microbial community abundance by vegetable waste and pine cone biochar of agricultural soils. Chemosphere, 174, 593–603.CrossRefGoogle Scholar
  78. Jaiswal, A. K., Elad, Y., Paudel, I., Graber, E. R., Cytryn, E., & Frenkel, O. (2017). Linking the belowground microbial composition, diversity and activity to soilborne disease suppression and growth promotion of tomato amended with biochar. Scientific Reports, 7, 44382.CrossRefGoogle Scholar
  79. Jaiswal, A. K., Frenkel, O., Tsechansky, L., Elad, Y., & Graber, E. R. (2018). Immobilization and deactivation of pathogenic enzymes and toxic metabolites by biochar: A possible mechanism involved in soilborne disease suppression. Soil Biology & Biochemistry, 121, 59–66.CrossRefGoogle Scholar
  80. Jatav, H. S., Singh, S. K., Singh, Y., & Kumar, O. (2018). Biochar and sewage sludge application increases yield and micronutrient uptake in rice (Oryza sativa L.). Communications in Soil Science and Plant Analysis, 49(13), 1617–1628.CrossRefGoogle Scholar
  81. Jien, S. H., & Wang, C. S. (2013). Effects of biochar on soil properties and erosion potential in a highly weathered soil. Catena, 110, 225–233.CrossRefGoogle Scholar
  82. Jin, H. (2010). Characterization of microbial life colonizing biochar and biochar-amended soils. Doctoral dissertation, Cornell University.Google Scholar
  83. Joseph, S., Kammann, C. I., Shepherd, J. G., Conte, P., Schmidt, H. P., Hagemann, N., et al. (2018). Microstructural and associated chemical changes during the composting of a high temperature biochar: Mechanisms for nitrate, phosphate and other nutrient retention and release. Science of the Total Environment, 618, 1210–1223.CrossRefGoogle Scholar
  84. Kappler, A., Wuestner, M. L., Ruecker, A., Harter, J., Halama, M., & Behrens, S. (2014). Biochar as an electron shuttle between bacteria and Fe(III) minerals. Environmental Science and Technology Letters, 1(8), 339–344.CrossRefGoogle Scholar
  85. Keiblinger, K. M., Zehetner, F., Mentler, A., & Zechmeister-Boltenstern, S. (2018). Biochar application increases sorption of nitrification inhibitor 3,4-dimethylpyrazole phosphate in soil. Environmental Science and Pollution Research, 25(11), 11173–11177.CrossRefGoogle Scholar
  86. Keiluweit, M., Nico, P. S., Johnson, M. G., & Kleber, M. (2010). Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental Science and Technology, 44(4), 1247–1253.CrossRefGoogle Scholar
  87. Khademalrasoul, A., Naveed, M., Heckrath, G., Kumari, K. G. I. D., de Jonge, L. W., Elsgaard, L., et al. (2014). Biochar effects on soil aggregate properties under no-till maize. Soil Science, 179(6), 273–283.CrossRefGoogle Scholar
  88. Kloss, S., Zehetner, F., Wimmer, B., Buecker, J., Rempt, F., & Soja, G. (2014). Biochar application to temperate soils: Effects on soil fertility and crop growth under greenhouse conditions. Journal of Plant Nutrition and Soil Science, 177(1), 3–15.CrossRefGoogle Scholar
  89. Knox, O. G., Weitz, H. J., Anderson, P., Borlinghaus, M., & Fountaine, J. (2018). Improved screening of biochar compounds for potential toxic activity with microbial biosensors. Environmental Technology and Innovation, 9, 254–264.CrossRefGoogle Scholar
  90. Koide, R. T. (2017). Biochar—Arbuscular mycorrhiza interaction in temperate soils. In N. Johnson, C. Gehring & J. Jansa (Eds.), Mycorrhizal mediation of soil (pp. 461–477). Elsevier.Google Scholar
  91. Kołtowski, M., & Oleszczuk, P. (2015). Toxicity of biochars after polycyclic aromatic hydrocarbons removal by thermal treatment. Ecological Engineering, 75, 79–85.CrossRefGoogle Scholar
  92. Kong, L., Gao, Y., Zhou, Q., Zhao, X., & Sun, Z. (2018). Biochar accelerates PAHs biodegradation in petroleum-polluted soil by biostimulation strategy. Journal of Hazardous Materials, 343, 276–284.CrossRefGoogle Scholar
