Advertisement

Source and background threshold values of potentially toxic elements in soils by multivariate statistics and GIS-based mapping: a high density sampling survey in the Parauapebas basin, Brazilian Amazon

  • Prafulla Kumar SahooEmail author
  • Roberto Dall’Agnol
  • Gabriel Negreiros Salomão
  • Jair da Silva Ferreira Junior
  • Marcio Souza da Silva
  • Gabriel Caixeta Martins
  • Pedro Walfir Martin e Souza Filho
  • Mike A. Powell
  • Clovis Wagner Maurity
  • Rômulo Simões Angelica
  • Marlene Furtado da Costa
  • José Oswaldo Siqueira
Original Paper
  • 104 Downloads

Abstract

A high-density regional-scale soil geochemical survey comprising 727 samples (one sample per each 5 × 5 km grid) was carried out in the Parauapebas sub-basin of the Brazilian Amazonia, under the Itacaiúnas Basin Geochemical Mapping and Background Project. Samples were taken from two depths at each site: surface soil, 0–20 cm and deep soil, 30–50 cm. The ground and sieved (< 75 µm) fraction was digested using aqua regia and analyzed for 51 elements by inductively coupled plasma mass spectrometry (ICPMS). All data were used here, but the principal focus was on the potential toxic elements (PTEs) and Fe and Mn to evaluate the spatial distribution patterns and to establish their geochemical background concentrations in soils. Geochemical maps as well as principal component analysis (PCA) show that the distribution patterns of the elements are very similar between surface and deep soils. The PCA, applied on clr-transformed data, identified four major associations: Fe–Ti–V–Sc–Cu–Cr–Ni (Gp-1); Zr–Hf–U–Nb–Th–Al–P–Mo–Ga (Gp-2); K–Na–Ca–Mg–Ba–Rb–Sr (Gp-3); and La–Ce–Co–Mn–Y–Zn–Cd (Gp-4). Moreover, the distribution patterns of elements varied significantly among the three major geological domains. The whole data indicate a strong imprint of local geological setting in the geochemical associations and point to a dominant geogenic origin for the analyzed elements. Copper and Fe in Gp-1 were enriched in the Carajás basin and are associated with metavolcanic rocks and banded-iron formations, respectively. However, the spatial distribution of Cu is also highly influenced by two hydrothermal mineralized copper belts. Ni–Cr in Gp-1 are highly correlated and spatially associated with mafic and ultramafic units. The Gp-2 is partially composed of high field strength elements (Zr, Hf, Nb, U, Th) that could be linked to occurrences of A-type Neoarchean granites. The Gp-3 elements are mobile elements which are commonly found in feldspars and other rock-forming minerals being liberated by chemical weathering. The background threshold values (BTV) were estimated separately for surface and deep soils using different methods. The ‘75th percentile’, which commonly used for the estimation of the quality reference values (QRVs) following the Brazilian regulation, gave more restrictive or conservative (low) BTVs, while the ‘MMAD’ was more realistic to define high BTVs that can better represent the so-called mineralized/normal background. Compared with CONAMA Resolution (No. 420/2009), the conservative BTVs of most of the toxic elements were below the prevention limits (PV), except Cu, but when the high BTVs are considered, Cu, Co, Cr and Ni exceeded the PV limits. The degree of contamination (Cdeg), based on the conservative BTVs, indicates low contamination, except in the Carajás basin, which shows many anomalies and had high contamination mainly from Cu, Cr and Ni, but this is similar between surface and deep soils indicating that the observed high anomalies are strictly related to geogenic control. This is supported when the Cdeg is calculated using the high BTVs, which indicates low contamination. This suggests that the use of only conservative BTVs for the entire region might overestimate the significance of anthropogenic contamination; thus, we suggest the use of high BTVs for effective assessment of soil contamination in this region. The methodology and results of this study may help developing strategies for geochemical mapping in other Carajás soils or in other Amazonian soils with similar characteristics.

