Advertisement

Health risk assessment and source apportionment of polycyclic aromatic hydrocarbons associated with PM10 and road deposited dust in Ahvaz metropolis of Iran

  • Ali Najmeddin
  • Behnam Keshavarzi
Original Paper

Abstract

The objective of this study was to compare the characteristics of polycyclic aromatic hydrocarbons (PAHs) in PM10 and road dust samples, as well as to identify and quantify the contributions of each source profile using the positive matrix factorization (PMF) receptor model. Health risk assessment was carried out using toxic equivalency factors and incremental lifetime cancer risk (ILCR), which quantitatively estimate the exposure risk for age-specific groups. PM10 samples were collected on PTFE filters in the metropolitan area of Ahvaz. Road dust samples were also collected from all over the urban areas with different land uses. Total PAH concentrations in PM10 and road dust samples were 0.5–25.5 ng/m3 and 49.3–16,645 µg/kg, respectively. Pyrene was the highest PAH in the PM10 profile, whereas fluoranthene became the highest PAH in the road dust. Abundance of benzo[ghi]perylene at PM10 and road dust samples suggested a source indicator for traffic emissions. The results demonstrate that in 36.5% of samples, PM10 concentrations exceed the maximum concentration level recommended by EPA. A multiple linear regression model was used to estimate the influence of meteorological parameters (temperature, wind speed, and relative humidity) on buildup of PAHs. All of PAH species show higher concentrations during the cold and typical days rather than the dust event days and warm periods. PMF analysis showed that vehicular emissions (50.6%) and industrial activities (especially steel industries) (30.4%) were first two sources of PAHs bounded with PM10, followed by diesel emissions (11.6%) and air–soil exchange (7.4%). For road dust samples, three common sources were also identified: vehicular traffic (48%), industrial activities (42.3%), and petrogenic sources (9.7%), in line with that of diagnostic molecular ratios results. According to the results of health risk assessment model, the ILCR of exposure to PAHs associated with PM10 and road-deposited dust was higher than the guidelines of USEPA, indicating high carcinogenic risk.

Keywords

Polycyclic aromatic hydrocarbons (PAHs) PM10 Road dust PMF model Urban dust pollution Ahvaz 

Notes

Acknowledgements

The authors wish to express their gratitude to the Research Committee and Medical Geology Center of Shiraz University for logistic help and financially supporting this research. We would also like to extend our thanks to the anonymous reviewers whose comments have greatly improved the quality of this manuscript.

Supplementary material

10653_2018_209_MOESM1_ESM.doc (272 kb)
Supplementary material 1 (DOC 272 kb)

References

  1. Abdel-Shafy, H. I., & Mansour, M. S. M. (2016). A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25, 107–123.CrossRefGoogle Scholar
  2. Abdollahi, S., Raoufi, Z., Faghiri, I., Savari, A., Nikpour, Y., & Manouri, A. (2013). Contamination levels and spatial distributions of heavy metals and PAHs in surface sediment of Imam Khomeini Port, Persian Gulf, Iran. Marine Pollution Bulletin, 71, 336–345.  https://doi.org/10.1016/j.marpolbul.2013.01.025.CrossRefGoogle Scholar
  3. Agarwal, T. (2009). Concentration level, pattern and toxic potential of PAHs in traffic soil of Delhi, India. Journal of Hazardous Materials, 171(1–3), 894–900.CrossRefGoogle Scholar
  4. Agudelo-Castaneda, D. M., & Teixeira, E. C. (2014). Seasonal changes, identification and source apportionment of PAH in PM1.0. Atmospheric Environment, 96, 186–200.  https://doi.org/10.1016/j.atmosenv.2014.07.030.CrossRefGoogle Scholar
  5. Akyuz, M., & Çabuk, H. (2009). Meteorological variations of PM2.5/PM10 concentrations and particle-associated polycyclic aromatic hydrocarbons in the atmospheric environment of Zonguldak, Turkey. Journal of Hazardous Materials, 170, 13–21.  https://doi.org/10.1016/j.jhazmat.2009.05.029.CrossRefGoogle Scholar
  6. Alloway, B. (1992). Land contamination and reclamation. In R. M. Harrison (Ed.), Understanding our environment: An introduction to environmental chemistry and pollution (pp. 144–163). Cambridge: Royal Society of Chemistry.Google Scholar
  7. Alves, C. A., Vicente, A. M. P., Gomes, J., Nunes, T., Duarte, M., & Bandowe, B. A. M. (2016). Polycyclic aromatic hydrocarbons (PAHs) and their derivatives (oxygenated-PAHs, nitrated-PAHs and azaarenes) in size-fractionated particles emitted in an urban road tunnel. Atmospheric Research, 180, 128–137.  https://doi.org/10.1016/j.atmosres.2016.05.013.CrossRefGoogle Scholar