  93. Kotasthane, A. S., Agrawal, T., Zaidi, N. W., & Singh, U. S. (2017). Identification of siderophore producing and cynogenic fluorescent Pseudomonas and a simple confrontation assay to identify potential bio-control agent for collar rot of chickpea. 3 Biotech, 7(2), 137. Scholar
  94. Krause, H. M., Hüppi, R., Leifeld, J., El-Hadidi, M., Harter, J., Kappler, A., et al. (2018). Biochar affects community composition of nitrous oxide reducers in a field experiment. Soil Biology & Biochemistry, 119, 143–151.CrossRefGoogle Scholar
  95. Kumar, A., Joseph, S., Tsechansky, L., Privat, K., Schreiter, I. J., Schüth, C., et al. (2018). Biochar aging in contaminated soil promotes Zn immobilization due to changes in biochar surface structural and chemical properties. Science of the Total Environment, 626, 953–961.CrossRefGoogle Scholar
  96. Kuśmierz, M., Oleszczuk, P., Kraska, P., Pałys, E., & Andruszczak, S. (2016). Persistence of polycyclic aromatic hydrocarbons (PAHs) in biochar-amended soil. Chemosphere, 146, 272–279.CrossRefGoogle Scholar
  97. Lammirato, C., Miltner, A., & Kaestner, M. (2011). Effects of wood char and activated carbon on the hydrolysis of cellobiose by β-glucosidase from Aspergillus niger. Soil Biology & Biochemistry, 43(9), 1936–1942.CrossRefGoogle Scholar
  98. Leben, C. (1969). Colonization of soybean buds by bacteria: Observations with the scanning electron microscope. Canadian Journal of Microbiology, 15(3), 319–320.CrossRefGoogle Scholar
  99. Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota–a review. Soil Biology & Biochemistry, 43(9), 1812–1836.CrossRefGoogle Scholar
  100. Li, J., Li, Q., Qian, C., Wang, X., Lan, Y., Wang, B., & Yin, W. (2019). Volatile organic compounds analysis and characterization on activated biochar prepared from rice husk. International Journal of Environmental Science and Technology Scholar
  101. Liang, C., Zhu, X., Fu, S., Méndez, A., Gascó, G., & Paz-Ferreiro, J. (2014). Biochar alters the resistance and resilience to drought in a tropical soil. Environmental Research Letters, 9(6), 064013.CrossRefGoogle Scholar
  102. Liao, S., Pan, B., Li, H., Zhang, D., & Xing, B. (2014). Detecting free radicals in biochars and determining their ability to inhibit the germination and growth of corn, wheat and rice seedlings. Environmental Science and Technology, 48(15), 8581–8587.CrossRefGoogle Scholar
  103. Limwikran, T., Kheoruenromne, I., Suddhiprakarn, A., Prakongkep, N., & Gilkes, R. J. (2018). Dissolution of K, Ca, and P from biochar grains in tropical soils. Geoderma, 312, 139–150.CrossRefGoogle Scholar
  104. Liu, C., Liu, F., Ravnskov, S., Rubæk, G. H., Sun, Z., & Andersen, M. N. (2017a). Impact of wood biochar and its interactions with mycorrhizal fungi, phosphorus fertilization and irrigation strategies on potato growth. Journal of Agronomy and Crop Science, 203(2), 131–145.CrossRefGoogle Scholar
  105. Liu, H., Xu, F., Xie, Y., Wang, C., Zhang, A., Li, L., et al. (2018). Effect of modified coconut shell biochar on availability of heavy metals and biochemical characteristics of soil in multiple heavy metals contaminated soil. Science of the Total Environment, 645, 702–709.CrossRefGoogle Scholar
  106. Liu, Q., Liu, B., Zhang, Y., Lin, Z., Zhu, T., Sun, R., et al. (2017b). Can biochar alleviate soil compaction stress on wheat growth and mitigate soil N2O emissions? Soil Biology & Biochemistry, 104, 8–17.CrossRefGoogle Scholar
  107. Lobelle, D., & Cunliffe, M. (2011). Early microbial biofilm formation on marine plastic debris. Marine Pollution Bulletin, 62(1), 197–200.CrossRefGoogle Scholar
  108. Lovley, D. R. (2017). Syntrophy goes electric: Direct interspecies electron transfer. Annual Review of Microbiology, 71, 643–664.CrossRefGoogle Scholar
  109. Lu, K., Yang, X., Gielen, G., Bolan, N., Ok, Y. S., Niazi, N. K., et al. (2017). Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. Journal of Environmental Management, 186, 285–292.CrossRefGoogle Scholar
