Advertisement

A systematic review on global pollution status of particulate matter-associated potential toxic elements and health perspectives in urban environment

  • Muhammad Ubaid Ali
  • Guijian Liu
  • Balal Yousaf
  • Habib Ullah
  • Qumber Abbas
  • Mehr Ahmad Mujtaba Munir
Review Paper

Abstract

Airborne particulate matter (PM) that is a heterogeneous mixture of particles with a variety of chemical components and physical features acts as a potential risk to human health. The ability to pose health risk depends upon the size, concentration and chemical composition of the suspended particles. Potential toxic elements (PTEs) associated with PM have multiple sources of origin, and each source has the ability to generate multiple particulate PTEs. In urban areas, automobile, industrial emissions, construction and demolition activities are the major anthropogenic sources of pollution. Fine particles associated with PTEs have the ability to penetrate deep into respiratory system resulting in an increasing range of adverse health effects, at ever-lower concentrations. In-depth investigation of PTEs content and mode of occurrence in PM is important from both environmental and pathological point of view. Considering this air pollution risk, several studies had addressed the issues related to these pollutants in road and street dust, indicating high pollution level than the air quality guidelines. Observed from the literature, particulate PTEs pollution can lead to respiratory symptoms, cardiovascular problems, lungs cancer, reduced lungs function, asthma and severe case mortality. Due to the important role of PM and associated PTEs, detailed knowledge of their impacts on human health is of key importance.

Keywords

Particulate matter PTEs Pollution Emission Health risk 

Notes

Acknowledgements

This work was supported by the National Basic Research Program of China (973 Program, 2014CB238903) and the National Natural Science Foundation of China (41672144 and 41402133). The authors greatly acknowledged the Chinese Academy of Science (CAS), China, and The World Academy of Science (TWAS), Italy, for providing the CAS-TWAS President’s fellowship. We also greatly appreciate the thoughtful comments and valuable suggestions from anonymous reviewers for the improvement of this manuscript.

Supplementary material

10653_2018_203_MOESM1_ESM.docx (192 kb)
Supplementary material 1 (DOCX 191 kb)