  8. Amarillo, A. C., Mateos, A. C., & Carreras, H. (2017). Source apportionment of PM10-bound polycyclic aromatic hydrocarbons by positive matrix factorization in Cordoba City, Argentina. Archives of Environmental Contamination and Toxicology, 72(3), 380–390.  https://doi.org/10.1007/s00244-017-0384-y.CrossRefGoogle Scholar
  9. Bortey-Sam, N., Ikenaka, Y., Akoto, O., Nakayama, S. M. M., Yohannes, Y. B., Baidoo, E., et al. (2015). Levels, potential sources and human health risk of polycyclic aromatic hydrocarbons (PAHs) in particulate matter (PM10) in Kumasi, Ghana. Environmental Science and Pollution Research, 22, 9658–9667.  https://doi.org/10.1007/s11356-014-4022-1.CrossRefGoogle Scholar
  10. Bozlaker, A., Muezzinoglu, A., & Odabasi, M. (2008). Atmospheric concentrations, dry deposition and air–soil exchange of polycyclic aromatic hydrocarbons (PAHs) in an industrial region in Turkey. Journal of Hazardous Materials, 153, 1093–1102.  https://doi.org/10.1016/j.jhazmat.2007.09.064.CrossRefGoogle Scholar
  11. Bull, S., & Collins, C. (2013). Promoting the use of BaP as a marker for PAH exposure in UK soils. Environmental Geochemistry and Health, 35, 101–109.  https://doi.org/10.1007/s10653-012-9462-2.CrossRefGoogle Scholar
  12. Caricchia, A. M., Chiavarini, S., & Pezza, M. (1999). Polycyclic aromatic hydrocarbons in the atmospheric particulate matter in the city of Naples, Italy. Atmospheric Environment, 33, 3731–3738.  https://doi.org/10.1016/S1352-2310(99)00199-5.CrossRefGoogle Scholar
  13. Chen, P., Li, C., Kang, S., Yan, F., Zhang, Q., Ji, Z., et al. (2016). Source apportionment of particle-bound polycyclic aromatic hydrocarbons in Lumbini, Nepal by using the positive matrix factorization receptor model. Atmospheric Research, 182, 46–53.  https://doi.org/10.1016/j.atmosres.2016.07.011.CrossRefGoogle Scholar
  14. Cheng, J. O., Ko, F. C., Lee, C. L., & Fang, M. D. (2012). Air-water exchange fluxes of polycyclic aromatic hydrocarbons in the tropical coast, Taiwan. Chemosphere, 90, 2614–2622.  https://doi.org/10.1016/j.chemosphere.2012.11.020.CrossRefGoogle Scholar
  15. Chung, M. K., Hu, R., Cheng, K. C., & Wong, M. H. (2007). Pollutants in Hong Kong soils: Polycyclic aromatic hydrocarbons. Chemosphere, 67, 464–473.  https://doi.org/10.1016/j.chemosphere.2006.09.062.CrossRefGoogle Scholar
  16. Dachs, J., Glenn, T. R., IV, Gigliotti, C. L., Brunciak, P., Totten, L. A., Nelson, E. D., et al. (2002). Processes driving the short-term variability of polycyclic aromatic hydrocarbons in the Baltimore and northern Chesapeake Bay atmosphere, USA. Atmospheric Environment, 36, 2281–2295.  https://doi.org/10.1016/S1352-2310(02)00236-4.CrossRefGoogle Scholar
  17. De La Torre-Roche, R. J., Lee, W.-Y., & Campos-Diaz, S. I. (2009). Soil-borne polycyclic aromatic hydrocarbons in El Paso, Texas: Analysis of a potential problem in the United States/Mexico border region. Journal of Hazardous Materials, 163, 946–958.  https://doi.org/10.1016/j.jhazmat.2008.07.089.CrossRefGoogle Scholar
  18. Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M., & Robledo, C. W. (2016). InfoStat version. Grupo InfoStat, FCA, Universidad Nacional de Cordoba, Argentina. http://www.infostat.com.ar. Accessed 14 Feb 2018.
  19. Di Vaio, P., Cocozziello, B., Corvino, A., Fiorino, F., Frecentese, F., Magli, E., et al. (2016). Level, potential sources of polycyclic aromatic hydrocarbons (PAHs) in particulate matter (PM10) in Naples. Atmospheric Environment, 129, 186–196.  https://doi.org/10.1016/j.atmosenv.2016.01.020.CrossRefGoogle Scholar
  20. Dickhut, R. M., Canuel, E. A., Gustafson, K. E., Liu, K., Arzayus, K. M., Walker, S. E., et al. (2000). Automotive sources of carcinogenic polycyclic aromatic hydrocarbons associated with particulate matter in the Chesapeake Bay region. Environmental Science and Technology, 34, 4635–4640.  https://doi.org/10.1021/es000971e.CrossRefGoogle Scholar
  21. Douglas, G. S., Bence, A. E., Prince, R. C., McMillen, S. J., & Butler, E. L. (1996). Environmental stability of selected petroleum hydrocarbon source and weathering ratio. Environmental Science and Technology, 38, 3958–3964.  https://doi.org/10.1021/es950751e.CrossRefGoogle Scholar
  22. Draxler, R. R., Gillette, D. A., Kirkpatrick, J. S., & Heller, J. (2001). Estimating PM10 air concentrations from dust storms in Iraq, Kuwait and Saudi Arabia. Atmospheric Environment, 35, 4315–4330.  https://doi.org/10.1016/S1352-2310(01)00159-5.CrossRefGoogle Scholar
  23. Feng, J., Li, X., Guo, W., Liu, S., Ren, X., & Sun, J. (2014). Potential source apportionment of polycyclic aromatic hydrocarbons in surface sediments from the middle and lower reaches of the Yellow River, China. Environmental Science and Pollution Research, 21, 11447–11456.  https://doi.org/10.1007/s11356-014-3051-0.CrossRefGoogle Scholar