  110. Luo, Y., Lin, Q., Durenkamp, M., & Kuzyakov, Y. (2018). Does repeated biochar incorporation induce further soil priming effect? Journal of Soils and Sediments, 18(1), 128–135.CrossRefGoogle Scholar
  111. Lwin, C. S., Seo, B. H., Kim, H. U., Owens, G., & Kim, K. R. (2018). Application of soil amendments to contaminated soils for heavy metal immobilization and improved soil quality—A critical review. Soil Science and Plant Nutrition, 64(2), 156–167.CrossRefGoogle Scholar
  112. Mahmood, S., Finlay, R. D., Fransson, A. M., & Wallander, H. (2003). Effects of hardened wood ash on microbial activity, plant growth and nutrient uptake by ectomycorrhizal spruce seedlings. FEMS Microbiology Ecology, 43(1), 121–131.CrossRefGoogle Scholar
  113. Maleki, M., Norouzpour, S., Rezvannejad, E., & Shakeri, S. (2018). Novel strains of Bacillus cereus Wah1 and Enterobacter cloacae Wkh with high potential for production of siderophores. Biological Journal of Microorganism, 6(24), 1–11.Google Scholar
  114. Meng, J., Tao, M., Wang, L., Liu, X., & Xu, J. (2018). Changes in heavy metal bioavailability and speciation from a Pb-Zn mining soil amended with biochars from co-pyrolysis of rice straw and swine manure. Science of the Total Environment, 633, 300–307.CrossRefGoogle Scholar
  115. Mickan, B. S., Abbott, L. K., Stefanova, K., & Solaiman, Z. M. (2016). Interactions between biochar and mycorrhizal fungi in a water-stressed agricultural soil. Mycorrhiza, 26(6), 565–574.CrossRefGoogle Scholar
  116. Minnikova, T. V., Denisova, T. V., Mandzhieva, S. S., Kolesnikov, S. I., Minkina, T. M., Chaplygin, V. A., et al. (2017). Assessing the effect of heavy metals from the Novocherkassk power station emissions on the biological activity of soils in the adjacent areas. Journal of Geochemical Exploration, 174, 70–78.Google Scholar
  117. Mohan, D., Pittman, C. U., Jr., & Steele, P. H. (2006). Pyrolysis of wood/biomass for bio-oil: A critical review. Energy & Fuels, 20(3), 848–889.CrossRefGoogle Scholar
  118. Mukherjee, A., Zimmerman, A. R., Hamdan, R., & Cooper, W. T. (2014). Physicochemical changes in pyrogenic organic matter (biochar) after 15 months of field aging. Solid Earth, 5(2), 693–704.CrossRefGoogle Scholar
  119. Nevidomskaya, D. G., Minkina, T. M., Soldatov, A. V., Shuvaeva, V. A., Zubavichus, Y. V., & Podkovyrina, Y. S. (2016). Comprehensive study of Pb (II) speciation in soil by X-ray absorption spectroscopy (XANES and EXAFS) and sequential fractionation. Journal of Soils and Sediments, 16(4), 1183–1192.CrossRefGoogle Scholar
  120. Nguyen, B. T., & Lehmann, J. (2009). Black carbon decomposition under varying water regimes. Organic Geochemistry, 40(8), 846–853.CrossRefGoogle Scholar
  121. Ni, N., Song, Y., Shi, R., Liu, Z., Bian, Y., Wang, F., et al. (2017). Biochar reduces the bioaccumulation of PAHs from soil to carrot (Daucus carota L.) in the rhizosphere: A mechanism study. Science of the Total Environment, 601, 1015–1023.CrossRefGoogle Scholar
  122. Ni, N., Wang, F., Song, Y., Bian, Y., Shi, R., Yang, X., et al. (2018). Mechanisms of biochar reducing the bioaccumulation of PAHs in rice from soil: Degradation stimulation vs immobilization. Chemosphere, 196, 288–296.CrossRefGoogle Scholar
  123. Nies, D. H. (2000). Heavy metal-resistant bacteria as extremophiles: Molecular physiology and biotechnological use of Ralstonia sp. CH34. Extremophiles, 4(2), 77–82.CrossRefGoogle Scholar
  124. Noyce, G. L., Winsborough, C., Fulthorpe, R., & Basiliko, N. (2016). The microbiomes and metagenomes of forest biochars. Scientific Reports, 6, 26425.CrossRefGoogle Scholar
  125. O’Connor, D., Peng, T., Zhang, J., Tsang, D. C., Alessi, D. S., Shen, Z., et al. (2018). Biochar application for the remediation of heavy metal polluted land: A review of in situ field trials. Science of the Total Environment, 619, 815–826.CrossRefGoogle Scholar
