Advertisement

Effect of simulated acid rain on stability of arsenic calcium residue in residue field

  • Jiangchi Fei
  • Jingjing Ma
  • Jinqin Yang
  • Yanjie Liang
  • Yong Ke
  • Liwei Yao
  • Yuancheng Li
  • Degang Liu
  • Xiaobo MinEmail author
Original Paper

Abstract

In recent years, acid rain had a serious negative impact on the leaching behavior of industrial waste residue. Researches were mainly focused on the environmental hazards of heavy metal in the leachate, but ignored the effects of heavy metal speciation on the stability of waste residue in the subsequent stabilization process. In this study, the unstable calcium–arsenic compounds in the arsenic calcium residue were firstly removed by leaching process; subsequently, the crystallization agent was added to treat the remaining calcium–arsenic mixture. The results of the leaching process demonstrated that the decrease in particle size and pH value directly affected the increase in the cumulative leaching amount of arsenic, and the cumulative leaching ratio reached 1.55%. In addition, the concentration of arsenic decreased from 3583 to 49.1 mg L−1. After the crystallization process, the arsenic concentration was lower than the limit value of Identification Standards for Hazardous Wastes (GB 5085.3-2007). The SEM analysis showed the bulk structures, and XRD pattern confirmed that they were the stable compounds. Moreover, the result of XRD and SEM illustrated that acid concentration, chloride ions and sulfate ions were contributed to the transformation and growth of stable calcium arsenate compounds. Therefore, effective control of the acidity of acid rain, the type of anions in acid rain, and the particle size of residues would contribute to adjusting the arsenic speciation to be more stable. The leaching-crystallization process was of great significance to improve the stability of the arsenic-containing residue.

Keywords

Heavy metals Environmental exposure Leaching Crystallization Stabilization 

Notes

Acknowledgements

The authors gratefully acknowledge financial support from the key project of National Natural Science Foundation of China (51634010), Special Program on Environmental Protection for Public Welfare (201509050), the Natural Science Foundation of China (51474247 and 51704337), and Science and Technology Project of Hunan Province (2017RS3010).

Supplementary material

10653_2019_273_MOESM1_ESM.docx (111 kb)
Supplementary material 1 (DOCX 111 kb)