Keywords

Soil geochemical mapping Potentially toxic elements Geochemical background Environmental contamination Multivariate analysis Southeastern Amazon 

Notes

Acknowledgements

This work is part of the Itacaiúnas Geochemical Mapping and Background Project, ItacGMBP, currently being undertaken at Instituto Tecnológico Vale (ITV), Belém, Brazil. This was supported by Vale (GABAN-DIFN); Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) [DTI scholarship to GNS (Proc. 380.418/2018-5); Grants to RD (proc. 306108/2014-3; Proc. 443247/2015-3); RSA 305.392/2014-0]; and CAPES (scholarship to GCM, Proc. 88887.160998/2017-00). The authors acknowledge two anonymous reviewers for their constructive comments and insights and Marcondes Lima da Costa, Luiz Roberto Guimarães Guilherme, Otavio Augusto Boni Licht, José Francisco da Fonseca Ramos e José Francisco Bêrredo for their scientific collaboration with the Background project.

Supplementary material

10653_2019_345_MOESM1_ESM.docx (957 kb)
Supplementary material 1 (DOCX 957 kb)
10653_2019_345_MOESM2_ESM.xlsx (326 kb)
Supplementary material 2 (XLSX 326 kb)

References

  1. Acosta, J. A., Martínez-Martínez, S., Faz, A., & Arocena, J. (2011). Accumulations of major and trace elements in particle size fractions of soils on eight different parent materials. Geoderma, 161(1–2), 30–42.  https://doi.org/10.1016/j.geoderma.2010.12.001.CrossRefGoogle Scholar
  2. Aitchison, J. (1986). The statistical analysis of compositional data. London: Chapman and Hall.CrossRefGoogle Scholar
  3. Almeida Júnior, A. B., Nascimento, C. W. A., Biondi, C. M., Souza, A. P., & Barros, F. M. R. (2016). Background and reference values of metals in soils from Paraíba State. Brazil. Revista Brasileira de Ciência do Solo.  https://doi.org/10.1590/18069657rbcs20150122.Google Scholar
  4. Alvares, C. A., Stape, J. L., Sentelhas, P. C., de Moraes Gonçalves, J. L., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711–728.  https://doi.org/10.1127/0941-2948/2013/0507.CrossRefGoogle Scholar
  5. Ander, E. L., Johnson, C. C., Cave, M. R., Palumbo-Roe, B., Nathanail, C. P., & Lark, R. M. (2013). Methodology for the determination of normal background concentrations of contaminants in English soil. Science of the Total Environment, 454–455, 604–618.  https://doi.org/10.1016/j.scitotenv.2013.03.005.CrossRefGoogle Scholar
  6. Ashley, P., Craw, D., MacKenzie, D., Rombouts, M., & Reay, A. (2012). Mafic and ultramafic rocks, and platinum mineralisation potential, in the Longwood Range, Southland, New Zealand. New Zealand Journal of Geology and Geophysics, 55(1), 3–19.  https://doi.org/10.1080/00288306.2011.623302.CrossRefGoogle Scholar
  7. Berrow, M. L., & Reaves, G. A. (1984). Background levels of trace elements in soils. In Proceedings of the 1st international conference on environmental contamination. CEP Consultants. Edinburgh, Scotland (pp. 333–340).Google Scholar
  8. Biondi, C. M., Nascimento, C. W. A., Fabrício Neta, A. B., & Ribeiro, M. R. (2011). Teores de Fe, Mn, Zn, Cu, Ni e Co em solos de referência de Pernambuco. Revista Brasileira de Ciência do Solo, 35(3), 1057–1066.CrossRefGoogle Scholar
  9. Boim, A. G. F., Rodrigues, S. M., dos Santos-Araújo, S. N., Pereira, E., & Alleoni, L. R. F. (2018). Pedotransfer functions of potentially toxic elements in tropical soils cultivated with vegetable crops. Environmental Science and Pollution Research, 25(13), 12702–12712.  https://doi.org/10.1007/s11356-018-1348-0.CrossRefGoogle Scholar
  10. Burak, D. L., Fontes, M. P. F., Santos, N. T., Monteiro, L. V. S., Martins, E. S., & Becquer, T. (2010). Geochemistry and spatial distribution of heavy metals in Oxisols in a mineralized region of the Brazilian Central Plateau. Geoderma, 160(2), 131–142.  https://doi.org/10.1016/j.geoderma.2010.08.007.CrossRefGoogle Scholar