  126. Orr, C. H., & Ralebitso-Senior, T. K. (2016). Summation of the microbial ecology of biochar application. In T. K. Ralebitso-Senior & C. H. Orr (Eds.), Biochar application. Essential soil microbial ecology (pp. 293–311). Amsterdam: Elsevier.Google Scholar
  127. Ouyang, L., Wang, F., Tang, J., Yu, L., & Zhang, R. (2013). Effects of biochar amendment on soil aggregates and hydraulic properties. Journal of Soil Science and Plant Nutrition, 13(4), 991–1002.Google Scholar
  128. Paetsch, L., Mueller, C. W., Kögel-Knabner, I., Lützow, M., Girardin, C., & Rumpel, C. (2018). Effect of in situ aged and fresh biochar on soil hydraulic conditions and microbial C use under drought conditions. Scientific Reports, 8(1), 6852.CrossRefGoogle Scholar
  129. Palansooriya, K. N., Wong, J. T. F., Hashimoto, Y., Huang, L., Rinklebe, J., Chang, S. X., et al. (2019). Response of microbial communities to biochar-amended soils: A critical review. Biochar, 1, 3–22.CrossRefGoogle Scholar
  130. Paymaneh, Z., Gryndler, M., Konvalinková, T., Benada, O., Borovička, J., Bukovská, P., et al. (2018). Soil matrix determines the outcome of interaction between mycorrhizal symbiosis and biochar for Andropogon gerardii growth and nutrition. Frontiers in Microbiology, 9, 2862.CrossRefGoogle Scholar
  131. Pedersen, K. (1990). Biofilm development on stainless steel and PVC surfaces in drinking water. Water Research, 24(2), 239–243.CrossRefGoogle Scholar
  132. Pinskii, D. L., Minkina, T. M., Mandzhieva, S. S., Fedorov, Y. A., Bauer, T. V., & Nevidomskaya, D. G. (2014). Adsorption features of Cu (II), Pb (II), and Zn (II) by an ordinary chernozem from nitrate, chloride, acetate, and sulfate solutions. Eurasian Soil Science, 47(1), 10–17.CrossRefGoogle Scholar
  133. Pokharel, P., Kwak, J. H., Ok, Y. S., & Chang, S. X. (2018). Pine sawdust biochar reduces GHG emission by decreasing microbial and enzyme activities in forest and grassland soils in a laboratory experiment. Science of the Total Environment, 625, 1247–1256.CrossRefGoogle Scholar
  134. Prayogo, C., Jones, J. E., Baeyens, J., & Bending, G. D. (2014). Impact of biochar on mineralisation of C and N from soil and willow litter and its relationship with microbial community biomass and structure. Biology and Fertility of Soils, 50(4), 695–702.CrossRefGoogle Scholar
  135. Pukalchik, M., Mercl, F., Terekhova, V., & Tlustoš, P. (2018). Biochar, wood ash and humic substances mitigating trace elements stress in contaminated sandy loam soil: Evidence from an integrative approach. Chemosphere, 203, 228–238.CrossRefGoogle Scholar
  136. Qin, Y., Li, G., Gao, Y., Zhang, L., Ok, Y. S., & An, T. (2018). Persistent free radicals in carbon-based materials on transformation of refractory organic contaminants (ROCs) in water: A critical review. Water Research, 137, 130–143.CrossRefGoogle Scholar
  137. Quilliam, R. S., Glanville, H. C., Wade, S. C., & Jones, D. L. (2013a). Life in the ‘charosphere’–Does biochar in agricultural soil provide a significant habitat for microorganisms? Soil Biology & Biochemistry, 65, 287–293.CrossRefGoogle Scholar
  138. Quilliam, R. S., Marsden, K. A., Gertler, C., Rousk, J., DeLuca, T. H., & Jones, D. L. (2012). Nutrient dynamics, microbial growth and weed emergence in biochar amended soil are influenced by time since application and reapplication rate. Agriculture, Ecosystems & Environment, 158, 192–199.CrossRefGoogle Scholar
  139. Quilliam, R. S., Rangecroft, S., Emmett, B. A., Deluca, T. H., & Jones, D. L. (2013b). Is biochar a source or sink for polycyclic aromatic hydrocarbon (PAH) compounds in agricultural soils? Gcb Bioenergy, 5(2), 96–103.CrossRefGoogle Scholar
  140. Rahman, M. T., Zhu, Q. H., Zhang, Z. B., Zhou, H., & Peng, X. (2017). The roles of organic amendments and microbial community in the improvement of soil structure of a Vertisol. Applied Soil Ecology, 111, 84–93.CrossRefGoogle Scholar
