Advertisement

Environmental Geochemistry and Health

, Volume 41, Issue 6, pp 2875–2892 | Cite as

Assessment of metal and metalloid contamination in soils trough compositional data: the old Mortórios uranium mine area, central Portugal

  • A. M. R. Neiva
  • M. T. D. Albuquerque
  • I. M. H. R. AntunesEmail author
  • P. C. S. Carvalho
  • A. C. T. Santos
  • C. Boente
  • P. P. Cunha
  • S. B. A. Henriques
  • R. L. Pato
Original Paper

Abstract

Soils from the old Mortórios uranium mine area were studied to look for contamination, as they are close to two villages, up to 3 km away, and used for agriculture. They are mainly contaminated in U and As and constitute an ecological threat. This study attempts to outline the degree to which soils have been affected by the old mining activities through the computation of significant hot clusters, Traditional geostatistical approaches commonly use raw data (concentrations) accepting that the analyzed elements represent the soil’s entirety. However, in geochemical studies these elements are just a fraction of the total soil composition. Thus, considering compositional data is pivotal. The spatial characterization, considering raw and compositional data together, allowed a broad discussion about not only the concentrations’ spatial distribution, but also a better understanding on the possibility of trends of “relative enrichment” and, furthermore an insight in U and As fate. The highest proportions (compositional data) on U (up to 33%), As (up to 35%) and Th (up to 13%) are reached in the south-southeast segment. However, the highest concentrations (raw data) occur in north and northwest of the studied area, pointing out to a “relative enrichment” toward the south-southeast zone. The Mondego Sul area is mainly contaminated in U and As, but also in Co, Cu, Pb and Sb. The Mortórios area is less contaminated than the Mondego Sul area.

Graphic abstract

Keywords

Raw data Compositional data Spatial analysis Health risks Open pit lake Dumps 

Notes

Acknowledgements

This research was supported by the Fundação para a Ciência e a Tecnologia through projects UID/GEO/04035/201C and UID/MAR/04292/2013-MARE (PPC). Boente obtained a grant from the “Formación del Profesorado Universitario” program, financed by the “Ministerio de Educación, Cultura y Deporte de España.” M.T.D Albuquerque acknowledges a scholarship 567 SFRH/BSAB/127907/2016 from the Foundation for Science and Technology (Portugal).