  11. Caires, S. M. (2009). Determination of natural heavy metals contents in soils of Minas Gerais State to help definition of background contents. Ph.D. dissertation, Universidade Federal de Viçosa, Viçosa (in Portuguese).Google Scholar
  12. Caritat, P., Main, P. T., Grunsky, E. C., & Mann, A. W. (2017). Recognition of geochemical footprints of mineral systems in the regolith at regional to continental scales. Australian Journal of Earth Sciences, 64(8), 1033–1043.CrossRefGoogle Scholar
  13. CETESB. (2005). Environmental Agency of the State of Sao Paulo. Report on Establishment of Guiding Values for Soils and Groundwater of the State of Sao Paulo, São Paulo, Brazil (p. 247) (in Portuguese).Google Scholar
  14. Chiprés, J. A., Salinas, J. C., Castro-Larragoitia, J., & Monroy, M. G. (2008). Geochemical mapping of major and trace elements in soils from the Altiplano Potosino, Mexico: A multi-scale comparison. Geochemistry: Exploration, Environment, Analysis, 8(3–4), 279–290.  https://doi.org/10.1144/1467-7873/08-181.Google Scholar
  15. CONAMA. (2009). National Council for the Environment, Brazil. Resolution n° 420/2009. http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=620. Accessed January 16, 2017 (in Portuguese).
  16. Companhia de Pesquisa de Recursos Minerais (CPRM). (2002). Serviço Geológico do Brasil. Geologia e recursos minerais do Estado da Paraíba. Recife: Serviço Geológico do Brasil.Google Scholar
  17. Dall’Agnol, R., da Cunha, I. R. V., Guimarães, F. V., de Oliveira, D. C., Teixeira, M. F. B., Feio, G. R. L., et al. (2017). Mineralogy, geochemistry, and petrology of Neoarchean ferroan to magnesian granites of Carajás Province, Amazonian Craton: The origin of hydrated granites associated with charnockites. Lithos, 277, 3–32.  https://doi.org/10.1016/j.lithos.2016.09.032.CrossRefGoogle Scholar
  18. Dall’Agnol, R., Teixeira, N. P., Rämö, O. T., Moura, C. A. V., Macambira, M. J. B., & de Oliveira, D. C. (2005). Petrogenesis of the Paleoproterozoic rapakivi A-type granites of the Archean Carajás metallogenic province, Brazil. Lithos, 80(1–4), 101–129.  https://doi.org/10.1016/j.lithos.2004.03.058.CrossRefGoogle Scholar
  19. de Moraes, B. C., da Costa, J. M. N., da Costa, A. C. L., & Costa, M. H. (2005). Variação espacial e temporal da precipitação no Estado do Pará. Acta Amazonica, 35(2), 207–214.  https://doi.org/10.1590/S0044-59672005000200010.CrossRefGoogle Scholar
  20. De Vivo, B., Lima, A., Albanese, S., & Cicchella, D. (2003). Atlante geochimico-ambientale della regione Campania (Geochemical Environmental Atlas of Campania Region). Napoli: De Frede Editore.Google Scholar
  21. De Vivo, B., Lima, A., & Siegel, F. R. (2004). Geochimica ambientale. Metalli potenzialmente tossici. Naples: Liguori Editore.Google Scholar
  22. Deschenes, S., Setton, E., Demers, P. A., & Keller, P. C. (2013). Exploring the relationship between surface and subsurface soil concentrations of heavy metals using geographically weighted regression. E3S Web of Conferences, 1, 35007.  https://doi.org/10.1051/e3sconf/20130135007.CrossRefGoogle Scholar
  23. Fabrício Neta, A. B. (2012). Teores naturais de metais pesados em solos da ilha de Fernando de Noronha [Dissertation in Portuguese]. Recife: Universidade Federal Rural de Pernambuco.Google Scholar
  24. Fabrício Neta, A. B., do Nascimento, C. W. A., Biondi, C. M., van Straaten, P., & Bittar, S. M. B. (2018). Natural concentrations and reference values for trace elements in soils of a tropical volcanic archipelago. Environmental Geochemistry and Health, 40(1), 163–173.  https://doi.org/10.1007/s10653-016-9890-5.CrossRefGoogle Scholar