  141. Rechberger, M. V., Kloss, S., Rennhofer, H., Tintner, J., Watzinger, A., Soja, G., et al. (2017). Changes in biochar physical and chemical properties: Accelerated biochar aging in an acidic soil. Carbon, 115, 209–219.CrossRefGoogle Scholar
  142. Rizhiya, E. Y., Mukhina, I. M., Vertebniy, V. E., Horak, J., Kononchuk, P. Y., & Khomyakov, Y. V. (2017). Soil enzymatic activity and nitrous oxide emission from light-textured spodosol amended with biochar. Agricultural Biology (Sel’skokhozyaistvennaya Biologiya), 52, 464.Google Scholar
  143. Rogovska, N., Laird, D., Leandro, L., & Aller, D. (2017). Biochar effect on severity of soybean root disease caused by Fusarium virguliforme. Plant and Soil, 413(1–2), 111–126.CrossRefGoogle Scholar
  144. Rummel, C. D., Jahnke, A., Gorokhova, E., Kühnel, D., & Schmitt-Jansen, M. (2017). Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment. Environmental Science & Technology Letters, 4(7), 258–267.CrossRefGoogle Scholar
  145. Sánchez, M. E., Lindao, E., Margaleff, D., Martínez, O., & Morán, A. (2009). Pyrolysis of agricultural residues from rape and sunflowers: Production and characterization of bio-fuels and biochar soil management. Journal of Analytical and Applied Pyrolysis, 85(1–2), 142–144.CrossRefGoogle Scholar
  146. Sanchez-Hernandez, J. C. (2018). Biochar activation with exoenzymes induced by earthworms: A novel functional strategy for soil quality promotion. Journal of Hazardous Materials, 350, 136–143.CrossRefGoogle Scholar
  147. Sarker, T. C., Incerti, G., Spaccini, R., Piccolo, A., Mazzoleni, S., & Bonanomi, G. (2018). Linking organic matter chemistry with soil aggregate stability: Insight from 13 C NMR spectroscopy. Soil Biology & Biochemistry, 117, 175–184.CrossRefGoogle Scholar
  148. Sazykin, I. S., Sazykina, M. A., Khmelevtsova, L. E., Seliverstova, E. Y., Karchava, K. S., & Zhuravleva, M. V. (2018). Antioxidant enzymes and reactive oxygen species level of the Achromobacter xylosoxidans bacteria during hydrocarbons biotransformation. Archives of Microbiology, 200, 1057–1065.CrossRefGoogle Scholar
  149. Secilia, J., & Bagyaraj, D. J. (1987). Bacteria and actinomycetes associated with pot cultures of vesicular–arbuscular mycorrhizas. Canadian Journal of Microbiology, 33(12), 1069–1073.CrossRefGoogle Scholar
  150. Shaaban, M., Van Zwieten, L., Bashir, S., Younas, A., Nunez-Delgado, A., Chhajro, M. A., et al. (2018). A concise review of biochar application to agricultural soils to improve soil conditions and fight pollution. Journal of Environmental Management, 228, 429–440.CrossRefGoogle Scholar
  151. Sheng, Y., & Zhu, L. (2018). Biochar alters microbial community and carbon sequestration potential across different soil pH. Science of the Total Environment, 622, 1391–1399.CrossRefGoogle Scholar
  152. Shi, L., Dong, H., Reguera, G., Beyenal, H., Lu, A., Liu, J., et al. (2016). Extracellular electron transfer mechanisms between microorganisms and minerals. Nature Reviews Microbiology, 14(10), 651.CrossRefGoogle Scholar
  153. Smith, C. R., Hatcher, P. G., Kumar, S., & Lee, J. W. (2016). Investigation into the sources of biochar water-soluble organic compounds and their potential toxicity on aquatic microorganisms. ACS Sustainable Chemistry & Engineering, 4(5), 2550–2558.CrossRefGoogle Scholar
  154. Soinne, H., Hovi, J., Tammeorg, P., & Turtola, E. (2014). Effect of biochar on phosphorus sorption and clay soil aggregate stability. Geoderma, 219, 162–167.CrossRefGoogle Scholar
  155. Soja, G., Wimmer, B., Rosner, F., Faber, F., Dersch, G., von Chamier, J., et al. (2018). Compost and biochar interactions with copper immobilisation in copper-enriched vineyard soils. Applied Geochemistry, 88, 40–48.CrossRefGoogle Scholar
