Advertisement

The geochemistry of geophagic material consumed in Onangama Village, Northern Namibia: a potential health hazard for pregnant women in the area

  • Selma N. Kambunga
  • Carla Candeias
  • Israel Hasheela
  • Hassina MouriEmail author
Original Paper

Abstract

Ingestion of geophagic materials might affect human health and induce diseases by different ways. The purpose of this study is to determine the geochemical composition of geophagic material consumed especially by pregnant women in Onangama Village, Northern Namibia and to assess its possible health effects. X-ray fluorescence and inductively coupled plasma mass spectrometry were used in order to determine the major, and trace elements as well as anions concentrations of the consumed material. The geochemical analysis revealed high concentrations of aluminium (Al), calcium (Ca), iron (Fe), magnesium (Mg), manganese (Mn), potassium (K), sodium (Na), and silica (Si); and trace elements including arsenic (As), chromium (Cr), mercury (Hg), nickel (Ni) and vanadium (V) as well as sulphate (SO42−), nitrate (NO3), and nitrite (NO2) anions comparing to the recommended daily allowance for pregnant women. The pH for some of the studied samples is alkaline, which might increase the gastrointestinal tract pH (pH < 2) and cause a decrease in the bioavailability of elements. The calculated health risk index (HRI > 1) revealed that Al and Mn might be a potential risk for human consumption. Based on the results obtained from the geochemical analysis, the consumption of the studied material might present a potential health risk to pregnant women including concomitant detrimental maternal and foetal effects.

Keywords

Geophagy Geochemistry Termite mound soils Pregnant women 

Notes

Acknowledgements

The authors are grateful to the University of Johannesburg and the National Research Foundation (NRF, South Africa) Incentive Funding for Rated Researchers (Grant No. 91059) and Collaborative Postgraduate training programme (Grant No. 105295) for the financial support for this study. Carla Candeias is grateful to the Portuguese Institutions University of Aveiro, IU GeoBioTec (UID/GEO/04035/2013) and to FCT (SFRH/BPD/99636/2014) for the financial support of her work. Patrick Gevera and Olufunke Sanyaolu are thanked for their comments on the early draft of this manuscript. Anonymous reviewers and the Editor of the Journal are acknowledged for their valuable comments, which helped to improve the manuscript.

References

  1. Abrahams, P. W., & Parsons, J. A. (1996). Geophagy in the tropics: A literature review. Geographical Journal, 162, 63–72.Google Scholar
  2. Agene, I. J., Lar, U. A., Mohammed, S. O., Gajere, E. N., Dang, B., Jeb, D. N., et al. (2014). The effects of geophagy on pregnant women in Nigeria. American Journal of Human Ecology, 3(1), 1–9.Google Scholar
  3. Arhin, E., & Zango, M. S. (2017). Determination of trace elements and their concentrations in clay balls: Problem of geophagia practice in Ghana. Environmental Geochemistry and Health, 39(1), 1–14.Google Scholar
  4. Aschner, M., Erikson, K. M., & Dorman, D. C. (2005). Manganese dosimetry: Species differences and implications for neurotoxicity. Critical Reviews in Toxicology, 35(1), 1–32.Google Scholar
  5. Aschner, M., Guilarte, T. R., Schneider, J. S., & Zheng, W. (2007). Manganese: Recent advances in understanding its transport and neurotoxicity. Toxicology and Applied Pharmacology, 221(2), 131–147.Google Scholar
  6. ATSDR, Agency for Toxic Substance and Disease Registry. (1999). Toxicological profile for Mercury. U.S. Department of Health and Humans Services, Public Health Humans Services, Centers for Diseases Control. https://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=115&tid=24. Accessed December 2018.
  7. ATSDR, Agency for Toxic Substances and Disease Registry. (2000). Toxicological profile for zinc. US Department of Health and Human Services. Public Health Service. http://www.atsdr.cdc.govytoxprofilesytp60.html. Accessed November 2018.