  25. Facchinelli, A., Sacchi, E., & Mallen, L. (2001). Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environmental Pollution, 114, 313–324.CrossRefGoogle Scholar
  26. Fadigas, F. S., Sobrinho, N. M. B. A., Anjos, L. H. C., & Mazur, N. (2010). Background contents of some trace elements in weathered soils from the Brazilian Northern region. Scientia Agricola, 67, 53–59.CrossRefGoogle Scholar
  27. Feio, G. R. L., Dall’Agnol, R., Dantas, E. L., Macambira, M. J. B., Gomes, A. C. B., Sardinha, A. S., et al. (2012). Geochemistry, geochronology, and origin of the Neoarchean Planalto Granite suite, Carajás, Amazonian craton: A-type or hydrated charnockitic granites? Lithos, 151, 57–73.  https://doi.org/10.1016/j.lithos.2012.02.020.CrossRefGoogle Scholar
  28. Feio, G. R. L., Dall’Agnol, R., Dantas, E. L., Macambira, M. J. B., Santos, J. O. S., Althoff, F. J., et al. (2013). Archean granitoid magmatism in the Canaã dos Carajás area: Implications for crustal evolution of the Carajás province, Amazonian craton, Brazil. Precambrian Research, 227, 157–185.  https://doi.org/10.1016/j.precamres.2012.04.007.CrossRefGoogle Scholar
  29. Fernandes, A. R., de Souza, E. S., de Souza Braz, A. M., Birani, S. M., & Alleoni, L. R. F. (2018). Quality reference values and background concentrations of potentially toxic elements in soils from the Eastern Amazon, Brazil. Journal of Geochemical Exploration, 90, 453–463.CrossRefGoogle Scholar
  30. Filzmoser, P., Hron, K., & Reimann, C. (2009). Principal component analysis for compositional data with outliers. Environmetrics, 20, 621–632.CrossRefGoogle Scholar
  31. Fritsch, E., Montes-Lauar, C. R., Boulet, R., Melfi, A. J., Balan, E., & Magat, P. (2002). Lateritic and redoximorphic features in a faulted landscape near Manaus, Brazil. European Journal of Soil Science, 53(2), 203–217.  https://doi.org/10.1046/j.1351-0754.2002.00448.x.CrossRefGoogle Scholar
  32. Galuszka, A. (2007). Different approaches in using and understanding the term “Geochemical Background”—Practical implications for environmental studies. Polish Journal of Environmental Studies, 16, 389–395.Google Scholar
  33. Gregorauskienė, V., & Kadūnas, V. (2006). Vertical distribution patterns of trace and major elements within soil profile in Lithuania. Geological Quarterly, 50(2), 229–237.Google Scholar
  34. Grunsky, E. C. (2010). The interpretation of geochemical survey data. Geochemistry: Exploration, Environment and Analysis, 10, 27–74.Google Scholar
  35. Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14, 975–1001.CrossRefGoogle Scholar
  36. Hamon, R. E., McLaughlin, M. J., Gilkes, R. J., Rate, A. W., Zarcinas, B., Robertson, A., et al. (2004). Geochemical indices allow estimation of heavy metal background concentrations in soils. Global Biogeochemical Cycles.  https://doi.org/10.1029/2003gb002063.Google Scholar
  37. Jiao, X., Teng, Y., Zhan, Y., Wu, J., & Lin, X. (2015). Soil heavy metal pollution and risk assessment in Shenyang Industrial District, Northeast China. PLoS ONE, 10(5), e0127736.  https://doi.org/10.1371/journal.pone.0127736.CrossRefGoogle Scholar
  38. Kabata-Pendias, A., & Mukherjee, A. B. (2007). Trace elements from soil to human. Berlin: Springer.  https://doi.org/10.1007/978-3-540-32714-1.CrossRefGoogle Scholar
  39. Kabata-Pendias, A., & Pendias, H. (1992). Trace elements in soils and plants. Boca Raton: CRC Press.Google Scholar
  40. Kelepertzis, E., Argyraki, A., & Daftsis, E. (2012). Geochemical signature of surface water and stream sediments of a mineralized drainage basin at NE Chalkidiki, Greece: A pre-mining survey. Journal of Geochemical Exploration, 114, 70–81.  https://doi.org/10.1016/j.gexplo.2011.12.006.CrossRefGoogle Scholar