  24. Franco, C. F. J., de Resende, M. F., de Almeida Furtado, L., Brasil, T. F., Eberlin, M. N., & Netto, A. D. P. (2017). Polycyclic aromatic hydrocarbons (PAHs) in street dust of Rio de Janeiro and Niterói, Brazil: Particle size distribution, sources and cancer risk assessment. Science of the Total Environment, 599–600, 305–313.  https://doi.org/10.1016/j.scitotenv.2017.04.060.CrossRefGoogle Scholar
  25. Fujita, E. M., Campbell, D. E., Arnott, W. P., Chow, J. C., & Zielinska, B. (2007). Evaluations of the chemical mass balance method for determining contributions of gasoline and diesel exhaust to ambient carbonaceous aerosols. Journal of the Air and Waste Management Association, 57, 721–740.  https://doi.org/10.3155/1047-3289.57.6.721.CrossRefGoogle Scholar
  26. Guo, H., Lee, S., Ho, K., Wang, X., & Zou, S. C. (2003). Particle-associated polycyclic aromatic hydrocarbons in urban air of Hong Kong. Atmospheric Environment, 37, 5307–5317.  https://doi.org/10.1016/j.atmosenv.2003.09.011.CrossRefGoogle Scholar
  27. Halsall, C. J., Coleman, P. J., Davis, B. J., Burnett, V., Waterhouse, K. S., Harding, P., et al. (1994). Polycyclic aromatic hydrocarbons in UK urban air. Environmental Science and Technology, 28, 2380–2386.CrossRefGoogle Scholar
  28. Hanedar, A., Alp, K., Kaynak, B., Baek, J., Avsar, E., & Odman, M. T. (2011). Concentrations and sources of PAHs at three stations in Istanbul, Turkey. Atmospheric Research, 99, 391–399.  https://doi.org/10.1016/j.atmosres.2010.11.017.CrossRefGoogle Scholar
  29. He, J., Fan, S., Meng, Q., Sun, Y., Zhang, J., & Zu, F. (2014). Polycyclic aromatic hydrocarbons (PAHs) associated with fine particulate matters in Nanjing, China: Distributions, sources and meteorological influences. Atmospheric Environment, 89, 207–215.  https://doi.org/10.1016/j.atmosenv.2014.02.042.CrossRefGoogle Scholar
  30. Hien, T. T., Nam, P. P., Yasuhiro, S., Takayuki, K., Norimichi, T., & Hiroshi, B. (2007). Comparison of particle-phase polycyclic aromatic hydrocarbons and their variability causes in the ambient air in Ho Chi Minh City, Vietnam and in Osaka, Japan, during 2005–2006. Science of the Total Environment, 382, 70–81.  https://doi.org/10.1016/j.scitotenv.2007.04.013.CrossRefGoogle Scholar
  31. Hopke, P. K. (2009). Contemporary threats and air pollution. Atmospheric Environment, 43(1), 87–93.  https://doi.org/10.1016/j.atmosenv.2008.09.053.CrossRefGoogle Scholar
  32. Hopke, P. K. (2016). Review of receptor modeling methods for source apportionment. Journal of the Air and Waste Management Association, 66(3), 237–259.  https://doi.org/10.1080/10962247.2016.1140693.CrossRefGoogle Scholar
  33. Hoseini, M., Yunesian, M., Nabizadeh, R., Yaghmaeian, K., Ahmadkhaniha, R., Rastkari, N., et al. (2016). Characterization and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in urban atmospheric Particulate of Tehran, Iran. Environmental Science and Pollution Research, 23(2), 1820–1832.  https://doi.org/10.1007/s11356-015-5355-0.CrossRefGoogle Scholar
  34. Hu, T., Zhang, J., Ye, C., Zhang, Li, Xing, X., Zhang, Y., et al. (2017). Status, source and health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in soil from the water-level-fluctuation zone of the Three Gorges Reservoir, China. Journal of Geochemical Exploration, 172, 20–28.CrossRefGoogle Scholar
  35. Hussain, K., Rahman, M., Prakash, A., & Hoque, R. R. (2015). Street dust bound PAHs, carbon and heavy metals in Guwahati city – Seasonality, toxicity and sources. Sustainable Cities and Society, 19, 17–25.CrossRefGoogle Scholar
  36. Hwang, H. M., Wade, T. L., & Sericano, J. L. (2003). Concentrations and source characterization of polycyclic aromatic hydrocarbons in pine needles from Korea, Mexico, and United States. Atmospheric Environment, 37, 2259–2267.  https://doi.org/10.1016/S1352-2310(03)00090-6.CrossRefGoogle Scholar
  37. IRDOE. (2016). Ahvaz air pollution monitoring stations datasets. Tehran: Department of Environment.Google Scholar
  38. Iwegbue, C. M. A., Obi, G., Aganbi, E., Ogala, J. E., Omo-Irabor, O., & Martincigh, B. S. (2016). Concentrations and health risk assessment of polycyclic aromatic hydrocarbons in soils of an urban environment in the Niger Delta, Nigeria. Toxicology and Environmental Health Sciences, 8(3), 221–233.  https://doi.org/10.1007/s13530-016-0279-8.CrossRefGoogle Scholar
  39. Jakovljević, I., Pehnec, G., Vađić, V., Čačković, M., Tomašić, V., & Jelinić, J. (2018). Polycyclic aromatic hydrocarbons in PM10, PM2.5 and PM1 particle fractions in an urban area. Air Quality, Atmosphere and Health, 11(7), 843–854.  https://doi.org/10.1007/s11869-018-0603-3.CrossRefGoogle Scholar