  8. Barceloux, D. G., & Barceloux, D. (1999). Vanadium. Journal of Toxicology, Clinical Toxicology, 37(2), 265–278.Google Scholar
  9. Barker, D. (2005). Tooth wear as a result of pica. British Dental Journal, 199(5), 271–273.Google Scholar
  10. Bartlett, R. J., & James, B. R. (1988). Mobility and bioavailability of chromium in soils. Chromium in the Natural and Human Environments, 6(1), 1–571.Google Scholar
  11. Bhaskarachary, K. (2011). Potassium and human nutrition: The soil-plant-human continuum. Karnataka Journal of Agricultural Sciences, 24(1), 39–44.Google Scholar
  12. Bose-O’Reilly, S., McCarty, K. M., Steckling, N., & Lettmeier, B. (2010). Mercury exposure and children’s health. Current Problems in Pediatric and Adolescent Health Care, 40(8), 186–215.Google Scholar
  13. Buck, B. J., Londono, S. C., McLaurin, B. T., Metcalf, R., Mouri, H., Selinus, O., et al. (2016). The emerging field of medical geology in brief: Some examples. Environmental Earth Sciences, 75(6), 449.  https://doi.org/10.1007/s12665-016-5362-6.Google Scholar
  14. Candeias, C., da Silva, E. F., Ávila, P. F., & Teixeira, J. P. (2014). Identifying sources and assessing potential risk of exposure to heavy metals and hazardous materials in mining areas: The case study of Panasqueira mine (Central Portugal) as an example. Geosciences, 4(4), 240–268.Google Scholar
  15. Carmignani, M., Boscolo, P., Volpe, A. R., Togna, G., Masciocco, L., & Preziosi, P. (1991). Cardiovascular system and kidney as specific targets of chronic exposure to vanadate in the rat: Functional and morphological findings. In P. L. Chambers, C. M. Chambers, W. D. Wiezorek, & S. Golbs (Eds.), Recent developments in toxicology: Trends, methods and problems (pp. 124–127). Berlin: Springer.Google Scholar
  16. Castiglioni, S., Cazzaniga, A., Albisetti, W., & Maier, J. (2013). Magnesium and osteoporosis: Current state of knowledge and future research directions. Nutrients, 5(8), 3022–3033.Google Scholar
  17. Civantos, D. P., Rodriguez, A. L., Aguado-Borruey, J. M., & Narvaez, J. A. J. (1995). Fulminant malignant arrythmia and multiorgan failure in acute arsenic poisoning. Chest, 108(6), 1774–1775.Google Scholar
  18. Crawford, L., & Bodkin, K. (2011). Health and social impacts of geophagy in panama. McGill Science Undergraduate Research Journal, 6(1), 31–37.Google Scholar
  19. Dawson, K. S., Osburn, M. R., Sessions, A. L., & Orphan, V. J. (2015). Metabolic associations with archaea drive shifts in hydrogen isotope fractionation in sulfate-reducing bacterial lipids in cocultures and methane seeps. Geobiology, 13(5), 462–477.Google Scholar
  20. Diko, M. L., & Diko, C. (2014). Physico-chemistry of geophagic soils ingested to relief nausea and vomiting during pregnancy. African Journal of Traditional, Complementary and Alternative Medicines, 11(3), 21–24.Google Scholar
  21. Diko, M. L., & Ekosse, G. E. (2014). Soil ingestion and associated health implications: A physicochemical and mineralogical appraisal of geophagic soils from Moko, Cameroon. Studies on Ethno-Medicine, 8(1), 83–88.Google Scholar
  22. Dimond, E. G., Caravaca, J., & BenchimoL, A. (1963). Vanadium excretion, toxicity, lipid effect in man. The American Journal of Clinical Nutrition, 12(1), 49–53.Google Scholar
  23. DNHW, Department of National Health and Welfare (Canada). (1992). Guidelines for Canadian drinking water quality. Supporting documentation (pp. 1–5).Google Scholar
  24. Domingo, J. L., iFosch, M. T. C., & Arnáiz, M. G. (2000). Risks of aluminium exposure during pregnancy. Contributions to Science, 1, 479–487.Google Scholar
  25. Doyle, M. E., & Glass, K. A. (2010). Sodium reduction and its effect on food safety, food quality, and human health. Comprehensive Reviews in Food Science and Food Safety, 9(1), 44–56.Google Scholar
  26. Duffy, C. R., Odibo, A. O., Roehl, K. A., Macones, G. A., & Cahill, A. G. (2012). Effect of magnesium sulfate on fetal heart rate patterns in the second stage of labor. Obstetrics and Gynecology, 119(6), 1129–1136.Google Scholar