References

  1. Adaros, G., Weigel, H. J., & Jäuger, H. J. (2010). Effects of sulphur dioxide and acid rain alone or in combination on growth and yield of broad bean plants. New Phytologist, 108(1), 67–74.CrossRefGoogle Scholar
  2. Azhdarpoor, A., Nikmanesh, R., & Samaei, M. R. (2015). Removal of arsenic from aqueous solutions using waste iron columns inoculated with iron bacteria. Environmental Technology, 36(20), 2525–2531.CrossRefGoogle Scholar
  3. Aziz, A. A., Lee, B. T., Han, H. J., & Kim, K. W. (2018). Assessment of the stabilization of heavy metal contaminants in soils using chemical leaching and an earthworm bioassay. Environmental Geochemistry and Health.  https://doi.org/10.1007/s10653-018-0173-1.Google Scholar
  4. Baba, A., Gurdal, G., & Sengunalp, F. (2010). Leaching characteristics of fly ash from fluidized bed combustion thermal power plant: Case study: Çan (Çanakkale-Turkey). Fuel Processing Technology, 91(9), 1073–1080.CrossRefGoogle Scholar
  5. Bothe, J. V., & Brown, P. W. (1999a). Arsenic immobilization by calcium arsenate formation. Environmental Science and Technology, 33(21), 3806–3811.CrossRefGoogle Scholar
  6. Bothe, J. V., & Brown, P. W. (1999b). The stabilities of calcium arsenates at 23 ± 1°C. Journal of Hazardous Materials, 69(2), 197–207.CrossRefGoogle Scholar
  7. Chai, L. Y., Li, H., Yang, Z. H., Min, X. B., Liao, Q., Liu, Y., et al. (2016). Heavy metals and metalloids in the surface sediments of the Xiangjiang River, Hunan, China: distribution, contamination, and ecological risk assessment. Environmental Science and Pollution Research, 24(1), 874–885.CrossRefGoogle Scholar
  8. Chai, L. Y., Yang, J. Q., Zhang, N., Wu, P. J., Li, Q., Wang, Q., et al. (2017). Structure and spectroscopic study of aqueous Fe(III)–As(V) complexes using UV–Vis, XAS and DFT-TDDFT. Chemosphere, 182, 595–604.CrossRefGoogle Scholar
  9. Chen, Q. Y., Tyrer, M., Hills, C. D., Yang, X. M., & Carey, P. (2009). Immobilisation of heavy metal in cement-based solidification/stabilisation: A review. Waste Management, 29(1), 390–403.CrossRefGoogle Scholar
  10. Chichester, D. L., & Landsberger, S. (2012). Determination of the leaching dynamics of metals from municipal solid waste incinerator fly ash using a column test. Air Repair, 46(7), 643–649.Google Scholar
  11. Chukhlantsev, V. (1956). Solubility products of arsenates. Journal of Inorganic Chemistry (USSR), 1, 1975–1982.Google Scholar
  12. Davidson, C. M., Duncan, A. L., Littlejohn, D., Ure, A. M., & Garden, L. M. (1998). A critical evaluation of the three-stage BCR sequential extraction procedure to assess the potential mobility and toxicity of heavy metals in industrially-contaminated land. Analytica Chimica Acta, 363(1), 45–55.CrossRefGoogle Scholar
  13. Donahue, R., & Hendry, M. (2003). Geochemistry of arsenic in uranium mine mill tailings, Saskatchewan, Canada. Applied Geochemistry, 18(11), 1733–1750.CrossRefGoogle Scholar
  14. Fei, J. C., Min, X. B., Wang, Z. X., Pang, Z. H., Liang, Y. J., & Ke, Y. (2017). Health and ecological risk assessment of heavy metals pollution in an antimony mining region: A case study from South China. Environmental Science and Pollution Research, 24(35), 27573–27586.CrossRefGoogle Scholar
  15. Fei, J. C., Wang, T., Zhou, Y. Y., Wang, Z. X., Min, X., Ke, Y., et al. (2018). Aromatic organoarsenic compounds (AOCs) occurrence and remediation methods. Chemosphere, 207, 665–675.CrossRefGoogle Scholar
  16. Floor, G. H., Calabrese, S., Romanross, G., D’Alessandro, W., & Aiuppa, A. (2009). Rainwater-induced leaching of selenium, arsenic and vanadium from Etnean volcanic soils. Geochmica Et Cosmochimica Acta, 73(13), A384.Google Scholar