  40. Jamhari, A. A., Sahani, M., Latif, M. T., Chan, K. M., Tan, H. S., Khan, M. H., et al. (2014). Concentration and source identification of polycyclic aromatic hydrocarbons (PAHs) in PM10 of urban, industrial and semi-urban areas in Malaysia. Atmospheric Environment, 86, 16–27.  https://doi.org/10.1016/j.atmosenv.2013.12.019.CrossRefGoogle Scholar
  41. Karar, K., & Gupta, A. K. (2007). Source apportionment of PM10 at residential and industrial sites of an urban region of Kolkata, India. Atmospheric Research, 84, 30–41.  https://doi.org/10.1016/j.atmosres.2006.05.001.CrossRefGoogle Scholar
  42. Keshavarzi, B., Abbasi, S., Moore, F., Delshab, H., & Soltani, N. (2017). Polycyclic aromatic hydrocarbons in street dust of Bushehr City, Iran: Status, source, and human health risk assessment. Polycyclic Aromatic Compounds.  https://doi.org/10.1080/10406638.2017.1354897.CrossRefGoogle Scholar
  43. Keshavarzi, B., Abbasi, S., Moore, F., Mehravar, S., Sorooshian, A., Soltani, N., et al. (2018). Contamination level, source identification and risk assessment of potentially toxic elements (PTEs) and polycyclic aromatic hydrocarbons (PAHs) in street dust of an important commercial center in Iran. Environmental Management, 62(4), 803–818.  https://doi.org/10.1007/s00267-018-1079-5.CrossRefGoogle Scholar
  44. Khairy, M. A., & Lohmann, R. (2013). Source apportionment and risk assessment of polycyclic aromatic hydrocarbons in the atmospheric environment of Alexandria, Egypt. Chemosphere, 91, 895–903.  https://doi.org/10.1016/j.chemosphere.2013.02.018.CrossRefGoogle Scholar
  45. Khalili, N. R., Scheff, P. A., & Holsen, T. M. (1995). PAH source fingerprints for coke ovens, diesel and gasoline engine highway tunnels and wood combustion emissions. Atmospheric Environment, 29, 533–542.  https://doi.org/10.1016/1352-2310(94)00275-P.CrossRefGoogle Scholar
  46. Khan, M. F., Sulong, N. A., Latif, M. T., Amil, N., Hussain, D. F., Lee, V., et al. (2016). Comprehensive assessment of PM2.5 physicochemical properties during the Southeast Asia dry season (southwest monsoon). Journal of Geophysical Research: Atmosphere, 121, 14589–14611.  https://doi.org/10.1002/2016JD025894.CrossRefGoogle Scholar
  47. Kulkarni, P., & Venkataraman, C. (2000). Atmospheric polycyclic aromatic hydrocarbons in Mumbai, India. Atmospheric Environment, 34, 2785–2790.  https://doi.org/10.1016/S1352-2310(99)00312-X.CrossRefGoogle Scholar
  48. Lang, Y., & Yang, W. (2014). Source apportionment of PAHs using Unmix model for Yantai costal surface sediments, China. Bulletin of Environmental Contamination and Toxicology, 92, 30–35.  https://doi.org/10.1007/s00128-013-1164-7.CrossRefGoogle Scholar
  49. Larsen, R. K., & Baker, J. E. (2003). Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: A comparison of three methods. Environmental Science and Technology, 37, 1873–1881.  https://doi.org/10.1021/es0206184.CrossRefGoogle Scholar
  50. Lee, J. Y., Kim, Y. P., & Kang, C. H. (2011). Characteristics of the ambient particulate PAHs at Seoul, a mega city of northeast Asia in comparison with the characteristics of a background site. Atmospheric Research, 99, 50–56.  https://doi.org/10.1016/j.atmosres.2010.08.029.CrossRefGoogle Scholar
  51. Li, Y., Song, N., Yu, Y., Yang, Z., & Shen, Z. (2016). Characteristics of PAHs in street dust of Beijing and the annual wash-off load using an improved load calculation method. Science of the Total Environment, 581–582, 328–336.  https://doi.org/10.1016/j.scitotenv.2016.12.133.CrossRefGoogle Scholar
  52. Li, J., Zhang, G., Li, X. D., Qi, S. H., Liu, G. Q., & Peng, X. Z. (2006). Source seasonality of polycyclic aromatic hydrocarbons (PAHs) in a subtropical city, Guangzhou, South China. Science of the Total Environment, 355, 145–155.  https://doi.org/10.1016/j.scitotenv.2005.02.042.CrossRefGoogle Scholar
  53. Liao, C. M., & Chiang, K. C. (2006). Probabilistic risk assessment for personal exposure to carcinogenic polycyclic aromatic hydrocarbons in Taiwanese temples. Chemosphere, 63, 1610–1619.  https://doi.org/10.1016/j.chemosphere.2005.08.051.CrossRefGoogle Scholar
  54. Liu, Y., Chen, L., Huang, Q., Li, W. Y., Tang, Y. J., & Zhao, J. F. (2009). Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of the Huangpu River, Shanghai, China. Science of the Total Environment, 407, 2931–2938.  https://doi.org/10.1016/j.scitotenv.2008.12.046.CrossRefGoogle Scholar
  55. Liu, Y., Wang, S., Lohmann, R., Yu, N., Zhnag, C., Gao, Y., et al. (2015). Source apportionment of gaseous and particulate PAHs from traffic emission using tunnel measurements in Shanghai, China. Atmospheric Environment, 107, 129–136.  https://doi.org/10.1016/j.atmosenv.2015.02.041.CrossRefGoogle Scholar
