Advertisement

Assessment of environmental and ergonomic hazard associated to printing and photocopying: a review

  • Abhishek NandanEmail author
  • N. A. Siddiqui
  • Pankaj Kumar
Review Paper

Abstract

“Knowledge is power” and distribution of knowledge is fueled by printing and photocopying industry. Even as printing and photocopying industry have revolutionized the availability of documents and perceptible image quickly at extremely inexpensive and affordable cost, the boon of its revolution has turned into a bane by irresponsible, uncontrolled and extensive use, causing irreversible degradation to not only ecosystem by continuous release of ozone and other volatile organic compounds (VOCs) but also the health of workers occupationally exposed to it. Indoor ozone level due to emission from different photocopying equipment’s increases drastically and the condition of other air quality parameters are not different. This situation is particularly sedate in extremely sensitive educational and research industry where sharing of knowledge is extremely important to meet the demands. This work is an attempt to catalogue all the environmental as well as health impacts of printing or photocopying. It has been observed that printing/photocopying operation is a significant factor contributing to indoor air quality degradation, which includes increase in concentration of ozone, VOCs, semi-volatile organic compounds (SVOCs) and heavy metals such as cadmium, selenium, arsenic, zinc, nickel, and other pollutants from photocopy machines. The outcome of this study will empower the manufactures with information regarding ozone and other significant emission, so that their impact can be reduced.

Keywords

Printing Photocopying Indoor air pollution Occupational health Air pollution 

References

  1. Agarwal, S., Parashar, A., Ellis, S. G., Heupler, F. A., Lau, E., Tuzcu, E. M., et al. (2014). Measures to reduce radiation in a modern cardiac catheterization laboratory. Circulation: Cardiovascular Interventions, 7, 447–455.Google Scholar
  2. AlSumaiti, A. (2013). The effect of indoor air quality on occupants’ health and performance in office buildings in Dubai. Doctoral dissertation, The British University in Dubai (BUiD).Google Scholar
  3. Awbi, H. B. (2017). Ventilation for good indoor air quality and energy efficiency. Energy Procedia, 112, 277–286.CrossRefGoogle Scholar
  4. Ayotamuno, M., Okoroji, J., & Akor, A. (2013). Ozone emission by commercial photocopy machines in Rivers State University of Science & Technology, Nigeria. International Journal of Scientific and Engineering Research, 4, 607–616.Google Scholar
  5. Bai, R., Zhang, L., Liu, Y., Meng, L., Wang, L., Wu, Y., et al. (2010). Pulmonary responses to printer toner particles in mice after intratracheal instillation. Toxicology Letters, 199, 288–300.CrossRefGoogle Scholar
  6. Balakrishnan, M., & Das, A. (2010). Chromosomal aberration of workers occupationally exposed to photocopying machines in Sulur, South India. International Journal of Pharma and Bio Sciences, 1, B-303–B-307.Google Scholar
  7. Banerjee, A. D. (2003). Heavy metal levels and solid phase speciation in street dusts of Delhi, India. Environmental Pollution, 123, 95–105.CrossRefGoogle Scholar
  8. Baral, A., & Engelken, R. D. (2002). Chromium-based regulations and greening in metal finishing industries in the USA. Environmental Science & Policy, 5, 121–133.CrossRefGoogle Scholar
  9. Barnhart, J. (1997). Occurrences, uses, and properties of chromium. Regulatory Toxicology and Pharmacology, 26, S3–S7.CrossRefGoogle Scholar
  10. Barrese, E., Gioffrè, A., Scarpelli, M., Turbante, D., Trovato, R., & Iavicoli, S. (2014). Indoor pollution in work office: VOCs, formaldehyde and ozone by printer. Occupational Diseases and Environmental Medicine, 2, 49.CrossRefGoogle Scholar
  11. Barthel, M., Pedan, V., Hahn, O., Rothhardt, M., Bresch, H., Jann, O., et al. (2011). XRF-analysis of fine and ultrafine particles emitted from laser printing devices. Environmental Science and Technology, 45, 7819–7825.CrossRefGoogle Scholar
  12. Bates, H. K. (2010). A review of limit values and hazard communication standards for nickel. Metal Finishing, 108, 28–32.CrossRefGoogle Scholar
  13. Baughman, A., & Arens, E. A. (1996). Indoor humidity and human health—Part I: Literature review of health effects of humidity-influenced indoor pollutants. ASHRAE Transactions, 102, 192–211.Google Scholar
  14. Bell, Z. G., Jr., Lovejoy, H. B., & Vizena, T. (1973). Mercury exposure evaluations and their correlation with urine mercury excretions: 3. Time-weighted average (TWA) mercury exposures and urine mercury levels. Journal of Occupational and Environmental Medicine, 15, 501–508.Google Scholar
  15. Benczek, K. M., Gawęda, E., & Kurpiewska, J. (2000). Prediction of toxic substances emission for occupational exposure assessment. International Journal of Occupational Safety and Ergonomics, 6, 35–43.CrossRefGoogle Scholar
  16. Blanchard, O., Glorennec, P., Mercier, F., Bonvallot, N., Chevrier, C., Ramalho, O., et al. (2014a). Semivolatile organic compounds in indoor air and settled dust in 30 French dwellings. Environmental Science and Technology, 48, 3959–3969.CrossRefGoogle Scholar