  41. Lancianese, V., & Dinelli, E. (2015). Different spatial methods in regional geochemical mapping at high density sampling: An application on stream sediment of Romagna Apennines, Northern Italy. Journal of Geochemical Exploration, 154, 143–155.  https://doi.org/10.1016/j.gexplo.2014.12.014.CrossRefGoogle Scholar
  42. Marandi, A., & Karro, E. (2008). Natural background levels and threshold values of monitored parameters in the Cambrian–Vendian groundwater body, Estonia. Environmental Geology, 54(6), 1217–1225.  https://doi.org/10.1007/s00254-007-0904-6.CrossRefGoogle Scholar
  43. Maritz, H., Cloete, H. C. C. C., & Elsenbroek, J. H. (2010). Analysis of high density regional geochemical soil samples at the council for geoscience (South Africa): The importance of quality control measures. Geostandards and Geoanalytical Research, 34(3), 265–273.  https://doi.org/10.1111/j.1751-908X.2010.00078.x.CrossRefGoogle Scholar
  44. Martinez-Lladó, X., Vilà, M., Martí, V., Rovira, M., Domènech, J. A., & de Pablo, J. (2008). Trace element distribution in topsoils in Catalonia: Background and reference values and relationship with regional geology. Environmental Engineering Science, 25(6), 863–878.  https://doi.org/10.1089/ees.2007.0139.CrossRefGoogle Scholar
  45. Matschullat, J., Ottenstein, R., & Reimann, C. (2000). Geochemical background—Can we calculate it? Environmental Geology, 39(9), 990–1000.  https://doi.org/10.1007/s002549900084.CrossRefGoogle Scholar
  46. Mimba, M. E., Ohba, T., Nguemhe Fils, S. C., Nforba, M. T., Numanami, N., Bafon, T. G., et al. (2018). Regional geochemical baseline concentration of potentially toxic trace metals in the mineralized Lom Basin, East Cameroon: A tool for contamination assessment. Geochemical Transactions, 19(1), 11.  https://doi.org/10.1186/s12932-018-0056-5.CrossRefGoogle Scholar
  47. Monteiro, L. V. S., Xavier, R. P., Hitzman, M. W., Juliani, C., de Souza Filho, C. R., & Carvalho, E. R. (2008). Mineral chemistry of ore and hydrothermal alteration at the Sossego iron oxide–copper–gold deposit, Carajás Mineral Province, Brazil. Ore Geology Reviews, 34(3), 317–336.  https://doi.org/10.1016/j.oregeorev.2008.01.003.CrossRefGoogle Scholar
  48. Moreto, C. P. N., Monteiro, L. V. S., Xavier, R. P., Creaser, R. A., DuFrane, S. A., Melo, G. H. C., et al. (2015). Timing of multiple hydrothermal events in the iron oxide–copper–gold deposits of the Southern Copper Belt, Carajás Province, Brazil. Mineralium Deposita, 50, 517–546.CrossRefGoogle Scholar
  49. Morton-Bermea, O., Hernández-Álvarez, E., González-Hernández, G., Romero, F., Lozano, R., & Beramendi-Orosco, L. E. (2009). Assessment of heavy metal pollution in urban topsoils from the metropolitan area of Mexico City. Journal of Geochemical Exploration, 101(3), 218–224.  https://doi.org/10.1016/j.gexplo.2008.07.002.CrossRefGoogle Scholar
  50. Nakić, Z., Posavec, K., & Bačani, A. (2007). A visual basic spreadsheet macro for geochemical background analysis. Ground Water, 45, 642–647.CrossRefGoogle Scholar
  51. Nascimento, C. W. A., Lima, L. H. V., Silva, F. L. S., Biondi, C. M., & Campos, M. C. C. (2018). Natural concentrations and refernce values of heavy metals in sedimentary soils in the Brazilian Amazon. Environmental Monitoring and Assessment, 190, 606.  https://doi.org/10.1007/s10661-018-6989-4.CrossRefGoogle Scholar
  52. Ohta, A., Imai, N., Terashima, S., & Tachibana, Y. (2011). Regional geochemical mapping in eastern Japan including the nation’s capital, Tokyo. Geochemistry: Exploration, Environment, Analysis, 11(3), 211–223.  https://doi.org/10.1144/1467-7873/10-042.Google Scholar