  17. Fujita, T., Taguchi, R., Abumiya, M., Matsumoto, M., Shibata, E., & Nakamura, T. (2009). Effect of pH on atmospheric scorodite synthesis by oxidation of ferrous ions: Physical properties and stability of the scorodite. Hydrometallurgy, 96(3), 189–198.CrossRefGoogle Scholar
  18. Gong, Z., Zeng, G. M., Jiang, Y. M., & Liu, H. L. (2003). Analysis on the variant characteristics, present situation and origin of acid rain in Hunan Province. Research of Environmental Sciences, 16(5), 14–19.Google Scholar
  19. Goyer, R. A., Bachmann, J., Clarkson, T. W., Jr., Ferris, B., Graham, J., Mushak, P., et al. (1985). Potential human health effects of acid rain: Report of a workshop. Environmental Health Perspectives, 60, 355–368.CrossRefGoogle Scholar
  20. He, X. Y., Deng, F., Shen, T. T., Yang, L. M., Chen, D. Z., Luo, J. F., et al. (2019). Exceptional adsorption of arsenic by zirconium metal-organic frameworks: Engineering exploration and mechanism insight. Journal of Colloid and Interface Science, 539, 223–234.CrossRefGoogle Scholar
  21. Kim, J. Y., Kim, K. W., Ahn, J. S., Ko, I., & Lee, C. H. (2005). Investigation and risk assessment modeling of As and other heavy metals contamination around five abandoned metal mines in Korea. Environmental Geochemistry and Health, 27(2), 193–203.CrossRefGoogle Scholar
  22. Kochergina, Y. V., Udatný, M., Penížek, V., & Mihaljevič, M. (2017). Mobility of Pb, Zn, Cu and As in disturbed forest soils affected by acid rain. Environmental Monitoring and Assessment, 189(11), 570.CrossRefGoogle Scholar
  23. Kosson, D. S., van der Sloot, H. A., & Eighmy, T. T. (1996). An approach for estimation of contaminant release during utilization and disposal of municipal waste combustion residues. Journal of Hazardous Materials, 47(1–3), 43–75.CrossRefGoogle Scholar
  24. Lajewski, C. K., Mullins, H. T., Patterson, W. P., & Callinan, C. W. (2003). Historic calcite record from the Finger Lakes, New York: Impact of acid rain on a buffered terrane. Geological Society of America Bulletin, 115(3), 373–384.CrossRefGoogle Scholar
  25. Lei, J., Peng, B., Liang, Y. J., Min, X. B., Chai, L. Y., Ke, Y., et al. (2018). Effects of anions on calcium arsenate crystalline structure and arsenic stability. Hydrometallurgy, 177, 123–131.CrossRefGoogle Scholar
  26. Lei, J., Peng, B., Min, X. B., Liang, Y. J., Yang, Y., & Chai, L. Y. (2017). Modeling and optimization of lime-based stabilization in high alkaline arsenic-bearing sludges with a central composite design. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances & Environmental Engineering, 52(5), 449–458.CrossRefGoogle Scholar
  27. Li, Y. C., Min, X. B., Chai, L. Y., Shi, M. Q., Tang, C. J., Wang, Q. W., et al. (2016). Co-treatment of gypsum sludge and Pb/Zn smelting slag for the solidification of sludge containing arsenic and heavy metals. Journal of Environmental Management, 181, 756–761.CrossRefGoogle Scholar
  28. Li, X., & Thornton, I. (1993). Multi-element contamination of soils and plants in old mining areas, UK. Applied Geochemistry, 8(9), 51–56.CrossRefGoogle Scholar
  29. Li, H. M., Wang, J. H., Wang, Q. G., Qian, X., Qian, Y., Yang, M., et al. (2015). Chemical fractionation of arsenic and heavy metals in fine particle matter and its implications for risk assessment: A case study in Nanjing, China. Atmospheric Environment, 103, 339–346.CrossRefGoogle Scholar
  30. Li, H. B., Wang, Z. X., Yang, Z. H., Chai, L. Y., & Liao, Y. P. (2012). Static and dynamic leaching of chromium(VI) from chromium-containing slag. Environmental Engineering Science, 29(6), 426–431.CrossRefGoogle Scholar
  31. Li, J. S., Xue, Q., Wang, P., Li, Z. Z., & Liu, L. (2014). Effect of drying-wetting cycles on leaching behavior of cement solidified lead-contaminated soil. Chemosphere, 117, 10–13.CrossRefGoogle Scholar