  17. Blanchard, O., Mercier, F., Ramalho, O., Mandin, C., le Bot, B., & Glorennec, P. (2014b). Measurements of semi-volatile organic compounds in settled dust: Influence of storage temperature and duration. Indoor Air, 24, 125–135.CrossRefGoogle Scholar
  18. Boelter, K. J., & Davidson, J. H. (1997). Ozone generation by indoor, electrostatic air cleaners. Aerosol Science and Technology, 27, 689–708.CrossRefGoogle Scholar
  19. Brook, R. D., Franklin, B., Cascio, W., Hong, Y., Howard, G., Lipsett, M., et al. (2004). Air pollution and cardiovascular disease A statement for healthcare professionals from the expert panel on population and prevention science of the American Heart Association. Circulation, 109, 2655–2671.CrossRefGoogle Scholar
  20. Bruce, N., Perez-Padilla, R., & Albalak, R. (2000). Indoor air pollution in developing countries: A major environmental and public health challenge. Bulletin of the World Health Organization, 78, 1078–1092.Google Scholar
  21. Bruce, N., Rehfuess, E., Mehta, S., Hutton, G., & Smith, K. (2006). Indoor air pollution. Oxford University Press.Google Scholar
  22. Buringh, E., & Lanting, R. (1991). Exposure variability in the workplace: Its implications for the assessment of compliance. The American Industrial Hygiene Association Journal, 52, 6–13.CrossRefGoogle Scholar
  23. Burness, D. M., Dykstra, T. K., Jadwin, T. A., & Ling, H. G. (1978). Electrographic toner and developer composition containing a 4-aza-1-azoniabicyclo (2.2. 2) octane salt as a charge control agent. Google Patents.Google Scholar
  24. Byeon, J. H., & Kim, J.-W. (2012). Particle emission from laser printers with different printing speeds. Atmospheric Environment, 54, 272–276.CrossRefGoogle Scholar
  25. Cao, G., Awbi, H., Yao, R., Fan, Y., Sirén, K., Kosonen, R., et al. (2014). A review of the performance of different ventilation and airflow distribution systems in buildings. Building and Environment, 73, 171–186.CrossRefGoogle Scholar
  26. Castellano, P., Canepari, S., Ferrante, R., & L’Episcopo, N. (2012). Multiparametric approach for an exemplary study of laser printer emissions. Journal of Environmental Monitoring, 14, 446–454.CrossRefGoogle Scholar
  27. Chakraborty, A. (2014). Effects of air pollution on public health: The case of vital traffic junctions under Kolkata Municipal Corporation. Journal of Studies in Dynamics and Change, 1, 125–133.Google Scholar
  28. Cheng, Y.-H. (2017). Measuring indoor particulate matter concentrations and size distributions at different time periods to identify potential sources in an office building in Taipei City. Building and Environment, 123, 446–457.CrossRefGoogle Scholar
  29. Chin, J. Y., Godwin, C., Parker, E., Robins, T., Lewis, T., Harbin, P., et al. (2014). Levels and sources of volatile organic compounds in homes of children with asthma. Indoor Air, 24, 403–415.CrossRefGoogle Scholar
  30. Darr, D., Combs, S., Dunston, S., Manning, T., & Pinnell, S. (1992). Topical vitamin C protects porcine skin from ultraviolet radiation-induced damage. British Journal of Dermatology, 127, 247–253.CrossRefGoogle Scholar
  31. Destaillats, H., Maddalena, R. L., Singer, B. C., Hodgson, A. T., & McKone, T. E. (2008). Indoor pollutants emitted by office equipment: A review of reported data and information needs. Atmospheric Environment, 42, 1371–1388.CrossRefGoogle Scholar
  32. Dodson, R. E., Camann, D. E., Morello-Frosch, R., Brody, J. G., & Rudel, R. A. (2014). Semivolatile organic compounds in homes: Strategies for efficient and systematic exposure measurement based on empirical and theoretical factors. Environmental Science and Technology, 49, 113–122.CrossRefGoogle Scholar
  33. Duthie, M., Kimber, I., & Norval, M. (1999). The effects of ultraviolet radiation on the human immune system. British Journal of Dermatology, 140, 995–1009.CrossRefGoogle Scholar
  34. Eberlein-König, B., Przybilla, B., Kühnl, P., Golling, G., Gebefügi, I., & Ring, J. (2002). Multiple chemical sensitivity (MCS) and others: Allergological, environmental and psychological investigations in individuals with indoor air related complaints. International Journal of Hygiene and Environmental Health, 205, 213–220.CrossRefGoogle Scholar
  35. Elango, N., Kasi, V., Vembhu, B., & Poornima, J. G. (2013). Chronic exposure to emissions from photocopiers in copy shops causes oxidative stress and systematic inflammation among photocopier operators in India. Environmental Health, 12, 78.CrossRefGoogle Scholar
  36. Ewers, U., & Nowak, D. (2006). Health hazards caused by emissions of laser printers and copiers? GEFAHRSTOFFE REINHALTUNG DER LUFT-GERMAN EDITION, 66, 203.Google Scholar
  37. Férey, G., Mellot-Draznieks, C., Serre, C., Millange, F., Dutour, J., Surblé, S., et al. (2005). A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science, 309, 2040–2042.CrossRefGoogle Scholar
  38. Fraga, C. G. (2005). Relevance, essentiality and toxicity of trace elements in human health. Molecular Aspects of Medicine, 26, 235–244.CrossRefGoogle Scholar
  39. Gadhia, P., Patel, D., Solanki, K., Tamakuwala, D., & Pithawala, M. (2005). A preliminary cytogenetic and hematological study of photocopying machine operators. Indian Journal of Occupational and Environmental Medicine, 9, 22.CrossRefGoogle Scholar