  53. Oze, C., Fendorf, S., Bird, D. K., & Coleman, R. G. (2004). Chromium geochemistry in serpentinized ultramafic rocks and serpentine soils from the Franciscan complex of California. American Journal of Science, 304(1), 67–101.  https://doi.org/10.2475/ajs.304.1.67.CrossRefGoogle Scholar
  54. Palumbo, B., Angelone, M., Bellanca, A., Dazzi, C., Hauser, S., Neri, R., et al. (2000). Influence of inheritance and pedogenesis on heavy metal distribution in soils of Sicily, Italy. Geoderma, 95(3–4), 247–266.  https://doi.org/10.1016/S0016-7061(99)00090-7.CrossRefGoogle Scholar
  55. Pandolfo, C. M., Ceretta, C. A., Massignam, A. M., da Veiga, M., & Moreira, I. C. L. (2008). Análise ambiental do uso de fontes de nutrientes associadas a sistemas de manejo do solo. Revista Brasileira de Engenharia Agrícola e Ambiental, 12(5), 512–519.  https://doi.org/10.1590/S1415-43662008000500012.CrossRefGoogle Scholar
  56. Paye, H. S., de Mello, J. W. V., Abrahão, W. A. P., Fernandes Filho, E. I., Dias, L. C. P., Castro, M. L. O., et al. (2010). Valores de referência de qualidade para metais pesados em solos no Estado do Espírito Santo. Revista Brasileira de Ciência do Solo, 34(6), 2041–2051.  https://doi.org/10.1590/s0100-06832010000600028.CrossRefGoogle Scholar
  57. Pontes, P. R. M., Cavalcante, R. B. L., Sahoo, P. K., Silva, R., Jr., Silva, M. S., Dall’Agnol, R., et al. (2019). The role of protected and deforested areas in the hydrological processes of Itacaiúnas River Basin, eastern Amazonia. Journal of Enviromental Mangament, 235, 489–499.Google Scholar
  58. Preston, W., Nascimento, C. W. A., Biondi, C. M., Souza Junior, V. S., Silva, W. R., & Ferreira, H. A. (2014). Quality reference values for heavy metals in soils of Rio Grande do Norte, Brazil. Revista Brasileira de Ciência do Solo, 38, 1028–1037.  https://doi.org/10.1590/S0100-06832014000300035. (in Portuguese with English abstract).CrossRefGoogle Scholar
  59. R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org. Accessed 21 Jan 2018.
  60. Reimann, C., & de Caritat, P. (2017). Establishing geochemical background variation and threshold values for 59 elements in Australian surface soil. Science of the Total Environment, 578, 633–648.  https://doi.org/10.1016/j.scitotenv.2016.11.010.CrossRefGoogle Scholar
  61. Reimann, C., Fabian, K., Birke, M., Filzmoser, P., Demetriades, A., Négrel, P., et al. (2018). GEMAS: Establishing geochemical background and threshold for 53 chemical elements in European agricultural soil. Applied Geochemistry, 88, 302–318.  https://doi.org/10.1016/j.apgeochem.2017.01.021.CrossRefGoogle Scholar
  62. Reimann, C., Filzmoser, P., & Garrett, R. (2002). Factor analysis applied to regional geochemical data: Problems and possibilities. Applied Geochemistry, 17(3), 185–206.  https://doi.org/10.1016/S0883-2927(01)00066-X.CrossRefGoogle Scholar
  63. Reimann, C., Filzmoser, P., & Garrett, R. G. (2005). Background and threshold: Critical comparison of methods of determination. Science of the Total Environment, 346, 1–16.CrossRefGoogle Scholar
  64. Reimann, C., & Garrett, R. G. (2005). Geochemical background—Concept and reality. Science of the Total Environment, 350(1–3), 12–27.  https://doi.org/10.1016/j.scitotenv.2005.01.047.CrossRefGoogle Scholar
  65. Sahoo, P. K., Guimarães, J. T. F., Souza-Filho, P. W. M., Powell, M. A., Silva, M. S., Moraes, A. M., et al. (2019). Statistical analysis of lake sediment geochemical data for understanding surface geological factors and processes: An example from Amazonian upland lakes, Brazil. CATENA, 175, 47–62.CrossRefGoogle Scholar
