Advertisement

Discrimination of geographical origin of hop (Humulus lupulus L.) using geochemical elements combined with statistical analysis

  • Salvatore Pepi
  • Milvia Chicca
  • Chiara Telloli
  • Antonella Di Roma
  • Pietro Grisenti
  • Umberto Tessari
  • Carmela Vaccaro
Original Paper

Abstract

Beer is a popular alcoholic beverage worldwide, traditionally made from water, barley and hop (Humulus lupulus L.) strobili. The strobili contain lupulin glands whose components (mostly bitter acids and polyphenols) confer unique and locally different flavours to beer types. It is therefore relevant for brewers and consumers to precisely know the geographical origin of hop plants used for high-quality beer. Hop plants belonging to the variety Hallertau Perle, grown in two locations, Cavalese and Imèr, of the Trentino Region (Italy) were analysed to establish a direct relationship between the chemical elements detected in soil and in plant parts. Chemical elements were determined by X-ray fluorescence and inductively coupled plasma mass spectrometry in soil, leaf and strobili samples from Cavalese and Imèr. The data from the two areas were compared by a nonparametric test (Mann–Whitney) and multivariate statistics (principal component analysis and partial least squares discriminant analysis). The geochemical characterization and the statistical analyses showed different concentrations of major and trace elements in soil and plant parts from the two areas. A reliable correlation could be established between some elements in soil and strobili samples, that is Nb, Fe, Rb and Zr for Cavalese and Mg, Ni, Zn and Zr for Imèr. These elements could therefore be used as geochemical fingerprints to identify the geographical origin of strobili from the two study areas, an approach useful to verify the origin of hop plants for the production of high-quality beer.

Keywords

Beer Fingerprints Geochemistry ICP-MS Trentino Traceability PCA 

Notes

Acknowledgements

The authors owe thanks to Mr. Fabio Simoni and Mr. Nicola Simion (BioNoć Brewery, Mezzano di Primiero, Trento, Italy) and Mr. Stefano Gilmozzi (Fiemme Brewery, Daiano, Trento, Italy) for allowing to collect soil, leaf and strobili samples. The authors also wish to thank Mr. Renzo Tassinari for technical advice and Mr. Michele Lunelli for help in sample collection and processing.

Supplementary material

10653_2018_232_MOESM1_ESM.xlsx (23 kb)
Supplementary Table A1. Classification of soil samples from Cavalese and Imèr based on granulometric analyses according to the soil texture triangle of the United States Department of Agriculture (XLSX 22 kb)
10653_2018_232_MOESM2_ESM.xlsx (28 kb)
Supplementary Table B1. Pearson correlation coefficients of concentrations of major and trace elements in soil samples from Cavalese and Imèr. Values in bold are statistically significant with p-value < 0.05 (XLSX 28 kb)
10653_2018_232_MOESM3_ESM.xlsx (26 kb)
Supplementary Table B2. Pearson correlation coefficients of concentrations of major and trace elements in leaf samples from Cavalese and Imèr. Values in bold are statistically significant with p-value < 0.05 (XLSX 25 kb)
10653_2018_232_MOESM4_ESM.xlsx (26 kb)
Supplementary Table B3. Pearson correlation coefficients of concentrations of major and trace elements in strobili samples from Cavalese and Imèr. Values in bold are statistically significant with p-value < 0.05 (XLSX 25 kb)