  40. García-Rico, L., Leyva-Perez, J., & Jara-Marini, M. E. (2007). Content and daily intake of copper, zinc, lead, cadmium, and mercury from dietary supplements in Mexico. Food and Chemical Toxicology, 45, 1599–1605.CrossRefGoogle Scholar
  41. Godwin, O. E., & Reginald, O. (2017). Assessment of occupational health hazards from photocopying machines. International Journal of Innovative Research and Development. ISSN 2278-0211, 6.Google Scholar
  42. Goud, K. I., Hasan, Q., Balakrishna, N., Rao, K. P., & Ahuja, Y. (2004). Genotoxicity evaluation of individuals working with photocopying machines. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 563, 151–158.CrossRefGoogle Scholar
  43. Goud, K. I., Shankarappa, K., Vijayashree, B., Rao, K. P., & Ahuja, Y. (2001). DNA damage and repair studies in individuals working with photocopying machines. International Journal of Human Genetics, 1, 139–143.CrossRefGoogle Scholar
  44. Graeme, K. A., & Pollack, C. V. (1998). Heavy metal toxicity, part I: Arsenic and mercury. The Journal of emergency medicine, 16, 45–56.CrossRefGoogle Scholar
  45. Grushkin, B. & Sacripante, G. G. (1994). Toner composition and processes thereof. Google Patents.Google Scholar
  46. Guo, H., Lee, S., Chan, L., & Li, W. (2004). Risk assessment of exposure to volatile organic compounds in different indoor environments. Environmental Research, 94, 57–66.CrossRefGoogle Scholar
  47. Haines, A., Kovats, R. S., Campbell-Lendrum, D., & Corvalán, C. (2006). Climate change and human health: Impacts, vulnerability and public health. Public Health, 120, 585–596.CrossRefGoogle Scholar
  48. Han, W.-K., Su, J., Tang, Y.-J., Lo, A. W., & Hwang, F.-C. (2001). Surface light source generator. Google Patents.Google Scholar
  49. Hansen, T. B., & Andersen, B. (1986). Ozone and other air pollutants from photocopying machines. The American Industrial Hygiene Association Journal, 47, 659–665.CrossRefGoogle Scholar
  50. Hasan, N. H., Said, M., & Leman, A. (2013). Health effect from volatile organic compounds and useful tools for future prevention: A review. International Journal of Environmental Science and Technology and Research, 1, 28–36.Google Scholar
  51. Holmberg, B., & Lundberg, P. (1985). Benzene: Standards, occurrence, and exposure. American Journal of Industrial Medicine, 7, 375–383.CrossRefGoogle Scholar
  52. Hsu, N. Y., Lee, C. C., Wang, J. Y., Li, Y. C., Chang, H. W., Chen, C. Y., et al. (2012). Predicted risk of childhood allergy, asthma, and reported symptoms using measured phthalate exposure in dust and urine. Indoor Air, 22, 186–199.CrossRefGoogle Scholar
  53. Hughes, M. F. (2002). Arsenic toxicity and potential mechanisms of action. Toxicology Letters, 133, 1–16.CrossRefGoogle Scholar
  54. Ibrahim, D., Froberg, B., Wolf, A., & Rusyniak, D. E. (2006). Heavy metal poisoning: Clinical presentations and pathophysiology. Clinics in laboratory medicine, 26, 67–97.CrossRefGoogle Scholar
  55. Ilychova, S. A., & Zaridze, D. G. (2012). Cancer mortality among female and male workers occupationally exposed to inorganic lead in the printing industry. Occupational and Environmental Medicine, 69, 87–92.CrossRefGoogle Scholar
  56. Jaakkola, M. S., & Jaakkola, J. J. (1999). Office equipment and supplies: A modern occupational health concern? American Journal of Epidemiology, 150, 1223–1228.CrossRefGoogle Scholar
  57. Jalaludin, J., Nordiyana, M., & Suhaimi, N. (2014). Exposure to indoor air pollutants (formaldehyde, VOCs, ultrafine particles) and respiratory health symptoms among office workers in old and new buildings in Universiti Putra Malaysia. International Journal of Applied and Natural Sciences, 3, 69–80.Google Scholar
  58. Järup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68, 167–182.CrossRefGoogle Scholar
  59. Järup, L., Berglund, M., Elinder, C. G., Nordberg, G., & Vanter, M. (1998). Health effects of cadmium exposure—A review of the literature and a risk estimate. Scandinavian Journal of Work, Environment & Health, 24, 1–51.CrossRefGoogle Scholar
  60. Johansson, C., Norman, M., & Burman, L. (2009). Road traffic emission factors for heavy metals. Atmospheric Environment, 43, 4681–4688.CrossRefGoogle Scholar
  61. Johansson, C., Norman, M., & Gidhagen, L. (2007). Spatial & temporal variations of PM10 and particle number concentrations in urban air. Environmental Monitoring and Assessment, 127, 477–487.CrossRefGoogle Scholar
  62. Jones, A. P. (1999). Indoor air quality and health. Atmospheric Environment, 33, 4535–4564.CrossRefGoogle Scholar
  63. Judd, R. M., & Levy, B. I. (1991). Effects of barium-induced cardiac contraction on large-and small-vessel intramyocardial blood volume. Circulation Research, 68, 217–225.CrossRefGoogle Scholar
  64. Kagi, N., Fujii, S., Horiba, Y., Namiki, N., Ohtani, Y., Emi, H., et al. (2007a). Indoor air quality for chemical and ultrafine particle contaminants from printers. Building and Environment, 42, 1949–1954.CrossRefGoogle Scholar
  65. Kagi, N., Fujii, S., Horiba, Y., Namiki, N., Ohtani, Y., Emi, H., et al. (2007b). プリンターからの化学及び超微細粒子汚染物に対する屋内空気質. Building and Environment, 42, 1949–1954.CrossRefGoogle Scholar