  27. Eastmond, D. A., MacGregor, J. T., & Slesinski, R. S. (2008). Trivalent chromium: Assessing the genotoxic risk of an essential trace element and widely used human and animal nutritional supplement. Critical Reviews in Toxicology, 38(3), 173–190.Google Scholar
  28. Ekosse, G. E., De Jager, L., & Ngole, V. (2010). Traditional mining and mineralogy of geophagic clays from Limpopo and Free State provinces, South Africa. African Journal of Biotechnology, 9(47), 8058–8067.Google Scholar
  29. Ekosse, E. G. I., & Jumbam, N. D. (2010). Geophagic clays: Their mineralogy, chemistry and possible human health effects. African Journal of Biotechnology, 9(40), 6755–6767.Google Scholar
  30. FAO/WHO. (2003). Codex alimentarius commission: Food hygiene, basic texts. Codex alimentarius–Joint FAO/WHO food standards series, codex alimentarius. Joint FAO WHO food standards programme. Food & Agriculture Org (3rd Edn, p. 79). ISSN 0259-2916.Google Scholar
  31. Foti, F. L. (1994). The possible nutritional/medicinal value of some termite mounds used by Aboriginal communities of Nauiyu Nambiyu (Daly River) and Elliott of the Northern Territory, with emphasis on mineral elements. Master’s Thesis (pp. 1–282). University of Queensland, Australia.Google Scholar
  32. Ghorbani H. (2008). Geophagy, a soil environmental related disease. In International meeting on soil fertility, land management and agro climatology (pp. 957–967).Google Scholar
  33. Gibson, R. S., Wawer, A. A., Fairweather-Tait, S. J., Hurst, R., Young, S. D., Broadley, M. R., et al. (2015). Dietary iron intakes based on food composition data may underestimate the contribution of potentially exchangeable contaminant iron from soil. Journal of Food Composition and Analysis, 40, 19–23.Google Scholar
  34. Goldhaber, S. B. (2003). Trace element risk assessment: Essentiality vs toxicity. Regulatory Toxicology and Pharmacology, 38(2), 232–242.Google Scholar
  35. Gomes, C. D. S. F., & Silva, J. B. P. (2007). Minerals and clay minerals in medical geology. Applied Clay Science, 36(1–3), 4–21.Google Scholar
  36. Grieger, J. A., & Clifton, V. L. (2014). A review of the impact of dietary intakes in human pregnancy on infant birthweight. Nutrients, 7(1), 153–178.Google Scholar
  37. Gunderson, E. L. (1988). FDA Total Diet Study, April 1982-April 1984, dietary intakes of pesticides, selected elements, and other chemicals. Journal-Association of Official Analytical Chemists, 71(6), 1200–1209.Google Scholar
  38. Haddon, I. G. (2006). The Sub-Kalahari geology and tectonic evolution of the Kalahari basin, Southern Africa. Ph.D. thesis, pp. 1–343. University of the Witwatersrand, Johannesburg, South Africa.Google Scholar
  39. Haddon, I. G., & McCarthy, T. S. (2005). The Mesozoic-Cenozoic interior sag basins of Central Africa: The Late-Cretaceous–Cenozoic Kalahari and Okavango basins. Journal of African Earth Sciences, 43(1–3), 316–333.Google Scholar
  40. Haron, N., Uriel, E., & Ora, P. (2011). Geophagy during pregnancy in Africa: A literature review. Obstetrical & Gynecological Survey, 66(7), 1–8.Google Scholar
  41. Henry, J. M., Cring, F. D., Brevik, E. C., & Burgess, L. C. (2013). Geophagy: An anthropological perspective. In E. C. Brevik & L. C. Burgess (Eds.), Soils and human health (pp. 179–199). Florida: CRC Press.Google Scholar
  42. Hogan, G. R. (1990). Peripheral erythrocyte levels, hemolysis and three vanadium compounds. Experientia, 46(5), 444–446.Google Scholar
  43. Hood, R. D., & Harrison, W. P. (1982). Effects of prenatal arsenite exposure in the hamster. Bulletin of Environmental Contamination and Toxicology, 29(6), 671–678.Google Scholar
  44. Iarc, A. (2012). Review of human carcinogens, Part C: Arsenic, metals, fibres, and dusts (Vol. 100, pp. 196–211). Lyon: IARC Monographs.Google Scholar
  45. Ibeanu, I., Dim, L., Mallam, S., Akpa, T., & Munyithya, J. (1997). Non-destructive XRF analysis of Nigerian and Kenyan clays. Journal of Radioanalytical and Nuclear Chemistry, 221(1–2), 207–209.Google Scholar
  46. ISO 10390. (2005). Soil qualityDetermination of pH. International Organization for standardization. https://www.iso.org/standard/40879.html. Accessed November 2018.