  66. Salminen, R., & Tarvainen, T. (1997). The problem of defining geochemical baselines: A case study of selected elements and geological materials in Finland. Journal of Geochemical Exploration, 60(1), 91–98.  https://doi.org/10.1016/s0375-6742(97)00028-9.CrossRefGoogle Scholar
  67. Salomão, G. N., Dall’Agnol, R., Sahoo, P. K., Júnior, J. S. F., Silva, M. S., Souza Filho, P. W., et al. (2018). Geochemical distribution and thresholds values determination of heavy metals in stream water in the sub-basins of Vermelho and Sororó rivers, Itacaiúnas River watershed, Eastern Amazon, Brazil. Geochimica Brasiliensis, 32, 179–197.CrossRefGoogle Scholar
  68. Santos, S. N., & Alleoni, L. R. F. (2013). Reference values for heavy metals in soils of Brazilian agricultural frontier in Southwestern Amazônia. Environmental Monitoring and Assessment, 185, 5737–5748.CrossRefGoogle Scholar
  69. Schober, P., Boer, C., & Schwarte, L. A. (2018). Correlation coefficients: Appropriate use and interpretation. Anesthesia and Analgesia, 126, 1763–1768.  https://doi.org/10.1213/ANE.0000000000002864.CrossRefGoogle Scholar
  70. Silva, Y. J., Nascimento, C. W., Cantalice, J. R., da Silva, Y. J., & Cruz, C. M. (2015). Watershed-scale assessment of background concentrations and guidance values for heavy metals in soils from a semiarid and coastal zone of Brazil. Environmental Monitoring and Assessment, 187(9), 558.  https://doi.org/10.1007/s10661-015-4782-1.CrossRefGoogle Scholar
  71. Souza, J. J. L. L., Fontes, M. P. F., Gilkes, R., da Costa, L. M., & de Oliveira, T. S. (2019). Geochemical signature of Amazon tropical rainforest soils. Revista Brasileira de Ciencia do Solo, 42, 1–18.  https://doi.org/10.1590/18069657rbcs20170192.Google Scholar
  72. Souza-Filho, P. W. M., Souza, E. B., Silva Júnior, R. O., Nascimento, W. R., Jr., Mendonça, B. R. V., Guimarães, J. T. F., et al. (2016). Four decades of land-cover, land-use and hydroclimatology changes in the Itacaiúnas River watershed, southeastern Amazon. Journal of Environmental Management, 167, 175–184.  https://doi.org/10.1016/j.jenvman.2015.11.039.CrossRefGoogle Scholar
  73. Teh, T., Norulaini, N. A. R., Shahadat, M., Wong, Y., & Mohd Omar, A. K. (2016). Risk assessment of metal contamination in soil and groundwater in Asia: A review of recent trends as well as existing environmental laws and regulations. Pedosphere, 26(4), 431–450.  https://doi.org/10.1016/S1002-0160(15)60055-8.CrossRefGoogle Scholar
  74. Teixeira, M. F. B., Dall’Agnol, R., Santos, J. O. S., de Sousa, L. A. M., & Lafon, J.-M. (2017). Geochemistry, geochronology and Nd isotopes of the Gogó da Onça Granite: A new Paleoproterozoic A-type granite of Carajás Province, Brazil. Journal of South American Earth Sciences, 80, 47–65.  https://doi.org/10.1016/j.jsames.2017.09.017.CrossRefGoogle Scholar
  75. Thornton, I., Farago, M. E., Thums, C. R., Parrish, R. R., McGill, R. A. R., Breward, N., et al. (2008). Urban geochemistry: Research strategies to assist risk assessment and remediation of brownfield sites in urban areas. Environmental Geochemistry and Health, 30(6), 565–576.  https://doi.org/10.1007/s10653-008-9182-9.CrossRefGoogle Scholar
  76. Towett, E. K., Shepherd, K. D., Tondoh, J. E., Winowiecki, L. A., Lulseged, T., Nyambura, M., et al. (2015). Total elemental composition of soils in Sub-Saharan Africa and relationship with soil forming factors. Geoderma Regional, 5, 157–168.  https://doi.org/10.1016/j.geodrs.2015.06.002.CrossRefGoogle Scholar
  77. Vasquez, L. V., Rosa-Costa, L. R., Silva, C. G., Ricci, P. F., Barbosa, J. O., & Klein, E. L. (2008). Geologia e recursos minerais do estado do Pará: Sistema de Informações Geográficas – SIG: Texto explicativo dos mapas geológico e tectônico e de recursos minerais do estado do Pará. http://rigeo.cprm.gov.br/jspui/handle/doc/10443.