  156. Sorrenti, G., Masiello, C. A., & Toselli, M. (2016). Biochar interferes with kiwifruit Fe-nutrition in calcareous soil. Geoderma, 272, 10–19.CrossRefGoogle Scholar
  157. Spokas, K. A., Baker, J. M., & Reicosky, D. C. (2010). Ethylene: potential key for biochar amendment impacts. Plant and Soil, 333(1–2), 443–452.CrossRefGoogle Scholar
  158. Spokas, K. A., Novak, J. M., Stewart, C. E., Cantrell, K. B., Uchimiya, M., DuSaire, M. G., et al. (2011). Qualitative analysis of volatile organic compounds on biochar. Chemosphere, 85(5), 869–882.CrossRefGoogle Scholar
  159. Stefaniuk, M., Tsang, D. C., Ok, Y. S., & Oleszczuk, P. (2018). A field study of bioavailable polycyclic aromatic hydrocarbons (PAHs) in sewage sludge and biochar amended soils. Journal of Hazardous Materials, 349, 27–34.CrossRefGoogle Scholar
  160. Sun, D., Hale, L., & Crowley, D. (2016a). Nutrient supplementation of pinewood biochar for use as a bacterial inoculum carrier. Biology and Fertility of Soils, 52(4), 515–522.CrossRefGoogle Scholar
  161. Sun, D., Lan, Y., Xu, E. G., Meng, J., & Chen, W. (2016b). Biochar as a novel niche for culturing microbial communities in composting. Waste Management, 54, 93–100.CrossRefGoogle Scholar
  162. Sun, D., Meng, J., Liang, H., Yang, E., Huang, Y., Chen, W., et al. (2015). Effect of volatile organic compounds absorbed to fresh biochar on survival of Bacillus mucilaginosus and structure of soil microbial communities. Journal of Soils and Sediments, 15(2), 271–281.CrossRefGoogle Scholar
  163. Tan, Z., Zhang, L., & Huang, Q. (2018). A comparison of CO2, N2, and Ar to maximize plant nutrient retention in biochar. Clean Technologies and Environmental Policy, 20(2), 421–426.CrossRefGoogle Scholar
  164. Teutscherova, N., Lojka, B., Houška, J., Masaguer, A., Benito, M., & Vazquez, E. (2018). Application of holm oak biochar alters dynamics of enzymatic and microbial activity in two contrasting Mediterranean soils. European Journal of Soil Biology, 88, 15–26.CrossRefGoogle Scholar
  165. Thies, J. E., & Rillig, M. C. (2009). Characteristics of biochar: Biological properties. In J. Lehmann & S. Joseph (Eds.), Biochar for environmental management: Science and technology (pp. 85–105). Earthscan in the UK and USA.Google Scholar
  166. Tiessen, H., & Stewart, A. J. (1988). Light and electron microscopy of stained microaggregates: The role of organic matter and microbes in soil aggregation. Biogeochemistry, 5(3), 312–322.CrossRefGoogle Scholar
  167. Uchimiya, M., Wartelle, L. H., Lima, I. M., & Klasson, K. T. (2010). Sorption of deisopropylatrazine on broiler litter biochars. Journal of Agricultural and Food Chemistry, 58, 12350–12356.CrossRefGoogle Scholar
  168. U.S. EPA. Office of Science and Technology and Office of Research and Development. U.S. Environmental Protection Agency; Washington, DC: 2003. Equilibrium Partitioning Sediment Guidelines (ESBs) for the Protection of Benthic Organisms: PAH Mixtures.Google Scholar
  169. Vithanage, M., Bandara, T., Al-Wabel, M. I., Abduljabbar, A., Usman, A. R., Ahmad, M., et al. (2018). Soil enzyme activities in waste biochar amended multi-metal contaminated soil; effect of different pyrolysis temperatures and application rates. Communications in Soil Science and Plant Analysis, 49(5), 635–643.CrossRefGoogle Scholar
  170. Wang, C., Chen, S., Wu, L., Zhang, F., & Cui, J. (2018a). Wheat straw-derived biochar enhanced nitrification in a calcareous clay soil. Polish Journal of Environmental Studies. Scholar
  171. Wang, M., Christie, P., Xiao, Z., Qin, C., Wang, P., Liu, J., et al. (2008). Arbuscular mycorrhizal enhancement of iron concentration by Poncirus trifoliata L. Raf and Citrus reticulata Blanco grown on sand medium under different pH. Biology and Fertility of Soils, 45, 65–72.CrossRefGoogle Scholar