References

  1. Adriano, D. C. (2001). Trace elements in terrestrial environments. Biogeochemistry bioavailability and risk of metals. New York: Springer.Google Scholar
  2. Ahmed, H., Young, S., & Shaw, G. (2012). Solubility and mobility of thorium and uranium in soils: The effect of soil properties on Th and U concentrations in soil solution. In EGU General Assembly (Vol. 14) EGU 2012-2994.Google Scholar
  3. Aitchison, J. (1986). The statistical analysis of compositional data. ournal of the Royal Statistical Society,44, 139–177.Google Scholar
  4. Albuquerque, M. T. D., Gerassis, S., Sierra, C., Taboada, J., Martín, J. E., Antunes, I. M. H. R., et al. (2017). Developing a new Bayesian Risk Index for risk evaluation of soil contamination. Science of the Total Environment,603–604, 167–177.Google Scholar
  5. Alloway, B. J. (1995). Heavy metals in soils (2nd ed., p. 368). London: Blackie Academic & Professional.Google Scholar
  6. Antunes, I. M. H. R., Neiva, A. M. R., Albuquerque, M. T. D., Carvalho, P. C. S., Santos, A. C. T., & Cunha, P. P. (2018). Potential toxic elements in stream sediments, soils and waters in an abandoned radium mine (Central Portugal). Environmental Geochemistry and Health,40, 521–524.Google Scholar
  7. Boente, C., Albuquerque, M. T. D., Fernández-Braña, A., Gerassis, S., Sierra, C., & Gallego, J. R. (2018a). Combining raw and compositional 1 data to determine the spatial patterns of Potentially Toxic Elements in soils. Science of the Total Environment,631–632, 1117–1126.Google Scholar
  8. Boente, C., Sierra, C., Martínez-Blanco, D., Menéndez-Aguado, J. M., & Gallego, J. R. (2018b). Nanoscale zero-valent iron-assisted soil washing for the removal of potentially toxic elements. Journal of Hazardous Materials,350, 55–65.Google Scholar
  9. Bone, S. E., James, J. D., Cliff, J. J., & Bargar, J. R. (2017). Uranium(IV) adsorption by natural organic matter in anoxic sediments. PNAS,114, 711–716.Google Scholar
  10. British standard (BS) 7755. (1995a). Soil quality, part 3. Chemical methods, section 3.2. Determination of pH. ISO 10390, 1995.Google Scholar
  11. British standard (BS) 7755. (1995b). Soil quality, part 3. Chemical methods, section 3.4. Determination of specific electrical conductivity. ISO 11265, 1994.Google Scholar
  12. Buccianti, A., & Grunsky, E. (2014). Compositional data analysis in geochemistry: Are we sure to see what really occurs during natural processes? Journal of Geochemical Exploration,141, 1–5.Google Scholar
  13. Campbell, G. P., Curran, J. M., Miskelly, G. M., Coulson, S., Yaxley, G. M., Grunsky, E. C., et al. (2009). Compositional data analysis for elemental data in forensic science. Forensic Science International,188, 81–90.Google Scholar
  14. Canadian soil guidelines (2017). Canadian soil quality guidelines for the protection of environmental and human health. Summary tables (pp. 1–6).Google Scholar
  15. Chernov, V. A. (1947). The nature of soil acidity (p. 169). Madison: Soil Science Society of America.Google Scholar
  16. Cumberland, S. A., Douglas, G., Grice, K., & Moreau, J. W. (2016). Uranium mobility in organic matter-rich sediments: A review of geological and geochemical processes. Earth-Science Reviews,159, 160–185.Google Scholar
  17. Decreto Ministerial. (1999). Approvazione dei metodi ufficiali di andisi chimica del suolo. 50 Gaz. Uff.Google Scholar
  18. de Souza, J. J. L. L., Abrahão, W. A. P., de Mello, J. W. V., da Silva, J., da Costa, L. M., & de Oliveira, T. S. (2015). Geochemistry and spatial variability of meta (loid) concentrations in soils of the state of Minas Gerais, Brazil. Science of the Total Environment,505, 338–349.Google Scholar
  19. Duff, M., Coughliny, J. U., & Hunter, D. B. (2002). Uranium co-precipitation with iron oxide minerals. Geochimica et Cosmochimica Acta,66, 3533–3547.Google Scholar
  20. Farias, P., Gallastegui, G., Lodeiro, F. G., Marquinez, J., Parra, L. L. M., Catalán, J. R. M., et al. (1987). Appontaciones al conocimiento de la lito-estratigrafia y estrutura de Galicia Central. IX Reunion de Geologia do Oeste Peninsular. Publ. Mus. Mineral., Geol. Fac. Ciências, Univ. Porto, Program Abstr. (Vol. 1, pp. 411–431).Google Scholar
  21. Filzmoser, P., Hron, K., & Reimann, C. (2009). Univariate statistical analysis of environmental (compositional) data: Problems and possibilities. Science of the Total Environment,407, 6100–6108.Google Scholar
  22. Fortes, C., Filipe, A. & Parra, A. (2001). SIORMIMP: 1510U. Mortórios.Google Scholar