  56. Maliszewska-Kordybach, B. (1996). Polycyclic aromatic hydrocarbons in agricultural soils in Poland: Preliminary proposals for criteria to evaluate the level of soil contamination. Applied Geochemistry, 11, 121–127.  https://doi.org/10.1016/0883-2927(95)00076-3.CrossRefGoogle Scholar
  57. Mannino, M. R., & Orecchio, S. (2008). Polycyclic aromatic hydrocarbons (PAHs) in indoor dust matter of Palermo (Italy) area: Extraction, GC–MS analysis, distribution and sources. Atmospheric Environment, 42, 1801–1817.  https://doi.org/10.1016/j.atmosenv.2007.11.031.CrossRefGoogle Scholar
  58. Mantis, J., Chaloulakou, A., & Samara, C. (2005). PM10-bound polycyclic aromatic hydrocarbons (PAHs) in the Greater Area of Athens, Greece. Chemosphere, 59, 593–604.  https://doi.org/10.1016/j.chemosphere.2004.10.019.CrossRefGoogle Scholar
  59. Marzouni, M. B., Moradi, M., Zarasvandi, A., Akbaripoor, Sh, Hassanvand, M. S., Neisi, A., et al. (2017). Health benefits of PM10 reduction in Iran. International Journal of Biometeorology, 61(8), 1389–1401.  https://doi.org/10.1007/s00484-017-1316-2.CrossRefGoogle Scholar
  60. Menichini, E. (1992). Urban air pollution by polycyclic aromatic hydrocarbons: Levels and sources of variability. Science of the Total Environment, 116(1–2), 109–135.  https://doi.org/10.1016/0048-9697(92)90368-3.CrossRefGoogle Scholar
  61. Meza-Figueroa, D., De la O-Villanueva, M., & De la Parra, M. L. (2007). Heavy metal distribution in dust from elementary schools in Hermosillo, Sonora, Mexico. Atmospheric Environment, 41(2), 276–288.  https://doi.org/10.1016/j.atmosenv.2006.08.034.CrossRefGoogle Scholar
  62. MOKP (Meteorological Organization of Khuzestan Province). (2010). Weather reports. Ahvaz: Meteorological Organization, Khuzestan Province.Google Scholar
  63. Moore, F., Akhbarizadeh, R., Keshavarzi, B., Khabazi, S., Lahijanzadeh, A., & Kermani, M. (2015). Ecotoxicological risk of polycyclic aromatic hydrocarbons (PAHs) in urban soil of Isfahan metropolis, Iran. Environmental Monitoring and Assessment, 187, 207–221.  https://doi.org/10.1007/s10661-015-4433-6.CrossRefGoogle Scholar
  64. Mostert, M. M. R., Ayoko, G. A., & Kokot, S. (2010). Application of chemometrics to analysis of soil pollutants. TrAC Trends in Analytical Chemistry, 29(5), 430–435.  https://doi.org/10.1016/j.trac.2010.02.009.CrossRefGoogle Scholar
  65. Murillo, J. H., Villalobos, M. C., Rojas Marín, J. F., Guerrero, V. H. B., & Arias, D. S. (2017). Polycyclic aromatic hydrocarbons in PM2.5 and PM10 atmospheric particles in the Metropolitan Area of Costa Rica: Sources, temporal and spatial variations. Atmospheric Pollution Research, 8, 320–327.  https://doi.org/10.1016/j.apr.2016.10.002.CrossRefGoogle Scholar
  66. Najafi, M. S., Khoshakhllagh, F., Zamanzadeh, S. M., Shirazi, M. H., Samadi, M., & Hajikhani, S. (2014). Characteristics of TSP loads during the Middle East Springtime Dust Storm (MESDS) in Western Iran. Arabian Journal of Geosciences, 7(12), 5367–5381.  https://doi.org/10.1007/s12517-013-1086-z.CrossRefGoogle Scholar
  67. Najmeddin, A., Keshavarzi, B., Moore, F., & Lahijanzadeh, A. (2018a). Source apportionment and health risk assessment of potentially toxic elements in road dust from urban industrial areas of Ahvaz megacity, Iran. Environmental Geochemistry and Health, 40(4), 1187–1208.  https://doi.org/10.1007/s10653-017-0035-2.CrossRefGoogle Scholar
  68. Najmeddin, A., Moore, F., Keshavarzi, B., & Sadegh, Z. (2018b). Pollution, source apportionment and health risk of potentially toxic elements (PTEs) and polycyclic aromatic hydrocarbons (PAHs) in urban street dust of Mashhad, the second largest city of Iran. Journal of Geochemical Exploration, 190, 154–169.  https://doi.org/10.1016/j.gexplo.2018.03.004.CrossRefGoogle Scholar
  69. Naspinski, C., Lingenfelter, R., Cizmas, L., Naufal, Z., He, L. Y., Islamzadeh, A., et al. (2008). A comparison of concentrations of polycyclic aromatic compounds detected in dust samples from various regions of the world. Environment International, 34, 988–993.  https://doi.org/10.1016/j.envint.2008.03.008.CrossRefGoogle Scholar
  70. Nelson, E. D., McConnell, L., & Baker, J. E. (1998). Diffusive exchange of gaseous polycyclic aromatic hydrocarbons and polychlorinated biphenyls across the air–water interface of the Chesapeake Bay. Environmental Science and Technology, 32, 912–919.  https://doi.org/10.1021/es9706155.CrossRefGoogle Scholar
  71. Nisbet, C., & LaGoy, P. (1992). Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology, 16(3), 290–300.  https://doi.org/10.1016/0273-2300(92)90009-X.CrossRefGoogle Scholar