  47. John, D. A., & Leventhal, J. S. (1995). Bioavailability of metals. Descargado de http://www.unalmed.edu.Co/rrodriguez/MODELOS/depositos-ambiente/BioavailabilityOfMetal.Pdf/el. Accessed November 2018.
  48. Johnson, L. (2006). Gastrointestinal physiology. Mosby physiology monograph series (7th ed., p. 176). Amsterdam: Elsevier.Google Scholar
  49. Johnson, M. R., Van Vuuren, C. J., Visser, J. N. J., Cole, D. I., Wickens, H. D. V., Christie, A. D. M., et al. (1997). The Foreland Karoo Basin, South Africa. In R. C. Selley (Ed.), Sedimentary basins of the world (Vol. 3, pp. 269–317). Amsterdam: Elsevier.Google Scholar
  50. Kawahara, M., Konoha, K., Nagata, T., & Sadakane, Y. (2007). Aluminum and human health: Its intake, bioavailability and neurotoxicity. Biomedical Research on Trace Elements, 18(3), 211–220.Google Scholar
  51. Kerr, D. N., Ward, M. K., Ellis, H. A., Simpson, W., & Parkinson, I. S. (1992). Aluminium intoxication in renal disease. Aluminium in Biology and Medicine, 169, 123–141.Google Scholar
  52. Ladipo, O. A. (2000). Nutrition in pregnancy: Mineral and vitamin supplements. The American Journal of Clinical Nutrition, 72(1), 280S–290S.Google Scholar
  53. Lar, U. A., Agene, J. I., & Umar, A. I. (2015). Geophagic clay materials from Nigeria: A potential source of heavy metals and human health implications in mostly women and children who practice it. Environmental Geochemistry and Health, 37(2), 363–375.Google Scholar
  54. Lehnhardt, A., & Kemper, M. J. (2011). Pathogenesis, diagnosis and management of hyperkalemia. Pediatric Nephrology, 26(3), 377–384.Google Scholar
  55. Liu, X., Song, Q., Tang, Y., Li, W., Xu, J., Wu, J., et al. (2013). Human krehealth risk assessment of heavy metals in soil–vegetable system: A multi-medium analysis. Science of the Total Environment, 463, 530–540.Google Scholar
  56. Ljung, K., Oomen, A., Duits, M., Selinus, O., & Berglund, M. (2007). Bioaccessibility of metals in urban playground soils. Journal of Environmental Science and Health Part A, 42(9), 1241–1250.Google Scholar
  57. Lucian, B., Camelia, B., Vasile, B., Otilia, M., & Mariana, M. (2010). Report on the influence of heavy metals on the evolution of the pregnancy in smoking mothers. Analele Universitătii din Oradea Fascicula: Ecotoxicologie, Zootehnie si Tehnologii de Industrie Alimentară (pp. 99–104).Google Scholar
  58. Lundberg, J. O., Gladwin, M. T., Ahluwalia, A., Benjamin, N., Bryan, N. S., Butler, A., et al. (2009). Nitrate and nitrite in biology, nutrition and therapeutics. Nature Chemical Biology, 5, 865–869.Google Scholar
  59. Luoba, A. I., Geissler, P. W., Estambale, B., Ouma, J. H., Magnussen, P., Alusala, D., et al. (2004). Geophagy among pregnant and lactating women in Bondo District, western Kenya. Transactions of the Royal Society of Tropical Medicine and Hygiene, 98(12), 734–741.Google Scholar