  23. Fu, H., Zhang, H., Sui, Y., Hu, N., Ding, D., Ye, Y., et al. (2018). Transformation of uranium species in soil during redox oscillations. Chemosphere,208, 846–853.Google Scholar
  24. Goldberg, S. (2002). Competitive adsorption of arsenate and arsenite on oxides and clay minerals. Soil Science Society of America Journal,66, 413–421.Google Scholar
  25. González-Fernández, B., Rodríguez-Valdés, E., Boente, C., Menéndez-Casares, E., Fernández-Braña, A., & Gallego, J. R. (2018). Long-term ongoing impact of arsenic contamination on the environmental compartments of a former mining-metallurgy area. Science of the Total Environment,610–611, 820–830.Google Scholar
  26. Goovaerts, P. (1997). Geostatistics for natural resources evaluation. New York, Oxford: University Press.Google Scholar
  27. Greenacre, M., & Lewi, P. (2009). Distributional equivalence and subcompositional coherence in the analysis of compositional data, contingency tables and ratio-scale measurements. Journal of Classification,26, 29–54.Google Scholar
  28. Gringarten, E., & Deutsch, C. V. (2001). Teacher’s aide variogram interpretation and modeling. Mathematical Geology,33, 507–534.Google Scholar
  29. Gruan, G., Dia, A., Olivie-Lauquet, G., & Serrat, E. (2000). The effects of organic matter and seasonal redox dynamics on chemical weathering: Constraints from natural wetland studies. Journal of Conference Abstracts,5, 463.Google Scholar
  30. IGE - Instituto Geofísico do Exército. (1994). Carta militar de Portugal, escala 1:25000, continente, série M888, Folha 160, Torre do Terranho (Trancoso), 2ª edição.Google Scholar
  31. Inácio, M., Pereira, V., & Pinto, M. (2008). The soil geochemical atlas of Portugal: Overview and applications. Journal of Geochemical Exploration,98, 22–33.Google Scholar
  32. Isaaks, E. H., & Srivastava, R. M. (1989). An introduction to applied geostatistics (pp. 278–322). New York, Oxford: University Press.Google Scholar
  33. JEN - Junta de Energia Nuclear. (1959). Relatório de execução do plano de sanjas nº 247 (Mortórios). Informação nº 135/49.Google Scholar
  34. Journel, A. G., & Huijbregts, C. J. (1978). Mining geostatistics. San Diego: Academic Press.Google Scholar
  35. Lahr, J., & Kooistra, L. (2010). Environmental risk mapping of pollutants: State of the art and communication aspects. Science of the Total Environment,408, 3899–3907.Google Scholar
  36. Li, P., Lin, C., Cheng, H., Duan, X., & Lei, K. (2015). Contamination and health risks of soil heavy metals around a lead/zinc smelter in south western China. Ecotoxicology and Environmental Safety,113, 391–399.Google Scholar
  37. Lind, O. C., Stegnar, P., Tolongutov, B., Rosseland, B. O., Strømman, G., Uralbekov, B., et al. (2013). Environmental impact assessment of radionuclide and metal contamination at the former U site at Kadji Sai, Kyrgyzstan. Journal of Environmental Radioactivity,123, 37–49.Google Scholar
  38. Loska, K., Wiechula, D., & Korus, I. (2004). Metal contamination of farming soils affected by industry. Environment International,30, 159–165.Google Scholar
  39. Madruga, M. J., Carvalho, F., Reis, M., Alves, J., Corisco, J., Trindade, R., et al. (2010). Programas de Monitorização Radiológica Ambiental (Ano 2009) Relatório UPSR-A, no 37/10. Instituto Tecnológico e Nuclear, Unidade de Protecção e Segurança Radiológica.Google Scholar
  40. Matheron, G. (1963). Principles of geostatistics. Economic Geology,58, 1246–1266.Google Scholar
  41. Négrel, P., De Vivo, B., Reimann, C., Ladenberger, A., Cicchella, D., Albanese, S., et al. (2018). U-Th signatures of agricultural soil at the European continental scale (GEMAS): Distribution, weathering patterns and processes controlling their concentrations. Science of The Total Environment.,622, 1277–1293.Google Scholar
  42. Neiva, A. M. R., Antunes, I. M. H. R., Carvalho, P. C. S., & Santos, A. C. T. (2016). Uranium and arsenic contamination in the former Mondego Sul uranium mine area, Central Portugal. Journal of Geochemical Exploration,162, 1–15.Google Scholar
  43. Neiva, A. M. R., Carvalho, P. C. S., Antunes, I. M. H. R., Santos, A. C. T., & Cabral-Pinto, M. M. S. (2015). Spatial and temporal variability of surface water and groundwater before and after the remediation of a Portuguese uranium mine area. Chemie der Erde,75, 345–356.Google Scholar
  44. Nye, P., Craig, D., Colemnan, N. T., & Ragland, J. L. (1961). For exchange equilibria involving aluminum. Soil Science Society of America Journal Proceedings,25, 14–17.Google Scholar