  66. Kalimeri, K. K., Bartzis, J. G., & Saraga, D. E. (2017). Commuters’ personal exposure to ambient and indoor ozone in Athens, Greece. Environments, 4, 53.CrossRefGoogle Scholar
  67. Kampa, M., & Castanas, E. (2008). Human health effects of air pollution. Environmental Pollution, 151, 362–367.CrossRefGoogle Scholar
  68. Karar, K., Gupta, A., Kumar, A., & Biswas, A. K. (2006). Characterization and identification of the sources of chromium, zinc, lead, cadmium, nickel, manganese and iron in PM10 particulates at the two sites of Kolkata, India. Environmental Monitoring and Assessment, 120, 347–360.CrossRefGoogle Scholar
  69. Karimipanah, T., Hb, A., & Moshfegh, B. (2008). The air distribution index as an indicator for energy consumption and performance of ventilation systems. Journal of the Human-Environment System, 11, 77–84.CrossRefGoogle Scholar
  70. Karrasch, S., Simon, M., Herbig, B., Langner, J., Seeger, S., Kronseder, A., et al. (2017). Health effects of laser printer emissions: A controlled exposure study. Indoor Air, 27, 753–765.CrossRefGoogle Scholar
  71. Kasi, V., Elango, N., Ananth, S., Vembhu, B., & Poornima, J. (2017). Occupational exposure to photocopiers and their toners cause genotoxicity. Human & Experimental Toxicology, 0960327117693068.Google Scholar
  72. Katsoyiannis, A., Leva, P., & Kotzias, D. (2008). VOC and carbonyl emissions from carpets: A comparative study using four types of environmental chambers. Journal of Hazardous Materials, 152, 669–676.CrossRefGoogle Scholar
  73. Khan, S., Cao, Q., Zheng, Y., Huang, Y., & Zhu, Y. (2008). Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environmental Pollution, 152, 686–692.CrossRefGoogle Scholar
  74. Khatri, M., Bello, D., Gaines, P., Martin, J., Pal, A. K., Gore, R., et al. (2013). Nanoparticles from photocopiers induce oxidative stress and upper respiratory tract inflammation in healthy volunteers. Nanotoxicology, 7, 1014–1027.CrossRefGoogle Scholar
  75. Kiurski, J., Adamović, S., Oros, I., Krstić, J., & Đogo, M. (2011). Detection and quantification of ozone in screen printing facilities. World Academy of Science, Engineering and Technology, 51, 922–927.Google Scholar
  76. Kiurski, J., Marić, B., Adamović, D., Mihailović, A., Grujić, S., Oros, I., et al. (2012a). Register of hazardous materials in printing industry as a tool for sustainable development management. Renewable and Sustainable Energy Reviews, 16, 660–667.CrossRefGoogle Scholar
  77. Kiurski, J. S., Marić, B. B., Aksentijević, S. M., Oros, I. B., Kecić, V. S., & Kovačević, I. M. (2013). Indoor air quality investigation from screen printing industry. Renewable and Sustainable Energy Reviews, 28, 224–231.CrossRefGoogle Scholar
  78. Kiurski, J., Marić, B., Djaković, V., Adamović, S., Oros, I., & Krstić, J. (2012b). The impact factors of the environmental pollution and workers health in printing industry. Proceedings of World Academy of Science, Engineering and Technology, 6, 755–758.Google Scholar
  79. Kiurski, J., Nedovic, L., Adamovic, S., Oros, I., Krstic, J., & Kovacevic, I. (2012c). Nonlinear correlation model in the assessment of screen printing indoor pollution. American Journal of Environmental Engineering, 2, 35–38.CrossRefGoogle Scholar
  80. Kiurski, J., Oros, I., & Kecic, V. (2016a). Print and related industry air quality. Comprehensive Analytical Chemistry, 73, 623–654.CrossRefGoogle Scholar
  81. Kiurski, J. S., Oros, I. B., Kecic, V. S., Kovacevic, I. M., & Aksentijevic, S. M. (2016b). The temporal variation of indoor pollutants in photocopying shop. Stochastic Environmental Research and Risk Assessment, 30, 1289–1300.CrossRefGoogle Scholar
  82. Kleinsorge, E. C., Erben, M., Galan, M. G., Barison, C., Gonsebatt, M. E., & Simoniello, M. F. (2011). Assessment of oxidative status and genotoxicity in photocopier operators: A pilot study. Biomarkers, 16, 642–648.CrossRefGoogle Scholar
  83. Könczöl, M., Weiß, A., Gminski, R., Merfort, I., & Mersch-Sundermann, V. (2013). Oxidative stress and inflammatory response to printer toner particles in human epithelial A549 lung cells. Toxicology Letters, 216, 171–180.CrossRefGoogle Scholar
  84. Kotera, N., Eguchi, S., Miyahara, J., Matsumoto, S., & Kato, H. (1980). Method and apparatus for recording and reproducing a radiation image. Google Patents.Google Scholar
  85. Kotzias, D., Geiss, O., & Tirendi, S. (2005). The AIRMEX (European Indoor Air Monitoring and Exposure Assessment) Project report. European Commission.Google Scholar
  86. Kotzias, D., Geiss, O., Leva, P., Bellintani, A., Arvanitis, A., & Kephalopoulos, S. (2004). Impact of various air exchange rates on the levels of environmental tobacco smoke (ETS) components. Fresenius Environmental Bulletin, 13, 1536–1549.Google Scholar
  87. Krishna, A., & Govil, P. (2007). Soil contamination due to heavy metals from an industrial area of Surat, Gujarat, Western India. Environmental Monitoring and Assessment, 124, 263–275.CrossRefGoogle Scholar
  88. Langård, S. (2013). Biological and environmental aspects of chromium. Amsterdam: Elsevier.Google Scholar
  89. Larson, J. S., & Muller, A. (2002). Managing the quality of health care. Journal of Health and Human Services Administration, 25, 261–280.Google Scholar