  60. MacKenzie, R. D., Byerrum, R. U., Decker, C. F., Hoppert, C. A., & Langham, R. F. (1958). Chronic Toxicity Studies. II. Hexavalent and Trivalent Chromium administered in Drinking Water to Rats. Archives of Industrial Health, 18, 232–234.Google Scholar
  61. Manassaram, D. M., Backer, L. C., & Moll, D. M. (2007). A review of nitrates in drinking water: Maternal exposure and adverse reproductive and developmental outcomes. Ciencia & Saude Coletiva, 12, 153–163.Google Scholar
  62. Mathee, A., Naicker, N., Kootbodien, T., Mahuma, T., Nkomo, P., Naik, I., et al. (2014). A cross-sectional analytical study of geophagia practices and blood metal concentrations in pregnant women in Johannesburg, South Africa. SAMJ: South African Medical Journal, 104(8), 568–573.Google Scholar
  63. Mechcatie, E. (2013). FDA reviewing heart risk. Caring for the Ages, 14(2), 8.Google Scholar
  64. Megharaj, M., Avudainayagam, S., & Naidu, R. (2003). Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Current Microbiology, 47(1), 51–54.Google Scholar
  65. Miller, R. M. (1983). The Pan-African Damara Orogen of South West Africa/Namibia (Vol. 7(17), pp. 431–515). Johannesburg: The Geological Society of South Africa.Google Scholar
  66. Miller, R.M. (1992). The stratigraphy of Namibian-Regional Geology Series. Open File Report Geological Survey of Namibia, Windhoek, RG (Vol. 8, pp. 1–34).Google Scholar
  67. Mujinya, B. B., Mees, F., Erens, H., Dumon, M., Baert, G., Boeckx, P., et al. (2013). Clay composition and properties in termite mounds of the Lubumbashi area, D.R. Congo. Geoderma, 192, 304–315.Google Scholar
  68. Mukherjee, B., Patra, B., Mahapatra, S., Banerjee, P., Tiwari, A., & Chatterjee, M. (2004). Vanadium—An element of atypical biological significance. Toxicology Letters, 150(2), 135–143.Google Scholar
  69. Murray, R. K., Granner, D. K., Mayes, P. A., & Rodwell, V. W. (2000). Harper’s biochemistry (25th ed., pp. 715–736). New York: McGraw-Hill Press.Google Scholar
  70. NAMCOR, National Petroleum Corporation of Namibia. (1998). http://www.namcor.com.na/media/plg_downloads/maps/Sedimentary%20Basins.pdf. Accessed November 2018.
  71. Neeti, K., & Prakash, T. (2013). Effects of heavy metal poisoning during pregnancy. International Research Journal of Environmental Sciences, 2, 88–92.Google Scholar
  72. Ngole, V. M., & Ekosse, G. E. (2012). Physico-chemistry, mineralogy, geochemistry and nutrient bioaccessibility of geophagic soils from Eastern Cape, South Africa. Scientific Research and Essays, 7(12), 1319–1331.Google Scholar
  73. Ngole, V. M., Ekosse, G. E., de Jager, L., & Songca, S. P. (2010). Physicochemical characteristics of geophagic clayey soils from South Africa and Swaziland. African Journal of Biotechnology, 9(36), 5929–5937.Google Scholar
  74. Nielsen, F. H. (1985). The importance of diet composition in ultratrace element research. The Journal of Nutrition, 115(10), 1239–1247.Google Scholar
  75. NIH, National Institutes of Health. (2018). http://dietarysupplements.info.nih.gov/factsheets/calcium.asp. Accessed November 2018.