  32. Li, R., Kuo, Y. M., Liu, W. W., Jang, C. S., Zhao, E. M., & Yao, L. Q. (2018). Potential health risk assessment through ingestion and dermal contact arsenic-contaminated groundwater in Jianghan Plain, China. Environ Geochem Health, 40(4), 1585–1599.CrossRefGoogle Scholar
  33. Liang, Y. J., Min, X. B., Chai, L. Y., Wang, M., Liyang, W. J., Pan, Q. L., et al. (2016). Stabilization of arsenic sludge with mechanochemically modified zero valent iron. Chemosphere, 168, 1142–1151.CrossRefGoogle Scholar
  34. Likens, G. E., & Butler, T. J. (2018). Acid rain: Causes, consequences, and recovery in terrestrial, aquatic, and human systems. Encyclopedia of the Anthropocene, 5, 23–31.CrossRefGoogle Scholar
  35. Lin, W. Y., Heng, K. S., Sun, X., & Wang, J. Y. (2015). Accelerated carbonation of different size fractions of MSW IBA and the effect on leaching. Waste Management (New York, NY), 41, 75–84.CrossRefGoogle Scholar
  36. Liu, D. G., Min, X. B., Ke, Y., Chai, L. Y., Liang, Y. J., Li, Y. C., et al. (2018). Co-treatment of flotation waste, neutralization sludge, and arsenic-containing gypsum sludge from copper smelting: Solidification/stabilization of arsenic and heavy metals with minimal cement clinker. Environmental Science and Pollution Research, 25(8), 7600–7607.  https://doi.org/10.1007/s11356-017-1084-x.CrossRefGoogle Scholar
  37. Mahapatra, P., Mahapatra, L., & Mishra, B. (1986). Solubility of calcium hydrogen arsenate in aqueous medium. Indian Journal of Chemistry Section a-Inorganic Bio-Inorganic Physical Theoretical & Analytical Chemistry, 25(7), 647–649.Google Scholar
  38. Min, X. B., Xie, X. D., Chai, L. Y., Liang, Y. J., Li, M., & Ke, Y. (2013). Environmental availability and ecological risk assessment of heavy metals in zinc leaching residue. Transactions Of Nonferrous Metals Society Of China, 23(1), 208–218.CrossRefGoogle Scholar
  39. Monhemius, A., & Swash, P. (1999). Removing and stabilizing As from copper refining circuits by hydrothermal processing. JOM Journal of the Minerals Metals and Materials Society, 51(9), 30–33.CrossRefGoogle Scholar
  40. Niu, X., Wendt, A., Li, Z., Agarwal, A., Xue, L., Gonzales, M., et al. (2017). Detecting the effects of coal mining, acid rain, and natural gas extraction in Appalachian basin streams in Pennsylvania (USA) through analysis of barium and sulfate concentrations. Environmental Geochemistry and Health, 40(2), 865–885.CrossRefGoogle Scholar
  41. Riveros, P. A., Dutrizac, J. E., & Spencer, P. (2001). Arsenic disposal practices in the metallurgical industry. Canadian Metallurgical Quarterly, 40(4), 395–420.CrossRefGoogle Scholar
  42. Robins, R. G. (1981). The solubility of metal arsenates. Metallurgical and Materials Transactions B, 12(1), 103–109.CrossRefGoogle Scholar
  43. Robins, R. G., & Tozawa, K. (1982). Arsenic removal from gold processing waste waters: The potential ineffectiveness of lime. Canadian Mining and Metallurgical Bulletin, 75(840), 171–174.Google Scholar
  44. Shaoping, H., Xincai, C., Jiyan, S., Yingxu, C., & Qi, L. (2008). Particle-facilitated lead and arsenic transport in abandoned mine sites soil influenced by simulated acid rain. Chemosphere, 71(11), 2091–2097.CrossRefGoogle Scholar
  45. Wang, Z. X., Chai, L. Y., Wang, Y. Y., Yang, Z. H., Wang, H. Y., & Wu, X. (2011). Potential health risk of arsenic and cadmium in groundwater near Xiangjiang River, China: A case study for risk assessment and management of toxic substances. Environmental Monitoring and Assessment, 175(1–4), 167–173.CrossRefGoogle Scholar
  46. Wang, S., & Mulligan, C. N. (2006). Effect of natural organic matter on arsenic release from soils and sediments into groundwater. Environmental Geochemistry and Health, 28(3), 197–214.  https://doi.org/10.1007/s10653-005-9032-y.CrossRefGoogle Scholar