  45. Oliveira, J. T., Pereira, E., Ramalho, M., Antunes, M. T. & Monteiro, J. H. (1992). Carta Geológica de Portugal à escala 1:500 000, Folha Norte, 5ª edição. Serv. Geol. Portugal, Lisboa.Google Scholar
  46. Pawlowsky-Glahn, V., & Buccianti, A. (2011). Compositional data analysis: Theory and applications. New York: Wiley.Google Scholar
  47. Pawlowsky-Glahn, V., & Egozcue, J. J. (2006). Compositional data and their analysis: An introduction. Geological Society, London, Special Publications,264, 1–10.Google Scholar
  48. Quintela, A. (2015). Remediação ambiental da antiga área mineira de Mortórios. Seminário de gestão, projeto, construção e encerramento de instalações de resíduos mineiros. Ordem dos Engenheiros, Lisboa.Google Scholar
  49. Reimann, C., Filzmoser, P., Fabian, K., Hron, K., Birke, M., Demetriades, A., et al. (2012). The concept of compositional data analysis in practice—Total major element concentrations in agricultural and grazing land soils of Europe. Science of the Total Environment,426, 196–210.Google Scholar
  50. Salminen, R., Batista, M. J., Bidovec, M., Demetriades, A., De Vivo, B., De Vos, W., Duris, M., et al. (2005). FOREGS—Geochemical atlas of Europe. Part 1: Background information, methodology and maps. Espoo, Geological Survey of Finland, 526 pages, 36 figures, 362 maps.Google Scholar
  51. Santos-Francès, F., Pacheco, E. G., Martínez-Graña, A., Rojo, P. A., Zarza, C. A., & Sánchez, A. G. (2018). Concentration of uranium in the soils of the west of Spain. Environmental Pollution,236, 1–11.Google Scholar
  52. Selvakumar, R., Ramadoss, G., Menon, M. P., Rajendran, K., Thavamani, P., Naidu, R., et al. (2018). Challenges and complexities in remediation of uranium contaminated soils: A review. Journal of Environmental Radioactivity,192, 592–603.  https://doi.org/10.1016/j.jenvrad.2018.02.018.CrossRefGoogle Scholar
  53. Swedish guidelines for soils. (2009). Swedish environmental protection agency generic guideline values for soils. Annexed to EQS and guideline values for contaminated sites. Report 2017. INSURE Innovative Sustainable Remediation. European Union. Central Baltic.Google Scholar
  54. Tabatabai, M. A. (1996). Soil organic matter testing: An overview (pp. 1–10). In F. Magdoff et al. (Eds.) Soil organic matter: Analysis and interpretation. SSSA Spec. Pub. 46. Madison, WI: American Society of Agronomy.Google Scholar
  55. Taboada, T., Cortizas, A. M., Carcía, C., & García-Rodeja, E. (2006). Uranium and thorium in weathering and pedogenetic profiles developed on granitic rocks from NW Spain. Science of the Total Environment,356, 192.Google Scholar
  56. Thomas, G. W. (1982). Exchangeable cations. Methods of soil analysis part 2, Chemical and microbiological properties (2nd ed.). In A. L. Page et al. (Eds.) Agronomy (Vol. 9, pp. 154–157). American Society of Agronomy, Soil Science Society of America, Madison.Google Scholar
  57. Tserenpil, Sh, Maslov, O. D., Norov, N., Liu, Q. C., Filipov, M. F., Benny, K. G., et al. (2013). Chemical and mineralogical composition of the Mongolian rural soils and their uranium sorption behavior. Journal of Environmental Radioactivity,118, 105–112.Google Scholar
  58. User manual. (2001). Jobin Yvon ICP spectrometers, version 3.0. Reference: 31088486, January 2001 (pp. 20–23).Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • A. M. R. Neiva
    • 1
    • 2
  • M. T. D. Albuquerque
    • 3
  • I. M. H. R. Antunes
    • 4
    Email author
  • P. C. S. Carvalho
    • 5
  • A. C. T. Santos
    • 1
    • 2
  • C. Boente
    • 6
  • P. P. Cunha
    • 2
    • 5
  • S. B. A. Henriques
    • 7
  • R. L. Pato
    • 8
  1. 1.GeoBioTec, Department of GeosciencesUniversity of AveiroAveiroPortugal
  2. 2.Department of Earth SciencesUniversity of CoimbraCoimbraPortugal
  3. 3.Qualidade de Vida e o Mundo Rural (QRural) Research CenterInstituto Politécnico de Castelo BrancoCastelo BrancoPortugal
  4. 4.ICTUniversity of MinhoBragaPortugal
  5. 5.MARE – Marine and Environmental Science CentreUniversity of CoimbraCoimbraPortugal
  6. 6.INDUROT and Environmental Technology, Biotechnology, and Geochemistry GroupUniversidad de OviedoMieresSpain
  7. 7.Laboratório Nacional de Energia e Geologia (LNEG)AlfragidePortugal
  8. 8.Research Centre for Natural Resources, Environment and Society, Agrarian SchoolPolytechnic Institute of CoimbraCoimbraPortugal

Personalised recommendations