  90. Lauwerys, R. R., & Hoet, P. (2001). Industrial chemical exposure: Guidelines for biological monitoring. Boca Raton: CRC Press.Google Scholar
  91. Lee, C.-W., Dai, Y.-T., Chien, C.-H., & Hsu, D.-J. (2006). Characteristics and health impacts of volatile organic compounds in photocopy centers. Environmental Research, 100, 139–149.CrossRefGoogle Scholar
  92. Lee, S., Lam, S., & Fai, H. K. (2001). Characterization of VOCs, ozone, and PM 10 emissions from office equipment in an environmental chamber. Building and Environment, 36, 837–842.CrossRefGoogle Scholar
  93. Leovic, K. W., Sheldon, L. S., Whitaker, D. A., Hetes, R. G., Calcagni, J. A., & Baskir, J. N. (1996). Measurement of indoor air emissions from dry-process photocopy machines. Journal of the Air and Waste Management Association, 46, 821–829.CrossRefGoogle Scholar
  94. Liu, Q., Liu, Y., & Zhang, M. (2013). Personal exposure and source characteristics of carbonyl compounds and BTEXs within homes in Beijing, China. Building and Environment, 61, 210–216.CrossRefGoogle Scholar
  95. Loughlin, D., Benjey, W., & Nolte, C. (2011). ESP v1. 0: Methodology for exploring emission impacts of future scenarios in the United States. Geoscientific Model Development, 4, 287.CrossRefGoogle Scholar
  96. Mahadevan, T., Kulkarni, P., & Nambi, K. (1999). Development of continuous air quality monitoring systems at Bhabha Atomic Research Centre for conventional pollutants and their performance evaluation. Sensors and Actuators B: Chemical, 55, 111–117.CrossRefGoogle Scholar
  97. Martin, J., Bello, D., Bunker, K., Shafer, M., Christiani, D., Woskie, S., et al. (2015). Occupational exposure to nanoparticles at commercial photocopy centers. Journal of Hazardous Materials, 298, 351–360.CrossRefGoogle Scholar
  98. Martin, J., Demokritou, P., Woskie, S., & Bello, D. (2017). Indoor air quality in photocopy centers, nanoparticle exposures at photocopy workstations, and the need for exposure controls. Annals of work exposures and health, 61, 110–122.Google Scholar
  99. Martin, S., & Griswold, W. (2009). Human health effects of heavy metals. Environmental Science and Technology Briefs for Citizens, 15, 1–6.Google Scholar
  100. Massey, D. D., & Taneja, A. (2011). Emission and formation of fine particles from hardcopy devices: The cause of indoor air pollution. In Monitoring, Control and Effects of Air Pollution. InTech.Google Scholar
  101. Masters, G. M., & Ela, W. P. (1991). Introduction to environmental engineering and science. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
  102. Matshediso, O. S. (2014). Development of an emissions compliance monitoring system for South Africa. University of Pretoria.Google Scholar
  103. Mølhave, L. (1991). Volatile organic compounds, indoor air quality and health. Indoor Air, 1, 357–376.CrossRefGoogle Scholar
  104. Mølhave, L., & Nielsen, G. D. (1992). Interpretation and limitations of the concept “Total volatile organic compounds” (TVOC) as an indicator of human responses to exposures of volatile organic compounds (VOC) in indoor air. Indoor Air, 2, 65–77.CrossRefGoogle Scholar
  105. Morais, S., e Costa, F. G., & De Lourdes Pereira, M. (2012). Heavy metals and human health. Rijeka: INTECH Open Access Publisher.CrossRefGoogle Scholar
  106. Morawska, L., He, C., Johnson, G., Jayaratne, R., Salthammer, T., Wang, H., et al. (2009). An investigation into the characteristics and formation mechanisms of particles originating from the operation of laser printers. Environmental Science and Technology, 43, 1015–1022.CrossRefGoogle Scholar
  107. Morrison, G. (2010). Chemical reactions among indoor pollutants. In Human exposure to pollutants via dermal absorption and inhalation. Springer.Google Scholar
  108. Murakami, M., & Hirano, T. (2008). Intracellular zinc homeostasis and zinc signaling. Cancer Science, 99, 1515–1522.CrossRefGoogle Scholar
  109. Nagajyoti, P., Lee, K., & Sreekanth, T. (2010). Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters, 8, 199–216.CrossRefGoogle Scholar
  110. Nakadate, T., Yamano, Y., Adachi, C., Kikuchi, Y., Nishiwaki, Y., Nohara, M., et al. (2006). A cross sectional study of the respiratory health of workers handling printing toner dust. Occupational and Environmental Medicine, 63, 244–249.CrossRefGoogle Scholar
  111. Nazaroff, W. W. & Nero, A. V., Jr. (1988). Radon and its decay products in indoor air. Wiley.Google Scholar
  112. Needleman, H. L. (1991). Human lead exposure. Boca Raton: CRC Press.Google Scholar
  113. Needleman, H. L., & Bellinger, D. (1991). The health effects of low level exposure to lead. Annual Review of Public Health, 12, 111–140.CrossRefGoogle Scholar
  114. Nel, A., Xia, T., Mädler, L., & Li, N. (2006). Toxic potential of materials at the nanolevel. Science, 311, 622–627.CrossRefGoogle Scholar
  115. Oberdörster, G., & Utell, M. J. (2002). Ultrafine particles in the urban air: To the respiratory tract—And beyond? Environmental Health Perspectives, 110, A440.CrossRefGoogle Scholar
  116. Olesen, B. W. (2004). International standards for the indoor environment. Indoor Air, 14, 18–26.CrossRefGoogle Scholar
  117. Pagel, É. C., Reis, N. C., de Alvarez, C. E., Santos, J. M., Conti, M. M., Boldrini, R. S., et al. (2016). Characterization of the indoor particles and their sources in an Antarctic research station. Environmental Monitoring and Assessment, 188, 167.CrossRefGoogle Scholar