  47. Wang, P., Xue, Q., Li, J. S., & Zhang, T. T. (2016). Effects of pH on leaching behavior of compacted cement solidified/stabilized lead contaminated soil. Environmental Progress & Sustainable Energy, 35(1), 149–155.CrossRefGoogle Scholar
  48. Wei, Z., Luo, S., Xiao, R., Khalfin, R., & Semiat, R. (2017). Characterization and quantification of chromate adsorption by layered porous iron oxyhydroxide: An experimental and theoretical study. Journal of Hazardous Materials, 338, 472–481.CrossRefGoogle Scholar
  49. Xie, S., Qi, L., & Zhou, D. (2004). Investigation of the effects of acid rain on the deterioration of cement concrete using accelerated tests established in laboratory. Atmospheric Environment, 38(27), 4457–4466.CrossRefGoogle Scholar
  50. Xie, Z., Yin, D. U., Yan, Z., Yachun, L. I., Jingang, W. U., & Jiao, S. (2008). Impact of spatio-temporal variation of precipitation on severe acid rain in Southern China. Acta Geographica Sinica, 63(9), 913–923.Google Scholar
  51. Xu, S., Wu, X., Cai, Y., Ding, Y., & Wang, Z. (2018). Strength and leaching characteristics of magnesium phosphate cement-solidified zinc- contaminated soil under the effect of acid rain. Soil & Sediment Contamination, 27(2), 161–174.CrossRefGoogle Scholar
  52. Yang, K., Jeong, S., Jho, E. H., & Nam, K. (2016). Effect of biogeochemical interactions on bioaccessibility of arsenic in soils of a former smelter site in Republic of Korea. Environmental Geochemistry and Health, 38(6), 1347–1354.CrossRefGoogle Scholar
  53. Yang, Z., Liu, L., Chai, L., Liao, Y., Yao, W., & Xiao, R. (2015). Arsenic immobilization in the contaminated soil using poorly crystalline Fe-oxyhydroxy sulfate. Environmental Science and Pollution Research, 22(16), 12624–12632.CrossRefGoogle Scholar
  54. You, Y., Min, X. B., Peng, B., Liang, Y. J., & Lei, J. (2015). Stabilization of high As-contained caustic sludge by calcium-arsenic crystallization. Nonferrous Metals Science & Engineering, 6(6), 24–28.Google Scholar
  55. Zhang, H., Jianping, W. U., Xiong, X., Chu, G., Zhou, G., & Zhang, D. (2018). Effects of simulated acid rain on soil labile organic carbon and carbon management index in subtropical forests of China. Acta Ecologica Sinica, 38(2), 657–667.Google Scholar
  56. Zhang, S. G., & Zhang, H. (2001). The harmfulness of acid rain to ahriculturaleco-environment in China and the corresponding preventive countermeasures. Journal of China Agricultural Resources and Regional Planning, 22(1), 41–44.Google Scholar
  57. Zhou, Y., Liu, X., Tang, L., Zhang, F., Zeng, G., Peng, X., et al. (2017). Insight into highly efficient co-removal of p-nitrophenol and lead by nitrogen-functionalized magnetic ordered mesoporous carbon: Performance and modelling. Journal of Hazardous Materials, 333, 80–87.CrossRefGoogle Scholar
  58. Zhu, Y. N., Zhang, H., Liang, Y. P., Liu, H., & Zhang, X. H. (2005). Dependence of solubility and stability of calcium arsenates on pH value. Acta Scientiae Circumstantiae, 25, 1652–1660.Google Scholar
  59. Zhu, Y. N., Zhang, X. H., Xie, Q. L., Wang, D. Q., & Cheng, G. W. (2006). Solubility and stability of calcium arsenates at 25°C. Water, Air, and Soil Pollution, 169(1–4), 221–238.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Jiangchi Fei
    • 1
  • Jingjing Ma
    • 1
  • Jinqin Yang
    • 1
  • Yanjie Liang
    • 1
    • 2
  • Yong Ke
    • 1
    • 2
  • Liwei Yao
    • 1
  • Yuancheng Li
    • 1
  • Degang Liu
    • 1
  • Xiaobo Min
    • 1
    • 2
    Email author
  1. 1.School of Metallurgy and EnvironmentCentral South UniversityChangshaChina
  2. 2.Chinese National Engineering Research Center for Control and Treatment of Heavy Metal PollutionChangshaChina

Personalised recommendations