References

  1. Abbas, H., Maria Michail, M., Cifelli, F., Mattei, M., Gianolla, P., Lustrino, M., et al. (2018). Emplacement modes of the Ladinian plutonic rocks of the Dolomites: Insights from anisotropy of magnetic susceptibility. Journal of Structural Geology, 113, 42–61.CrossRefGoogle Scholar
  2. Alcázar, Á., Jurado, J. M., Palacios-Morillo, A., de Pablos, F., & Martín, M. J. (2012). Recognition of the geographical origin of beer based on support vector machines applied to chemical descriptors. Food Control, 23, 258–262.CrossRefGoogle Scholar
  3. Alloway, B. J. (1995). Heavy metals in soils. London: Blackie Academic & Professional.CrossRefGoogle Scholar
  4. Avanzini, M., Bargossi, G.M., Borsato, A., & Selli, L. (2010). Note illustrative della carta geologica d’Italia alla scala 1:50.000 foglio 060 Trento. Ispra geological survey of Italy and provincia autonoma di Trento.Google Scholar
  5. Barker, A. L., & Pilbeam, D. J. (2007). Handbook of plant nutrition (1st ed.). Boca Raton: Taylor & Francis Group, LLC.Google Scholar
  6. Barker, A. L., Pilbeam, D. J. (2015). Handbook of plant nutrition (2nd ed.). Boca Raton: Taylor & Francis Group, LLC.CrossRefGoogle Scholar
  7. Bevin, C. J., Dambergs, R. G., Fergusson, A. J., & Cozzolino, D. (2008). Varietal discrimination of Australian wines by means of mid-infrared spectroscopy and multivariate analysis. Analytica Chimica Acta, 621, 19.CrossRefGoogle Scholar
  8. Bong, Y. S., Ryu, J. S., Choi, S. H., La, M. R., & Lee, K. S. (2016). Investigation of the geographical provenance of the beer available in South Korea using multielements and isotopes. Food Control, 60, 378–381.CrossRefGoogle Scholar
  9. Carta geologico strutturale del trentino. (2018). Protezione civile, Provincia autonoma di Trento, Italy. http://www.protezionecivile.tn.it/territorio/Cartografia/Cartografiageologica/-Cartageologicostrutturale/pagina13.html. Accessed 9 May, 2018.
  10. Carter, J. F., Yates, H. S. A., & Tinggi, U. (2015). A global survey of the stable isotope and chemical compositions of bottled and canned beers as a guide to authenticity. Science & Justice, 55, 18–26.CrossRefGoogle Scholar
  11. Christoph, N. A., Rossmann, C., Schlicht, S., & Voerkelius, S. (2006). Wine authentication using stable isotope ratio analysis: Significance of geographic origin, climate, and viticultural parameters (pp. 166–179). Authentication of Food and Wine: American Chemical Society.Google Scholar
  12. De la Guardia, M., & Garrigues, S. (2015). Handbook of mineral elements in food (1st ed.). Hoboken: Wiley.Google Scholar
  13. De Vivo, B., Bove, M. A., Lima, A., Albanese, S., Cicchella, D., Grezzi, G., et al. (2009). Atlante Geochimico Ambientale d’Italia. Roma: Aracne Editrice.Google Scholar
  14. De Vivo, B., Lima, A., & Siegel, F. (2004). Geochimica Ambientale, Metalli potenzialmente Tossici. Napoli: Liguori editore.Google Scholar
  15. Gama, E. M., Clésia, C., Nascentes, C. C., Matos, R. P., de Gabrielle, C., Rodrigues, G. C., et al. (2017). A simple method for the multi-elemental analysis of beer using total reflection X-ray fluorescence. Talanta, 174, 274–278.CrossRefGoogle Scholar
  16. Gonzalvez, A., & de la Guardia, M. (2013). Mineral profile. In M. de la Guardia & A. Gonzalvez (Eds.), Food protected designation of origin, methodologies and applications (1st ed., pp. 51–76). Valencia: Elsevier.CrossRefGoogle Scholar
  17. Guo, W., Nazimc, H., Liang, Z., & Yang, D. (2016). Magnesium deficiency in plants: An urgent problem. The Crop Journal, 4, 83–91.CrossRefGoogle Scholar
  18. Kabata-Pendias, A. (2011). Trace elements in soils and plants (4th ed.). Boca Raton: CRC Press.Google Scholar