  118. Papadimitriou, V. (2004). Prospective primary teachers’ understanding of climate change, greenhouse effect, and ozone layer depletion. Journal of Science Education and Technology, 13, 299–307.CrossRefGoogle Scholar
  119. Patron, N. J., Orzaez, D., Marillonnet, S., Warzecha, H., Matthewman, C., Youles, M., et al. (2015). Standards for plant synthetic biology: A common syntax for exchange of DNA parts. New Phytologist, 208, 13–19.CrossRefGoogle Scholar
  120. Patz, J. A., Campbell-Lendrum, D., Holloway, T., & Foley, J. A. (2005). Impact of regional climate change on human health. Nature, 438, 310–317.CrossRefGoogle Scholar
  121. Pirela, S., Molina, R., Watson, C., Cohen, J. M., Bello, D., Demokritou, P., et al. (2013). Effects of copy center particles on the lungs: A toxicological characterization using a Balb/c mouse model. Inhalation Toxicology, 25, 498–508.CrossRefGoogle Scholar
  122. Pitas, J. A., Lawniczak, G. P., & Regelsberger, M. H. (2011). Method of controlling emissions in an electrophotographic printer. Google Patents.Google Scholar
  123. Plum, L. M., Rink, L., & Haase, H. (2010). The essential toxin: Impact of zinc on human health. International Journal of Environmental Research and Public Health, 7, 1342–1365.CrossRefGoogle Scholar
  124. Purves, D. (2012). Trace-element contamination of the environment. Amsterdam: Elsevier.Google Scholar
  125. Rattan, R., Datta, S., Chhonkar, P., Suribabu, K., & Singh, A. (2005). Long-term impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater—A case study. Agriculture, Ecosystems & Environment, 109, 310–322.CrossRefGoogle Scholar
  126. Razak, M. H. A. A., & Ismail, R. (2017). Determination of copper, cadmium and zinc in abelmoschus esculentus l. Moench using flame atomic absorption spectrophotometry. eProceedings Chemistry, 2, 217–224.Google Scholar
  127. Riechelmann, H., Rettinger, G., Weschta, M., Keck, T., & Deutschle, T. (2003). Effects of low-toxicity particulate matter on human nasal function. Journal of Occupational and Environmental Medicine, 45, 54–60.CrossRefGoogle Scholar
  128. Riley, M. V., Susan, S., Peters, M. I., & Schwartz, C. A. (1987). The effects of UV-B irradiation on the corneal endothelium. Current Eye Research, 6, 1021–1033.CrossRefGoogle Scholar
  129. Roth, K. W., Dieckmann, J., & Brodrick, J. (2003). Demand control ventilation. ASHRAE Journal, 45, 91–92.Google Scholar
  130. Rothweiler, H., Wäger, P. A., & Schlatter, C. (1992). Volatile organic compounds and some very volatile organic compounds in new and recently renovated buildings in Switzerland. Atmospheric Environment. Part A. General Topics, 26, 2219–2225.CrossRefGoogle Scholar
  131. Rowbotham, A. L., Levy, L. S., & Shuker, L. K. (2000). Chromium in the environment: An evaluation of exposure of the UK general population and possible adverse health effects. Journal of Toxicology & Environmental Health Part B: Critical Reviews, 3, 145–178.CrossRefGoogle Scholar
  132. Rumchev, K., Brown, H., & Spickett, J. (2007). Volatile organic compounds: Do they present a risk to our health? Reviews on Environmental Health, 22, 39.CrossRefGoogle Scholar
  133. Rybicki, B., Amend, K., Maliarik, M., & Iannuzzi, M. (2004). Photocopier exposure and risk of sarcoidosis in African-American sibs. Sarcoidosis, Vasculitis, and Diffuse Lung Diseases: Official Journal of WASOG, 21, 49–55.Google Scholar
  134. Salem, H., Eweida, E. A., & Farag, A. (2000). Heavy metals in drinking water and their environmental impact on human health. In ICEHM2000 (pp.542–556). Cairo University: Giza, Egypt.Google Scholar
  135. Salthammer, T. (2016). Very volatile organic compounds: An understudied class of indoor air pollutants. Indoor Air, 26, 25–38.CrossRefGoogle Scholar
  136. Sanders, F. W., Hillenbrand, G. F., ARNEY, J. S., & Wright, R. F. (1984). Photocopy sheet employing encapsulated radiation sensitive composition and imaging process. Google Patents.Google Scholar
  137. Sarigiannis, D. A., Karakitsios, S. P., Gotti, A., Liakos, I. L., & Katsoyiannis, A. (2011). Exposure to major volatile organic compounds and carbonyls in European indoor environments and associated health risk. Environment International, 37, 743–765.CrossRefGoogle Scholar
  138. Saritha, V., Bhavannarayana, C., Kumar, K. A., & Jyothi, V. (2010). Xerox workers: Hidden health hazards in Visakhapatnam. Nature Environment & Pollution Technology, 9, 39–42.Google Scholar
  139. Sarkhosh, M., Mahvi, A. H., Zare, M. R., Fakhri, Y., & Shamsolahi, H. R. (2012). Indoor contaminants from hardcopy devices: Characteristics of VOCs in photocopy centers. Atmospheric Environment, 63, 307–312.CrossRefGoogle Scholar
  140. Sarwar, G., & Corsi, R. (2007). The effects of ozone/limonene reactions on indoor secondary organic aerosols. Atmospheric Environment, 41, 959–973.CrossRefGoogle Scholar
  141. Satarug, S., & Moore, M. R. (2004). Adverse health effects of chronic exposure to low-level cadmium in foodstuffs and cigarette smoke. Environmental Health Perspectives, 112, 1099–1103.CrossRefGoogle Scholar