  172. Wang, Q., Chen, L., He, L. Y., & Sheng, X. F. (2016a). Increased biomass and reduced heavy metal accumulation of edible tissues of vegetable crops in the presence of plant growth-promoting Neorhizobium huautlense T1-17 and biochar. Agriculture, Ecosystems & Environment, 228, 9–18.CrossRefGoogle Scholar
  173. Wang, T., Sun, H., Ren, X., Li, B., & Mao, H. (2018b). Adsorption of heavy metals from aqueous solution by UV-mutant Bacillus subtilis loaded on biochars derived from different stock materials. Ecotoxicology and Environmental Safety, 148, 285–292.CrossRefGoogle Scholar
  174. Wang, Y. Y., Jing, X. R., Li, L. L., Liu, W. J., Tong, Z. H., & Jiang, H. (2016b). Biotoxicity evaluations of three typical biochars using a simulated system of fast pyrolytic biochar extracts on organisms of three kingdoms. Acs Sustainable Chemistry and Engineering, 5(1), 481–488.CrossRefGoogle Scholar
  175. Wang, Y., Xu, Y., Li, D., Tang, B., Man, S., Jia, Y., et al. (2018c). Vermicompost and biochar as bio-conditioners to immobilize heavy metal and improve soil fertility on cadmium contaminated soil under acid rain stress. Science of the Total Environment, 621, 1057–1065.CrossRefGoogle Scholar
  176. Wang, Z., Zong, H., Zheng, H., Liu, G., Chen, L., & Xing, B. (2015). Reduced nitrification and abundance of ammonia-oxidizing bacteria in acidic soil amended with biochar. Chemosphere, 138, 576–583.CrossRefGoogle Scholar
  177. Wawra, A., Friesl-Hanl, W., Puschenreiter, M., Soja, G., Reichenauer, T., Roithner, C., et al. (2018). Degradation of polycyclic aromatic hydrocarbons in a mixed contaminated soil supported by phytostabilisation, organic and inorganic soil additives. Science of the Total Environment, 628, 1287–1295.CrossRefGoogle Scholar
  178. White, P. A., & Claxton, L. D. (2004). Benzo [a] pyrene, polynuclear aromatic compounds, part 1. Mutation Research, 567, 227–345.CrossRefGoogle Scholar
  179. Winkelmann, G. (2017). A search for glomuferrin: A potential siderophore of arbuscular mycorrhizal fungi of the genus Glomus. BioMetals, 30(4), 559–564.CrossRefGoogle Scholar
  180. Wu, D., Senbayram, M., Zang, H., Ugurlar, F., Aydemir, S., Brüggemann, N., et al. (2018a). Effect of biochar origin and soil pH on greenhouse gas emissions from sandy and clay soils. Applied Soil Ecology, 129, 121–127.CrossRefGoogle Scholar
  181. Wu, P., Cui, P. X., Fang, G. D., Wang, Y., Wang, S. Q., Zhou, D. M., et al. (2018b). Biochar decreased the bioavailability of Zn to rice and wheat grains: Insights from microscopic to macroscopic scales. Science of the Total Environment, 621, 160–167.CrossRefGoogle Scholar
  182. Xiong, B., Zhang, Y., Hou, Y., Arp, H. P. H., Reid, B. J., & Cai, C. (2017). Enhanced biodegradation of PAHs in historically contaminated soil by M. gilvum inoculated biochar. Chemosphere, 182, 316–324.CrossRefGoogle Scholar
  183. Xu, Y., Seshadri, B., Sarkar, B., Wang, H., Rumpel, C., Sparks, D., et al. (2018). Biochar modulates heavy metal toxicity and improves microbial carbon use efficiency in soil. Science of the Total Environment, 621, 148–159.CrossRefGoogle Scholar
  184. Yang, J., Pan, B., Li, H., Liao, S., Zhang, D., Wu, M., et al. (2015). Degradation of p-nitrophenol on biochars: Role of persistent free radicals. Environmental Science and Technology, 50(2), 694–700.CrossRefGoogle Scholar
  185. Yang, X., Liu, J., McGrouther, K., Huang, H., Lu, K., Guo, X., et al. (2016). Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil. Environmental Science and Pollution Research, 23(2), 974–984.CrossRefGoogle Scholar
  186. Yu, L., Wang, Y., Yuan, Y., Tang, J., & Zhou, S. (2016). Biochar as electron acceptor for microbial extracellular respiration. Geomicrobiology Journal, 33(6), 530–536.CrossRefGoogle Scholar
  187. Yu, L., Yuan, Y., Tang, J., Wang, Y., & Zhou, S. (2015). Biochar as an electron shuttle for reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens. Scientific Reports, 5, 16221.CrossRefGoogle Scholar