  19. Kavalier, A. R., Litt, A., Ma, C., Pitra, N. J., Coles, M. C., Kennelly, E. J., et al. (2011). Phytochemical and morphological characterization of hop (Humulus lupulus L.) cones over five developmental stages using high performance liquid chromatography coupled to time-of-flight mass spectrometry, ultrahigh performance liquid chromatography photodiode array detection, and light microscopy techniques. Journal of Agricultural and Food Chemistry, 59, 4783–4793.CrossRefGoogle Scholar
  20. Kodoma, H. (2012). Phyllosilicates. In P. M. Huang, Y. Li, & M. E. Sumner (Eds.), Handbook of soil sciences-properties and processes (2nd ed., pp. 635–684). Boca Raton: CRC Press, Taylor & Francis Group.Google Scholar
  21. Korbecka-Glinka, G., Skomra, U., & Olszak-Przybys, H. (2016). Cultivar identification in dry hop cones and pellets using microsatellite loci. European Food Research and Technology, 242, 1599–1605.CrossRefGoogle Scholar
  22. Kuballa, T., Brunner, T. S., Thongpanchang, T., Walch, S. G., & Lachenmeier, D. W. (2018). Application of NMR for authentication of honey, beer and spices. Current Opinion in Food Science, 19, 57–62.CrossRefGoogle Scholar
  23. Kӓmpf, N., Scheinost, A. C., & Schulze, D. (2012). Oxide minerals in soils. In P. M. Huang, Y. Li, & M. E. Sumner (Eds.), Handbook of soil sciences-properties and processes (2nd ed., pp. 685–718). Boca Raton: CRC Press Taylor & Francis Group.Google Scholar
  24. Leonardi, M., Skomra, U., Agacka, M., Stochmal, A., Ambryszewska, K. E., Oleszek, W., et al. (2013). Characterisation of four popular Polish hop cultivars. International Journal of Food Science & Technology, 48, 1770–1774.CrossRefGoogle Scholar
  25. Machado, J. C., Faria, M. A., Ferreira, I. M., Ricardo, N. M. J., Páscoa, R. N., & Lopes, J. A. (2018). Varietal discrimination of hop pellets by near and mid infrared spectroscopy. Talanta, 180, 69–75.CrossRefGoogle Scholar
  26. Mahmood, N., Petraco, N., & He, Y. (2012). Elemental fingerprint profile of beer samples constructed using 14 elements determined by inductively coupled plasma–mass spectrometry (ICP-MS): Multivariation analysis and potential application to forensic sample comparison. Analytical and Bioanalytical Chemistry, 402, 861–869.CrossRefGoogle Scholar
  27. Mannina, L., Marini, F., Antiochia, R., Cesa, S., Magrì, A., Capitani, D., et al. (2016). Tracing the origin of beer samples by NMR and chemometrics: Trappist beers as a case study. Electrophoresis, 37, 2710–2719.CrossRefGoogle Scholar
  28. Mantrov, V. (2014). EU Law on indications of geographical origin theory and practice. Berlin: Springer.Google Scholar
  29. Montanari, L., Mayer, H., Marconi, O., & Fantozzi, P. (2009). Minerals in beer. Preedy VR beer in health and disease prevention (1st ed., pp. 359–365). Elsevier, London: Academic Press.CrossRefGoogle Scholar
  30. Navarro, J. M., Matinez, V., Cerda, A., & Botella, M. A. (2000). Effect of salinity 9 calcium interaction on cation balance in melon plants grown under two regimes of orthophosphate. Journal of Plant Nutrition, 21, 991–1006.CrossRefGoogle Scholar
  31. Ocvirk, M., Grdadolnik, J., & Košir, I. J. (2016). Determination of the botanical origin of hops (Humulus lupulus L.) using different analytical techniques in combination with statistical methods. Journal of the Institute of Brewing, 122, 452–461.CrossRefGoogle Scholar
  32. Oladokun, O., James, S., Cowley, T., Dehrmann, F., Smart, K., Hort, J., et al. (2017a). Perceived bitterness character of beer in relation to hop variety and the impact of hop aroma. Food Chemistry, 230, 215–224.CrossRefGoogle Scholar