  142. Seppänen, O., & Fisk, W. (2002). Association of ventilation system type with SBS symptoms in office workers. Indoor Air, 12, 98–112.CrossRefGoogle Scholar
  143. Shankar, A., & Venkateswarlu, B. (2011). Chromium: Environmental pollution, health effects and mode of action A2. Encyclopedia of environmental health (pp. 650–659). Burlington: Elsevier.Google Scholar
  144. Sharma, R. K., & Agrawal, M. (2005). Biological effects of heavy metals: An overview. Journal of Environmental Biology, 26, 301–313.Google Scholar
  145. Singh, B. P., Kumar, A., Singh, D., Punia, M., Kumar, K., & Jain, V. K. (2014). An assessment of ozone levels, UV radiation and their occupational health hazard estimation during photocopying operation. Journal of Hazardous Materials, 275, 55–62.CrossRefGoogle Scholar
  146. Smith, L. A., & Brauning, S. E. (1995). Remedial options for metals-contaminated sites. Boca Raton: CRC Press.Google Scholar
  147. Smith, C., Hopmans, P., & Cook, F. (1996). Accumulation of Cr, Pb, Cu, Ni, Zn and Cd in soil following irrigation with treated urban effluent in Australia. Environmental Pollution, 94, 317–323.CrossRefGoogle Scholar
  148. Smith, K. R., & Mehta, S. (2003). The burden of disease from indoor air pollution in developing countries: Comparison of estimates. International Journal of Hygiene and Environmental Health, 206, 279–289.CrossRefGoogle Scholar
  149. Sparrow, A., Cuany, R., Miksche, J., & Schairer, L. (1961). Some factors affecting the responses of plants to acute and chronic radiation exposures. Radiation Botany, 1, 10–34.CrossRefGoogle Scholar
  150. Stefaniak, A. B., Breysse, P. N., Murray, M. P. M., Rooney, B. C., & Schaefer, J. (2000). An evaluation of employee exposure to volatile organic compounds in three photocopy centers. Environmental Research, 83, 162–173.CrossRefGoogle Scholar
  151. Steinle, P. (2016). Characterization of emissions from a desktop 3D printer and indoor air measurements in office settings. Journal of Occupational and Environmental Hygiene, 13, 121–132.CrossRefGoogle Scholar
  152. Stern, A. C. (2014). Fundamentals of air pollution. Amsterdam: Elsevier.Google Scholar
  153. Stockmayer, H. P. (1956). Printing inks. Google Patents.Google Scholar
  154. Sunderman, F. W., Dingle, B., Hopfer, S. M., & Swift, T. (1988). Acute nickel toxicity in electroplating workers who accidently ingested a solution of nickel sulfate and nickel chloride. American Journal of Industrial Medicine, 14, 257–266.CrossRefGoogle Scholar
  155. Sutherland, R. A., & Tolosa, C. (2000). Multi-element analysis of road-deposited sediment in an urban drainage basin, Honolulu, Hawaii. Environmental Pollution, 110, 483–495.CrossRefGoogle Scholar
  156. Tang, T., Hurraß, J., Gminski, R., & Mersch-Sundermann, V. (2012). Fine and ultrafine particles emitted from laser printers as indoor air contaminants in German offices. Environmental Science and Pollution Research, 19, 3840–3849.CrossRefGoogle Scholar
  157. Taylor, H. R., West, S. K., Rosenthal, F. S., Muñoz, B., Newland, H. S., Abbey, H., et al. (1988). Effect of ultraviolet radiation on cataract formation. New England Journal of Medicine, 319, 1429–1433.CrossRefGoogle Scholar
  158. Theegarten, D., Boukercha, S., Philippou, S., & Anhenn, O. (2010). Submesothelial deposition of carbon nanoparticles after toner exposition: Case report. Diagnostic pathology, 5, 77.CrossRefGoogle Scholar
  159. Tischner, U., & Nickel, R. (2003). Eco-design in the printing industry Life cycle thinking: Implementation of Eco-design concepts and tools into the routine procedures of companies. The Journal of Sustainable Product Design, 3, 19–27.CrossRefGoogle Scholar
  160. Traister, R. L., & Reehil, E. G. (1976). Fuser apparatus for electrostatic reproducing machines. Google Patents.Google Scholar
  161. Tuomi, T., Engström, B., Niemelä, R., Svinhufvud, J., & Reijula, K. (2000). Emission of ozone and organic volatiles from a selection of laser printers and photocopiers. Applied Occupational and Environmental Hygiene, 15, 629–634.CrossRefGoogle Scholar
  162. Turnpenny, J., Etheridge, D., & Reay, D. (2001). Novel ventilation system for reducing air conditioning in buildings. Part II: Testing of prototype. Applied Thermal Engineering, 21, 1203–1217.CrossRefGoogle Scholar
  163. Valuntaite, V., & Girgždiene, R. (2007). Investigation of ozone emission and dispersion from photocopying machines. Journal of Environmental Engineering and Landscape Management, 15, 61–67.CrossRefGoogle Scholar
  164. Vertegaal, J.-G., & Anselrode, L. (1980). Printing apparatus utilizing flexible metal sleeves as ink transfer means. Google Patents.Google Scholar
  165. Vicente, E. D., Ribeiro, J. P., Custódio, D., & Alves, C. A. (2017). Assessment of the indoor air quality in copy centres at Aveiro, Portugal. Air Quality, Atmosphere and Health, 10, 117–127.CrossRefGoogle Scholar
  166. Wang, H., He, C., Morawska, L., McGarry, P., & Johnson, G. (2012). Ozone-initiated particle formation, particle aging, and precursors in a laser printer. Environmental Science and Technology, 46, 704–712.CrossRefGoogle Scholar
  167. Ware, J. H., Spengler, J. D., Neas, L. M., Samet, J. M., Wagner, G. R., Coultas, D., et al. (1993). Respiratory and irritant health effects of ambient volatile organic compounds the Kanawha County health study. American Journal of Epidemiology, 137, 1287–1301.CrossRefGoogle Scholar