  72. Oanh, N. T. K., Reutergardh, L. B., Dung, N. T., Yu, M. H., Yao, W. X., & Co, H. X. (2000). Polycyclic aromatic hydrocarbons in the airborne particulate matter at a location 40 km north of Bangkok, Thailand. Atmospheric Environment, 34, 4557–4563.  https://doi.org/10.1016/S1352-2310(00)00109-6.CrossRefGoogle Scholar
  73. Ockenden, W. A., Breivik, K., Meijer, S. N., Steinnes, E., Sweetman, A. J., & Jones, K. C. (2003). The global re-cycling of persistent organic pollutants is strongly retarded by soils. Environmental Pollution, 121(1), 75–80.  https://doi.org/10.1016/S0269-7491(02)00204-X.CrossRefGoogle Scholar
  74. Okonkwo, J. O., Awofolu, O. R., Moja, S. J., Forbes, P. C. B., & Senwo, Z. N. (2006). Total petroleum hydrocarbons and trace metals in street dusts from Tshwane metropolitan area, South Africa. Journal of Environmental Science and Health, Part A, 41, 2789–2798.  https://doi.org/10.1080/10934520600966920.CrossRefGoogle Scholar
  75. Omar, N. Y. M. J., Abas, M. R. B., Ketuly, K. A., & Tahir, N. M. (2002). Concentrations of PAHs in atmospheric particles (PM10) and roadside particles collected in Kuala Lumpur, Malaysia. Atmospheric Environment, 36, 247–254.  https://doi.org/10.1016/S1352-2310(01)00425-3.CrossRefGoogle Scholar
  76. Paatero, P. (1997). Least squares formulation of robust non-negative factor analysis. Chemometrics and Intelligent Laboratory Systems, 37(1), 23–35.  https://doi.org/10.1016/S0169-7439(96)00044-5.CrossRefGoogle Scholar
  77. Paatero, P., & Tapper, U. (1994). Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics, 5, 111–126.CrossRefGoogle Scholar
  78. Panther, B. C., Hooper, M. A., & Tapper, N. J. (1999). A comparison of air particulate matter and associated polycyclic aromatic hydrocarbons in some tropical and temperate urban environments. Atmospheric Environment, 33, 4087–4099.CrossRefGoogle Scholar
  79. Peng, C., Chen, W. P., Liao, X. L., Wang, M. E., Ouyang, Z. Y., Jiao, W. T., et al. (2011). Polycyclic aromatic hydrocarbons in urban soils of Beijing: Status, sources, distribution and potential risk. Environmental Pollution, 159(3), 802–808.  https://doi.org/10.1016/j.envpol.2010.11.003.CrossRefGoogle Scholar
  80. Peng, H., Yang, Y., Liu, M., & Zhou, J. L. (2012). PAHs in indoor dust samples in Shanghai’s universities: Levels, sources and human exposure. Environmental Geochemistry and Health, 34(5), 587–596.  https://doi.org/10.1007/s10653-012-9456-0.CrossRefGoogle Scholar
  81. Quiñonez-Plaza, A., Wakida, F. T., Temores-Peña, J., Rodriguez-Mendivil, D. D., Garcia-Flores, E., Pastrana-Corral, M. A., et al. (2017). Total petroleum hydrocarbons and heavy metals in road-deposited sediments in Tijuana. Mexico. Journal of Soils and Sediments, 17(2), 2873–2886.  https://doi.org/10.1007/s11368-017-1778-1.CrossRefGoogle Scholar
  82. Ravindra, K., Bencs, L., Wauters, E., De Hoog, J., Deutsch, F., Roekens, E., et al. (2006). Seasonal and site-specific variation in vapour and aerosol phase PAHs over Flanders (Belgium) and their relation with anthropogenic activities. Atmospheric Environment, 40(4), 771–785.  https://doi.org/10.1016/j.atmosenv.2005.10.011.CrossRefGoogle Scholar
  83. Saarnio, K., Sillanpaa, M., Hillamo, R., Sandell, E., Pennanen, A., & Salonen, R. (2008). Polycyclic aromatic hydrocarbons in size-segregated particulate matter from six urban sites in Europe. Atmospheric Environment, 42(40), 9087–9097.  https://doi.org/10.1016/j.atmosenv.2008.09.022.CrossRefGoogle Scholar
  84. Salam, M. A., Shirasuna, Y., Hirano, K., & Masunaga, S. (2011). Particle associated polycyclic aromatic hydrocarbons in the atmospheric environment of urban and suburban residential area. International Journal of Environmental Science and Technology, 8(2), 255–266.  https://doi.org/10.1007/BF03326214.CrossRefGoogle Scholar
  85. Schulte, P. A., & Hauser, J. E. (2012). The use of biomarkers in occupational health research, practice, and policy. Toxicology Letters, 213(1), 91–99.  https://doi.org/10.1016/j.toxlet.2011.03.027.CrossRefGoogle Scholar
  86. Schwartz, G., Ben-Dor, E., & Eshel, G. (2012). Quantitative analysis of total petroleum hydrocarbons in soils: Comparison between reflectance spectroscopy and solvent extraction by 3 certified laboratories. Applied and Environmental Soil Science.  https://doi.org/10.1155/2012/751956.CrossRefGoogle Scholar
  87. Shahsavani, A., Naddafi, K., Haghighifard, N. J., Mesdaghinia, A., Yunesian, M., Nabizadeh, R., et al. (2012). Characterization of ionic composition of TSP and PM10 during the Middle Eastern Dust (MED) storms in Ahvaz, Iran. Environmental Monitoring and Assessment, 184, 6683–6692.  https://doi.org/10.1007/s10661-011-2451-6.CrossRefGoogle Scholar