  78. Wang, Z., Hong, C., Xing, Y., Wang, K., Li, Y., Feng, L., et al. (2018). Spatial distribution and sources of heavy metals in natural pasture soil around copper-molybdenum mine in Northeast China. Ecotoxicology and Environmental Safety, 154, 329–336.  https://doi.org/10.1016/j.ecoenv.2018.02.048.CrossRefGoogle Scholar
  79. Xie, X., Wang, X., Zhang, Q., Zhou, G., Cheng, H., Liu, D., et al. (2008). Multi-scale geochemical mapping in China. Geochemistry: Exploration, Environment, Analysis, 8(3–4), 333–341.  https://doi.org/10.1144/1467-7873/08-184.Google Scholar
  80. Yamamoto, K., Tanaka, T., Minami, M., Mimura, K., Asahara, Y., Yoshida, H., et al. (2007). Geochemical mapping in Aichi prefecture, Japan: Its significance as a useful dataset for geological mapping. Applied Geochemistry, 22(2), 306–319.  https://doi.org/10.1016/j.apgeochem.2006.09.011.CrossRefGoogle Scholar
  81. Zuo, R. (2011). Identifying geochemical anomalies associated with Cu and Pb–Zn skarn mineralization using principal component analysis and spectrum–area fractal modeling in the Gangdese Belt, Tibet (China). Journal of Geochemical Exploration, 111(1–2), 13–22.  https://doi.org/10.1016/j.gexplo.2011.06.012.CrossRefGoogle Scholar
  82. Zuo, R., Cheng, Q., Agterberg, F. P., & Xia, Q. (2009). Application of singularity mapping technique to identify local anomalies using stream sediment geochemical data, a case study from Gangdese, Tibet, western China. Journal of Geochemical Exploration, 101(3), 225–235.  https://doi.org/10.1016/j.gexplo.2008.08.003.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Prafulla Kumar Sahoo
    • 1
    • 2
    Email author
  • Roberto Dall’Agnol
    • 1
    • 3
  • Gabriel Negreiros Salomão
    • 1
    • 3
  • Jair da Silva Ferreira Junior
    • 1
  • Marcio Souza da Silva
    • 1
    • 4
  • Gabriel Caixeta Martins
    • 1
  • Pedro Walfir Martin e Souza Filho
    • 1
    • 3
  • Mike A. Powell
    • 5
  • Clovis Wagner Maurity
    • 1
    • 3
  • Rômulo Simões Angelica
    • 3
  • Marlene Furtado da Costa
    • 6
  • José Oswaldo Siqueira
    • 1
  1. 1.Instituto Tecnológico Vale (ITV)BelémBrazil
  2. 2.Department of Environmental Science and Technology, School of Environmental and Earth SciencesCentral University of PunjabBathindaIndia
  3. 3.Programa de Pós-graduação em Geologia e Geoquímica, Instituto de Geociências (IG)Universidade Federal do Pará (UFPA)Rua Augusto Corrêa, BelémBrazil
  4. 4.Programa de Pós-graduação em Ciências Ambientais, Instituto de Geociências (IG)Universidade Federal do Pará (UFPA)Rua Augusto Corrêa, BelémBrazil
  5. 5.Department of Renewable Resources, Faculty of Agriculture, Life and Environmental Sciences (ALES)University of AlbertaEdmontonCanada
  6. 6.Gerência de Meio Ambiente - Minas de Carajás, Departamento de Ferrosos NorteParauapebasBrazil

Personalised recommendations