  168. Waschk, F., Webersik, H., & Schinagl, R. (1980). Electrostatic copying machine having flash-discharge-lamp fixing unit. Google Patents.Google Scholar
  169. Welch, K., Higgins, I., Oh, M., & Burchfiel, C. (1982). Arsenic exposure, smoking, and respiratory cancer in copper smelter workers. Archives of Environmental Health: An International Journal, 37, 325–335.CrossRefGoogle Scholar
  170. Weldman, W. T., Rabb, K. M., Shaffer, M. L., Kau, K. M., & Rath, F. N. (1993). Optical safety shutoff for machine cover. Google Patents.Google Scholar
  171. Weschler, C. J. (2000). Ozone in indoor environments: Concentration and chemistry. Indoor Air, 10, 269–288.CrossRefGoogle Scholar
  172. Weschler, C. J., & Nazaroff, W. W. (2010). SVOC partitioning between the gas phase and settled dust indoors. Atmospheric Environment, 44, 3609–3620.CrossRefGoogle Scholar
  173. Weschler, C. J., Salthammer, T., & Fromme, H. (2008). Partitioning of phthalates among the gas phase, airborne particles and settled dust in indoor environments. Atmospheric Environment, 42, 1449–1460.CrossRefGoogle Scholar
  174. Weschler, C. J., & Shields, H. C. (1999). Indoor ozone/terpene reactions as a source of indoor particles. Atmospheric Environment, 33, 2301–2312.CrossRefGoogle Scholar
  175. Who, I. (1989). Indoor air quality: organic pollutants. Copenhagen: Regional Office for Europe.Google Scholar
  176. Wilkes, C. R., Small, M. J., Andelman, J. B., Giardino, N. J., & Marshall, J. (1992). Inhalation exposure model for volatile chemicals from indoor uses of water. Atmospheric Environment. Part A. General Topics, 26, 2227–2236.CrossRefGoogle Scholar
  177. Wilkins, C., Wolkoff, P., Gyntelberg, F., Skov, P., & Valbjørn, O. (1993). Characterization of Ofice dust by VOCs and TVOC release-identification of potential irritant VOCs by partial least squares analysis. Indoor Air, 3, 283–290.CrossRefGoogle Scholar
  178. Wintz, H., Fox, T., & Vulpe, C. (2002). Functional genomics and gene regulation in biometals research. Biochemical Society Transactions, 30, 766–768.CrossRefGoogle Scholar
  179. Wolkoff, P. (1995). Volatile organic compounds sources, measurements, emissions, and the impact on indoor air quality. Indoor Air, 5, 5–73.CrossRefGoogle Scholar
  180. Wolkoff, P. (2013). Indoor air pollutants in office environments: Assessment of comfort, health, and performance. International Journal of Hygiene and Environmental Health, 216, 371–394.CrossRefGoogle Scholar
  181. Wolkoff, P., Johnsen, C., Franck, C., Wilhardt, P., & Albrechtsen, O. (1992). A study of human reactions to office machines in a climatic chamber. Journal of Exposure Analysis and Environmental Epidemiology, 1, 71–96.Google Scholar
  182. Wolkoff, P., Wilkins, C. K., Clausen, P. A., & Larsen, K. (1993). Comparison of volatile organic compounds from processed paper and toners from office copiers and printers: Methods, emission rates, and modeled concentrations. Indoor Air, 3, 113–123.CrossRefGoogle Scholar
  183. Wouters, P., & Delmotte, C. (2005). Ventilation, good indoor air quality and rational use of energy. Pollution atmosphérique, 1, 65.Google Scholar
  184. Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Network, 2011, 20.Google Scholar
  185. Xu, Y., & Little, J. C. (2006). Predicting emissions of SVOCs from polymeric materials and their interaction with airborne particles. Environmental Science and Technology, 40, 456–461.CrossRefGoogle Scholar
  186. Prica, M., Kecić, V., Adamović, S., Radonić, J., & Sekulić, M. T. Occupational exposure to hazardous substances in printing industry.Google Scholar
  187. Yan, H. (2013). Negative dielectric constant of photo-conducting polymers upon Corona-charging. Doctoral dissertation.Google Scholar
  188. Yu, I. T.-S., Lee, N. L., Zhang, X. H., Chen, W. Q., Lam, Y. T., & Wong, T. W. (2004). Occupational exposure to mixtures of organic solvents increases the risk of neurological symptoms among printing workers in Hong Kong. Journal of Occupational and Environmental Medicine, 46, 323–330.CrossRefGoogle Scholar
  189. Zamanian, A., & Hardiman, C. (2005). Electromagnetic radiation and human health: A review of sources and effects. High Frequency Electronics, 4, 16–26.Google Scholar
  190. Zhang, J., He, Q., & Lioy, P. (1994). Characteristics of aldehydes: Concentrations, sources, and exposures for indoor and outdoor residential microenvironments. Environmental Science and Technology, 28, 146–152.CrossRefGoogle Scholar
  191. Zhuang, P., McBride, M. B., Xia, H., Li, N., & Li, Z. (2009). Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Science of the Total Environment, 407, 1551–1561.CrossRefGoogle Scholar
  192. Ziegfeld, R. L. (1964). Importance and uses of lead. Archives of Environmental Health: An International Journal, 8, 202–212.CrossRefGoogle Scholar
  193. Zuraimi, M., Roulet, C.-A., Tham, K., Sekhar, S., Cheong, K. D., Wong, N., et al. (2006). A comparative study of VOCs in Singapore and European office buildings. Building and Environment, 41, 316–329.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.University of Petroleum and Energy StudiesDehradunIndia

Personalised recommendations