  88. Sikalos, T. I., Paleologos, E. K., & Karayannis, M. I. (2002). Monitoring of time variation and effect of some meteorological parameters in polynuclear aromatic hydrocarbons in Ioannina, Greece with the aid of HPLC-fluorescence analysis. Talanta, 58(3), 497–510.  https://doi.org/10.1016/S0039-9140(02)00287-4.CrossRefGoogle Scholar
  89. Sofuoglu, A., Cetin, E., Bozacioglu, S. S., Sener, G. D., & Odabasi, M. (2004). Short-term variation in ambient concentrations and gas/particle partitioning of organochlorine pesticides in Izmir, Turkey. Atmospheric Environment, 38, 4483–4493.  https://doi.org/10.1016/j.atmosenv.2004.05.036.CrossRefGoogle Scholar
  90. Soleimani, Z., Goudarzi, G., Naddafi, K., Sadeghinejad, B., Latifi, S., Parhizgari, N., et al. (2013). Determination of culturable indoor airborne fungi during normal and dust event days in Ahvaz, Iran. Aerobiologia, 29(2), 279–290.  https://doi.org/10.1007/s10453-012-9279-6.CrossRefGoogle Scholar
  91. Soltani, N., Keshavarzi, B., Moore, F., Tavakol, T., Lahijanzadeh, A. R., Jaafarzadeh, N., et al. (2015). Ecological and human health hazards of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in road dust of Isfahan metropolis, Iran. Science of the Total Environment, 505, 712–723.  https://doi.org/10.1016/j.scitotenv.2014.09.097.CrossRefGoogle Scholar
  92. Song, Y., Shao, M., Liu, Y., Lu, S. H., Kuster, W., Goldan, P., et al. (2007). Source apportionment of ambient volatile organic compounds in Beijing. Environmental Science and Technology, 41(12), 4348–4353.  https://doi.org/10.1021/es0625982.CrossRefGoogle Scholar
  93. Suman, S., Sinha, A., & Tarafdar, A. (2016). Polycyclic aromatic hydrocarbons (PAHs) concentration levels, pattern, source identification and soil toxicity assessment in urban traffic soil of Dhanbad, India. Science of the Total Environment, 245–246, 353–360.  https://doi.org/10.1016/j.scitotenv.2015.12.061.CrossRefGoogle Scholar
  94. Tan, J. H., Bi, X. H., Duan, J. C., Rahn, K. A., Sheng, G. Y., & Fu, J. M. (2006). Seasonal variation of particulate polycyclic aromatic hydrocarbons associated with PM10 in Guangzhou, China. Atmospheric Research, 4, 250–262.  https://doi.org/10.1016/j.atmosres.2005.09.004.CrossRefGoogle Scholar
  95. Tan, J., Guo, S., Ma, Y., Duan, J., Cheng, Y., He, K., et al. (2011). Characteristics of particulate PAHs during a typical haze episode in Guangzhou, China. Atmospheric Research, 102(1–2), 91–98.  https://doi.org/10.1016/j.atmosres.2011.06.012.CrossRefGoogle Scholar
  96. Teixeira, E. C., Mattiuzi, C. D. P., Agudelo-Castañeda, D. M., de Oliveira Garcia, K., & Wiegand, F. (2013). Polycyclic aromatic hydrocarbons study in atmospheric fine and coarse particles using diagnostic ratios and receptor model in urban/industrial region. Environmental Monitoring and Assessment, 185, 9587–9602.  https://doi.org/10.1007/s10661-013-3276-2.CrossRefGoogle Scholar
  97. Tobiszewski, M., & Namieśnik, J. (2012). PAHs diagnostic ratios for the identification of pollution emission sources. Environmental Pollution, 162, 110–119.  https://doi.org/10.1016/j.envpol.2011.10.025.CrossRefGoogle Scholar
  98. Tsai, P. J., Shih, T. S., Chen, H. L., Lee, W. J., Lai, C. H., & Liou, S. H. (2004). Assessing and predicting the exposures of polycyclic aromatic hydrocarbons (PAHs) and their carcinogenic potencies from vehicle engine exhausts to highway toll station workers. Atmospheric Environment, 38(2), 333–343.  https://doi.org/10.1016/j.atmosenv.2003.08.038.CrossRefGoogle Scholar
  99. USEPA. (1991). Risk assessment guidance for superfund. Volume 1: Human health evaluation manual (Part B, Development of risk-based preliminary remediation goals). OSWER [9285.7-01B. EPA/540/R-92/003].Google Scholar
  100. USEPA. (1999). Determination of polycyclic aromatic hydrocarbons (PAHs) in ambient air using gas chromatography/mass spectrometry (GC/MS). Compendium method TO-13A, 2nd edn. In Compendium of methods for the determination of toxic organic compounds in ambient air center for environmental research information. Cincinnati, OH: Office of Research and Development, U.S. Environmental Protection Agency.Google Scholar
  101. USEPA. (2006). National ambient air quality standards (NAAQS) for particulate matter. Research Triangle Park, NC, Washington, D.C.: US Environmental Protection Agency.Google Scholar
  102. USEPA. (2011). Exposure factors handbook: 2011 edition. National Center for Environmental Assessment, Office of Research and Development, Washington, DC 20460, EPA/600/R-09/052F.Google Scholar
  103. USEPA. (2014). EPA positive matrix factorization (PMF) 5.0, fundamentals and user guide. Accessed May 2014, from http://www.epa.gov/heasd/research/pmf.html.