  188. Yuan, Y., Chen, H., Yuan, W., Williams, D., Walker, J. T., & Shi, W. (2017). Is biochar-manure co-compost a better solution for soil health improvement and N2O emissions mitigation? Soil Biology & Biochemistry, 113, 14–25.CrossRefGoogle Scholar
  189. Zechner, E. L., de la Cruz, F., Eisenbrandt, R., Grahn, A. M., Koraimann, G., Lanka, E., et al. (2000). Conjugative-DNA transfer processes. In C. M. Thomas (Ed.), The horizontal gene pool: Bacterial plasmids and gene spread (pp. 87–174). Amsterdam: Harwood Scientif. Publ.Google Scholar
  190. Zhang, G., Guo, X., Zhu, Y., Liu, X., Han, Z., Sun, K., et al. (2018a). The effects of different biochars on microbial quantity, microbial community shift, enzyme activity, and biodegradation of polycyclic aromatic hydrocarbons in soil. Geoderma, 328, 100–108.CrossRefGoogle Scholar
  191. Zhang, K., Chen, L., Li, Y., Brookes, P. C., Xu, J., & Luo, Y. (2017a). The effects of combinations of biochar, lime, and organic fertilizer on nitrification and nitrifiers. Biology and Fertility of Soils, 53(1), 77–87.CrossRefGoogle Scholar
  192. Zhang, K., Sun, P., Faye, M. C. A., & Zhang, Y. (2018b). Characterization of biochar derived from rice husks and its potential in chlorobenzene degradation. Carbon, 130, 730–740.CrossRefGoogle Scholar
  193. Zhang, M., Cheng, G., Feng, H., Sun, B., Zhao, Y., Chen, H., et al. (2017b). Effects of straw and biochar amendments on aggregate stability, soil organic carbon, and enzyme activities in the Loess Plateau, China. Environmental Science and Pollution Research, 24(11), 10108–10120.CrossRefGoogle Scholar
  194. Zhang, M., Riaz, M., Zhang, L., El-desouki, Z., & Jiang, C. (2019). Biochar induces changes to basic soil properties and bacterial communities of different soils to varying degrees at 25 mm rainfall: More effective on acidic soils. Frontiers in Microbiology, 10, 1321.CrossRefGoogle Scholar
  195. Zhang, Y., Xu, X., Cao, L., Ok, Y. S., & Cao, X. (2018c). Characterization and quantification of electron donating capacity and its structure dependence in biochar derived from three waste biomasses. Chemosphere, 211, 1073–1081.CrossRefGoogle Scholar
  196. Zheng, H., Liu, B., Liu, G., Cai, Z., & Zhang, C. (2019). Potential toxic compounds in biochar: Knowledge gaps between biochar research and safety. In Y. S. Ok, D. C. W. Tsang, N. Bolan, & J. M. Novak (Eds.), Biochar from biomass and waste (pp. 349–384). Elsevier.Google Scholar
  197. Zheng, H., Wang, X., Luo, X., Wang, Z., & Xing, B. (2018). Biochar-induced negative carbon mineralization priming effects in a coastal wetland soil: Roles of soil aggregation and microbial modulation. Science of the Total Environment, 610, 951–960.CrossRefGoogle Scholar
  198. Zhu, X., Chen, B., Zhu, L., & Xing, B. (2017). Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review. Environmental Pollution, 227, 98–115.CrossRefGoogle Scholar
  199. Zielińska, A., & Oleszczuk, P. (2015). The conversion of sewage sludge into biochar reduces polycyclic aromatic hydrocarbon content and ecotoxicity but increases trace metal content. Biomass and Bioenergy, 75, 235–244.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Andrey V. Gorovtsov
    • 1
    Email author
  • Tatiana M. Minkina
    • 1
  • Saglara S. Mandzhieva
    • 1
  • Leonid V. Perelomov
    • 2
  • Gerhard Soja
    • 3
    • 4
  • Inna V. Zamulina
    • 1
  • Vishnu D. Rajput
    • 1
  • Svetlana N. Sushkova
    • 1
  • Dinesh Mohan
    • 5
  • Jun Yao
    • 6
  1. 1.Southern Federal UniversityRostov-on-DonRussia
  2. 2.Tula State Lev Tolstoy Pedagogical UniversityTulaRussia
  3. 3.AIT Austrian Institute of Technology, ERTTullnAustria
  4. 4.IVETUniversity for Natural Resources and Life SciencesViennaAustria
  5. 5.School of Environmental SciencesJawaharlal Nehru UniversityNew DelhiIndia
  6. 6.China University of GeosciencesBeijingChina

Personalised recommendations