  33. Oladokun, O., James, S., Cowley, T., Dehrmann, F., Smart, K., Hort, J., et al. (2017b). Perceived bitterness character of beer in relation to hop variety and the impact of hop aroma. Food Chemistry, 230, 215–224.CrossRefGoogle Scholar
  34. Pepi, S., Sansone, L., Chicca, M., & Vaccaro, C. (2017). Relationship among geochemical elements in soil and grapes as terroir fingerprintings in Vitis vinifera L. cv. Glera. Chemie der Erde.  https://doi.org/10.1016/j.chemer.2017.01.003.CrossRefGoogle Scholar
  35. Pepi, S., Sardella, A., Bonazza, A., & Vaccaro, C. (2018). Geochemical caper fingerprints as a tool for geographical origin identification. Environmental Geochemistry and Health, 10, 15–20.  https://doi.org/10.1007/s10653-017-0063-y.CrossRefGoogle Scholar
  36. Pepi, S., & Vaccaro, C. (2017). Geochemical fingerprints of ‘‘Prosecco’’ wine based on major and trace elements. Environmental Geochemistry and Health, 40, 833–847.CrossRefGoogle Scholar
  37. Pohl, P. (2008). Determination and fractionation of metals in beer: A review. Food Addit Contam Part A, 25, 693–703.CrossRefGoogle Scholar
  38. Roberts, T. R. (2016). Hops. In C. W. Bamforth (Ed.), Brewing materials and processes a practical approach to beer excellence (1st ed., pp. 47–75). London: Academic Press, Elsevier.CrossRefGoogle Scholar
  39. Rodrigo, S., Young, S. D., Talaverano, M. I., & Broadley, M. R. (2017). The influence of style and origin on mineral composition of beers retailing in the UK. European Food Research and Technology, 243, 931–939.CrossRefGoogle Scholar
  40. Sakellari, A., Karavoltsos, S., Plavšić, M., Bempi, E., Papantonopoulou, G., Dassenakis, M., et al. (2016). Copper complexing properties, trace metal content and organic matter physico-chemical characterization of Greek beers. Microchemical Journal, 135, 66–73.CrossRefGoogle Scholar
  41. Shahid, M., Ferrand, E., Schreck, E., & Dumat, C. (2013). Behavior and impact of zirconium in the soil-plant system: Plant uptake and phytotoxicity. Reviews of Environmental Contamination and Toxicology, 221, 107–127.Google Scholar
  42. Siddiqui, A. J., Musharraf, S. G., Choudhary, M. I., & Rahman, A. (2017). Application of analytical methods in authentication and adulteration of honey. Food Chemistry, 217, 687–698.CrossRefGoogle Scholar
  43. Sims, J. L., Scholtzhauer, W. S., & Grove, J. H. (1995). Soluble calcium fertilizer effects on early growth and nutrition of burley tobacco. Journal of Plant Nutrition, 18, 911–921.CrossRefGoogle Scholar
  44. Sparks, D. L. (2003). Environmental soil chemistry (2nd ed., p. 53). London: Academic Press.Google Scholar
  45. Stevens, J. F., Taylora, A. W., Nickerson, G. B., Ivancic, M., Henning, J., Haunold, A., et al. (2000). Prenylflavonoid variation in Humulus lupulus: Distribution and taxonomic significance of xanthogalenol and 4′-O-methylxanthohumol. Phytochemistry, 53, 759–775.CrossRefGoogle Scholar
  46. Van Couter, Y., & d’Ath, F. (2016). Protecting the origin of foodstuffs in the European Union. Indications of origin and trademarks as intellectual property tools. EFFL, 11, 290–308.Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Salvatore Pepi
    • 1
  • Milvia Chicca
    • 2
  • Chiara Telloli
    • 3
  • Antonella Di Roma
    • 1
  • Pietro Grisenti
    • 1
  • Umberto Tessari
    • 1
  • Carmela Vaccaro
    • 1
  1. 1.Department of Physics and Earth SciencesUniversity of FerraraFerraraItaly
  2. 2.Department of Life Science and BiotechnologiesUniversity of FerraraFerraraItaly
  3. 3.Technical Unit for Environmental Assessment Models, Methods and Technologies (UTVALAMB), Air Quality Laboratory (AIR)Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA)BolognaItaly

Personalised recommendations