  76. Nkansah, M. A., Korankye, M., Darko, G., & Dodd, M. (2016). Heavy metal content and potential health risk of geophagic white clay from the Kumasi Metropolis in Ghana. Toxicology Reports, 3, 644–651.Google Scholar
  77. NRC, National Research Council. (1995). Nitrate and nitrite in drinking water (pp. 1–64). Washington, DC: The National Academies Press.Google Scholar
  78. NRC, National Research Council. (2005). Dietary reference intakes for water, potassium, sodium, chloride, and sulphate (pp. 1–618). Washington, DC: The National Academies Press.Google Scholar
  79. Olivares, M., & Uauy, R. (2005). Essential nutrients in drinking water. In WHO (Ed.), Nutrients in drinking water. Geneva: World Health Organization.Google Scholar
  80. Oomen, A. G., Hack, A., Minekus, M., Zeijdner, E., Cornelis, C., Schoeters, G., et al. (2002). Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants. Environmental Science and Technology, 36(15), 3326–3334.Google Scholar
  81. Paternain, J. L., Domingo, J. L., Llobet, J. M., & Corbella, J. (1988). Embryotoxic and teratogenic effects of aluminum nitrate in rats upon oral administration. Teratology, 38(3), 253–257.Google Scholar
  82. Pennington, J. A. (1988). Aluminium content of foods and diets. Food Additives & Contaminants, 5(2), 161–232.Google Scholar
  83. Pennington, J. A. T. (1991). Silicon in foods and drinks. Food Additives & Contaminants, 8(1), 97–118.Google Scholar
  84. Picciano, M. F. (1996). Pregnancy and lactation. In E. E. Ziegler & L. J. Filer (Eds.), Present knowledge in nutrition (pp. 384–395). Washington, DC: ILSI Press.Google Scholar
  85. Pohl, H. R., Wheeler, J. S., & Murray, H. E. (2013). Sodium and potassium in health and disease. In A. Sigel, H. Sigel, & R. K. O. Sigel (Eds.), Interrelations between essential metal ions and human diseases (pp. 29–47). Dordrecht: Springer.Google Scholar
  86. Ronnenberg, A. G., Wood, R. J., Wang, X., Xing, H., Chen, C., Chen, D., et al. (2004). Preconception hemoglobin and ferritin concentrations are associated with pregnancy outcome in a prospective cohort of Chinese women. The Journal of Nutrition, 134(10), 2586–2591.Google Scholar
  87. Rose, C. R., Blum, R., Kafitz, K. W., Kovalchuk, Y., & Konnerth, A. (2004). From modulator to mediator: rapid effects of BDNF on ion channels. BioEssays, 26(11), 1185–1194.Google Scholar
  88. Ruby, M. V., Schoof, R., Brattin, W., Goldade, M., Post, G., Harnois, M., et al. (1999). Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environmental Science and Technology, 33(21), 3697–3705.Google Scholar
  89. Saha, K. K., Engström, A., Hamadani, J. D., Tofail, F., Rasmussen, K. M., & Vahter, M. (2012). Pre-and postnatal arsenic exposure and body size to 2 years of age: A cohort study in rural Bangladesh. Environmental Health Perspectives, 120(8), 1208–1214.Google Scholar
  90. Santamaria, A. B. (2008). Manganese exposure, essentiality and toxicity. Indian Journal of Medical Research, 128(4), 484–500.Google Scholar
  91. Sengupta, P., Banerjee, R., Nath, S., Das, S., & Banerjee, S. (2014). Metals and female reproductive toxicity. Human and Experimental Toxicity, 34(7), 679–697.Google Scholar
  92. Sheng, H. W. (2000). Sodium, chloride and potassium. In M. H. Stipanuck (Ed.), Biochemical and physiological aspects of human nutrition (pp. 686–710). Philadelphia: WB Saunders Company.Google Scholar
  93. Sherwood, L. (1995). Fundamentals of physiology—A human perspective (p. 672). St. Paul, MN: West Publishing Company.Google Scholar
  94. Sikorski, R., Juszkiewicz, T., Paszkowski, T., & Szprengier-Juszkiewicz, T. (1987). Women in dental surgeries: Reproductive hazards in occupational exposure to metallic mercury. International Archives of Occupational and Environmental Health, 59(6), 551–557.Google Scholar
  95. Silva, A. L. O. D., Barrocas, P. R., Jacob, S. D. C., & Moreira, J. C. (2005). Dietary intake and health effects of selected toxic elements. Brazilian Journal of Plant Physiology, 17(1), 79–93.Google Scholar
  96. Sizer, F., & Whitney, E. (1997). Nutrition concepts and controversies. No. No. QP 141. H35 (7th ed.). Pacific Grove: Brooks Cole. ISBN 978-0314096357.Google Scholar
  97. Solomons, N. W. (1985). Biochemical, metabolic, and clinical role of copper in human nutrition. Journal of the American College of Nutrition, 4(1), 83–105.Google Scholar
  98. Somerville, J., & Davies, B. (1962). Effect of vanadium on serum cholesterol. American Heart Journal, 64(1), 54–56.Google Scholar
  99. Song, D., Jiang, D., Wang, Y., Chen, W., Huang, Y., & Zhuang, D. (2013). Study on association between spatial distribution of metal mines and disease mortality: A case study in Suxian District, South China. International Journal of Environmental Research and Public Health, 10(10), 5163–5177.Google Scholar
  100. Thomson, J. (1997). Anaemia in pregnant women in eastern Caprivi, Namibia. South African Medical Journal, 87(11), 1544–1547.Google Scholar
  101. Toker, H., Ozdemir, H., Ozan, F., Turgut, M., Goze, F., Sencan, M., et al. (2009). Dramatic oral findings belonging to a pica patient: A case report. International Dental Journal, 59(1), 26–30.Google Scholar
  102. Trumbo, P., Yates, A. A., Schlicker, S., & Poos, M. (2001). Dietary reference intakes: Vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Journal of the American Dietetic Association, 101(3), 294–301.Google Scholar
  103. USEPA, United States Environmental Protection Agency. (1993). https://www.mwa.co.th/download/file_upload/SMWW_1000-3000.pdf. Accessed November 2018.