  104. Vane, C. H., Kim, A. W., Beriro, D. J., Cave, M. R., Knights, K., Moss-Hayes, V., et al. (2014). Polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB) in urban soils of Greater London, UK. Applied Geochemistry, 51, 303–314.  https://doi.org/10.1016/j.apgeochem.2014.09.013.CrossRefGoogle Scholar
  105. Vardar, N., & Noll, K. E. (2003). Atmospheric PAHs concentrations in fine and coarse particles. Environmental Monitoring and Assessment, 87(1), 81–92.  https://doi.org/10.1023/A:1024489930083.CrossRefGoogle Scholar
  106. Vestenius, M., Leppanen, S., Anttila, P., Kyllonen, K., Hatakka, J., Hellen, H., et al. (2011). Background concentrations and source apportionment of polycyclic aromatic hydrocarbons in south-eastern Finland. Atmospheric Environment, 45(20), 3391–3399.  https://doi.org/10.1016/j.atmosenv.2011.03.050.CrossRefGoogle Scholar
  107. Walsh, B. (2011). The 10 most air polluted cities in the world. Times.Google Scholar
  108. Wang, G. H., Huang, L. M., Zhao, X., Niu, H. Y., & Dai, Z. X. (2006). Aliphatic and polycyclic aromatic hydrocarbons of atmospheric aerosols in five locations of Nanjing urban area, China. Atmospheric Research, 81(1), 54–66.  https://doi.org/10.1016/j.atmosres.2005.11.004.CrossRefGoogle Scholar
  109. Wang, W., Huang, M. J., Kang, Y., Wang, H. S., Leung, A. O. W., Cheung, K. C., et al. (2011). Polycyclic aromatic hydrocarbons (PAHs) in urban surface dust of Guangzhou, China: Status, sources and human health risk assessment. Science of the Total Environment, 409(21), 4519–4527.  https://doi.org/10.1016/j.scitotenv.2011.07.030.CrossRefGoogle Scholar
  110. Wang, X. S. (2018). Polycyclic aromatic hydrocarbons in urban street dust: Sources and health risk assessment. Environmental Geochemistry and Health, 40(1), 383–393.  https://doi.org/10.1007/s10653-017-9918-5.CrossRefGoogle Scholar
  111. Wang, Z., Wang, S., Nie, J., Wang, Y., & Liu, Y. (2017). Assessment of polycyclic aromatic hydrocarbons in indoor dust from varying categories of rooms in Changchun city, northeast China. Environmental Geochemistry and Health, 39(1), 15–27.  https://doi.org/10.1007/s10653-016-9802-8.CrossRefGoogle Scholar
  112. WHO. (1987). Polynuclear aromatic hydrocarbons (PAHS). Air quality guidelines for Europe (pp. 105–117). Copenhagen: World Health Organization Regional Office for Europe.Google Scholar
  113. WHO. (2011). Urban outdoor air pollution database. Department of Public Health and Environment, World Health Organization. http://www.who.int/phe. Accessed 6 Sept 2018.
  114. Wiriya, W., Prapamontol, T., & Chantara, S. (2013). PM10-bound polycyclic aromatic hydrocarbons in Chiang Mai (Thailand): Seasonal variations, source identification, health risk assessment and their relationship to air–mass movement. Atmospheric Research, 124, 109–122.  https://doi.org/10.1016/j.atmosres.2012.12.014.CrossRefGoogle Scholar
  115. Wu, S., Liu, X., Liu, M., Chen, X., Liu, S., Cheng, L., et al. (2018). Sources, influencing factors and environmental indications of PAH pollution in urban soil columns of Shanghai, China. Ecological Indicators, 85, 1170–1180.  https://doi.org/10.1016/j.ecolind.2017.11.067.CrossRefGoogle Scholar
  116. Yang, S. Y. N., Connell, D. W., Hawker, D. W., & Kayal, S. I. (1991). Polycyclic aromatic hydrocarbons in air, soil, and vegetation in the vicinity of an urban roadway. Science of the Total Environment, 102, 229–240.  https://doi.org/10.1016/0048-9697(91)90317-8.CrossRefGoogle Scholar
  117. Yang, X., Ren, D., Sun, W., Li, X., Huang, B., Chen, R., et al. (2015). Polycyclic aromatic hydrocarbons associated with total suspended particles and surface soils in Kunming, China: Distribution, possible sources, and cancer risks. Environmental Science and Pollution Research, 22(9), 6696–6712.CrossRefGoogle Scholar
  118. Yang, Y., Zhang, X. X., & Korenaga, T. (2002). Distribution of polynuclear aromatic hydrocarbons (PAHs) in the soil of Tokushima, Japan. Water, Air, and Soil Pollution, 138(1–4), 51–60.  https://doi.org/10.1023/A:1015517504636.CrossRefGoogle Scholar
  119. Yunker, M. B., Macdonald, R., Vingarzan, R., Mitchell, R. H., Goyette, D., & Sylvestre, S. (2002). PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, 33, 489–515.  https://doi.org/10.1016/S0146-6380(02)00002-5.CrossRefGoogle Scholar
  120. Zhou, J. B., Wang, T. G., Huang, Y. B., Mao, T., & Zhong, N. N. (2005). Seasonal variation and spatial distribution of polycyclic aromatic hydrocarbons in atmospheric PM10 of Beijing, People’s Republic of China. Bulletin of Environmental Contamination and Toxicology, 74(4), 660–666.  https://doi.org/10.1007/s00128-005-0634-y.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Earth Sciences, College of SciencesShiraz UniversityShirazIran
  2. 2.Medical Geology CenterShiraz UniversityShirazIran

Personalised recommendations