  104. USEPA, United States Environmental Protection Agency. (1995). https://www.epa.gov/sites/production/files/2015-12/documents/3051a.pdf. Accessed November 2018.
  105. USEPA, United States Environmental Protection Agency. (2003). http://www.epa.gov/earth1r6/6sf/pdffiles/tarcreek.pdf. Accessed November 2018.
  106. Vaktskjold, A., Talykova, L. V., Chashchin, V. P., Odland, J. Ø., & Nieboer, E. (2008). Spontaneous abortions among nickel-exposed female refinery workers. International Journal of Environmental Health Research, 18(2), 99–115.Google Scholar
  107. Van Huis, A. (2017). Cultural significance of termites in sub-Saharan Africa. Journal of Ethnobiology and Ethnomedicine, 13(1), 8.  https://doi.org/10.1186/s13002-017-0137-z.Google Scholar
  108. Van Reeuwijk, L. P. (2002). http://www.soil-science.com/fileadmin/downloads/wrb/ISRIC_TechPap09_2002.pdf Accessed November 2018.
  109. Waldron, H. A. (1980). Metals in the environment (pp. 1–132). London: Academic Press Inc.Google Scholar
  110. Walker, A. R. P., Walker, B. F., Jones, J., Verardi, M., & Walker, C. (1985). Nausea and vomiting and dietary cravings and aversions during pregnancy in South African women. BJOG: An International Journal of Obstetrics & Gynaecology, 92(5), 484–489.Google Scholar
  111. WHO, World Health Organization. (1979). Sodium, chlorides and conductivity in drinking water: Report on a WHO working Group. Copenhegan: Euro Reports and Studies. ISBN: 929020141X.Google Scholar
  112. WHO, World Health Organization. (1996). https://www.who.int/nutrition/publications/micronutrients/9241561734/en/. Accessed November 2018.
  113. WHO, World Health Organization. (2001). http://www.who.int/mediacentre/factsheets/. Accessed November 2018.
  114. WHO, World Health Organization. (2010). http://www.who.int/entity/foodsafety/chem/. Accessed November 2018.
  115. Young, S. L. (2007). A vile habit? The potential biological consequences of geophagia, with special attention to iron. In J. MacClancy, J. Henry, & H. Macbeth (Eds.), Consuming the inedible: Neglected dimensions of food choice (pp. 67–80). Oxford: Berghahn Books.Google Scholar
  116. Young, S. L., Wilson, M. J., Miller, D., & Hillier, S. (2007). Toward a comprehensive approach to the collection and analysis of pica substances, with emphasis on geophagic materials. PLoS ONE, 3(9), e3147.Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of GeologyUniversity of JohannesburgJohannesburgSouth Africa
  2. 2.GeoBioTec, Geosciences DepartmentUniversity of AveiroAveiroPortugal
  3. 3.EpiUnit, Public Health InstituteUniversity of PortoPortoPortugal
  4. 4.Environmental and Engineering Geology DivisionGeological Survey of NamibiaWindhoekNamibia

Personalised recommendations