References

  1. Abdel-Latif, N. M., & Saleh, I. A. (2014). Heavy metals contamination in roadside dust along major roads and correlation with urbanization activities in Cairo, Egypt. Beilstein Journal Nanotechnology, 5, 1590–1602.CrossRefGoogle Scholar
  2. Abdel-Shafy, H. I., & Mansour, M. S. M. (2016). A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25, 107–123.  https://doi.org/10.1016/j.ejpe.2015.03.011.CrossRefGoogle Scholar
  3. Abu-allaban, M., Gillies, J. A., Gertler, A. W., Clayton, R., & Proffitt, D. (2003). Tailpipe, resuspended road dust, and brake-wear emission factors from on-road vehicles. Atmospheric Environment, 37, 5283–5293.  https://doi.org/10.1016/j.atmosenv.2003.05.005.CrossRefGoogle Scholar
  4. ACGIH, (2003). Nickel. Threshold limit values for chemical substances and physical agents and biological exposure indices. Nickel. Cincinnati, OH: American Conference of Governmental Industrial Hygienists.Google Scholar
  5. ACGIH, (2004). Lead. Threshold limit values for chemical substances and physical agents and biological exposure indices. Cincinnati, OH: American Conference of Governmental Industrial Hygienists.Google Scholar
  6. ACGIH, (2007). Chromium. Threshold limit values for chemical substances and physical agents and biological exposure indices. Cincinnati, OH: American Conference of Governmental Industrial Hygienists 20.Google Scholar
  7. Adachi, K., & Tainosho, Y. (2004). Characterization of heavy metal particles embedded in tire dust. Environment International, 30, 1009–1017.  https://doi.org/10.1016/j.envint.2004.04.004.CrossRefGoogle Scholar
  8. Adamiec, E. (2016). Heavy metals from non-exhaust vehicle emissions in urban and motorway road dusts. Environmental Monitoring and Assessment, 2016, 188–369.  https://doi.org/10.1007/s10661-016-5377-1.CrossRefGoogle Scholar
  9. Ahsan, S. A., Lackovic, M., Katner, A., & Palermo, C. (2009). Metal fume fever: a review of the literature and cases reported to the Louisiana Poison Control Center. Journal of the Louisiana State Medical Society, 161, 348–351.Google Scholar
  10. Åkesson, A., Bjellerup, P., Lundh, T., Lidfeldt, J., Nerbrand, C., Samsioe, G., et al. (2006). Cadmium-induced effects on bone in a population-based study of women. Environmental Health Perspectives, 830, 830–834.  https://doi.org/10.1289/ehp.8763.CrossRefGoogle Scholar
  11. Akram, W., Madhuku, M., Shahzad, K., Awais, A., Ahmad, I., Arif, M., et al. (2014). Roadside dust contamination with toxic metals along industrial area in Islamabad, Pakistan. Nuclear Science and Techniques, 030201, 1–6.  https://doi.org/10.13538/j.1001-8042/nst.25.030201.CrossRefGoogle Scholar
  12. Albretsen, J. (2006). The toxicity of iron an essential element. Veterinary Medicine-Bonner Springs then Edwardsville, 101, 82–90.Google Scholar
  13. Ali, M. U., Liu, G., Yousaf, B., Abbas, Q., Ullah, H., Munir, M. A. M., et al. (2018). Compositional characteristics of black-carbon and nanoparticles in air-conditioner dust from an inhabitable industrial metropolis. Journal of Cleaner Production, 180, 34–42.  https://doi.org/10.1016/j.jclepro.2018.01.161.CrossRefGoogle Scholar
  14. Ali, M. U., Liu, G., Yousuf, B., Abbas, Q., Munir, M. A. M., & Fu, B. (2017a). Pollution characteristics and human health risks of potentially (eco) toxic element (PTEs) in road dust from metropolitan area of Hefei, China. Chemosphere, 181, 111–121.  https://doi.org/10.1016/j.chemosphere.2017.04.061.CrossRefGoogle Scholar
  15. Ali, M. U., Rashid, A., Yousuf, B., & Kamal, A. (2017b). Health outcomes of road-traffic pollution among exposed roadside-workers in the Rawalpindi City Pakistan. Human and Ecological Risk Assessment: An International Journal, 23(6), 1330–1339.  https://doi.org/10.1080/10807039.2017.1308814.CrossRefGoogle Scholar
  16. Alina, M., Azrina, A., Mohd Yunus, A. S., Mohd Zakiuddin, S., Mohd Izuan Effendi, H., & Muhammad Rizal, R. (2012). Heavy metals (mercury, arsenic, cadmium, plumbum) in selected marine fish and shellfish along the Straits of Malacca. International Food Research Journal, 19, 135–140.Google Scholar
  17. Aluko, O., & Noll, K. E. (2006). Deposition and suspension of large, airborne particles. Aerosol Science and Technology, 40, 503–513.  https://doi.org/10.1080/02786820600664152.CrossRefGoogle Scholar
  18. Alves, M., Novaes, P., de Andrade Morraye, M., Reinach, P. S., & Rocha, E. M. (2014). Is dry eye an environmental disease? Arquivos Brasileiros de Oftalmologia, 77, 193–200.  https://doi.org/10.5935/0004-2749.20140050.CrossRefGoogle Scholar
  19. Amato, F., Bedogni, M., Padoan, E., Queroll, X., Ealo, M., & Rivas, I. (2017). Characterization of road dust emissions in Milan: Impact of vehicle fleet speed. Aerosol and Air Quality Research, 17, 2438–2449.  https://doi.org/10.4209/aaqr.2017.01.0017.CrossRefGoogle Scholar
  20. Amato, F., Pandolfi, M., Escrig, A., Querol, X., Alastuey, A., Pey, J., et al. (2009a). Quantifying road dust resuspension in urban environment by multilinear engine: A comparison with PMF2. Atmospheric Environment, 43, 2770–2780.  https://doi.org/10.1016/j.atmosenv.2009.02.039.CrossRefGoogle Scholar
  21. Amato, F., Pandolfi, M., Moreno, T., Furger, M., Pey, J., Alastuey, A., et al. (2011). Sources and variability of inhalable road dust particles in three European cities. Atmospheric Environment, 45, 6777–6787.  https://doi.org/10.1016/j.atmosenv.2011.06.003.CrossRefGoogle Scholar
  22. Amato, F., Pandolfi, M., Viana, M., Querol, X., Alastuey, A., & Moreno, T. (2009b). Spatial and chemical patterns of PM10 in road dust deposited in urban environment. Atmospheric Environment, 43, 1650–1659.  https://doi.org/10.1016/j.atmosenv.2008.12.009.CrossRefGoogle Scholar
  23. Analitis, A., Klea Katsouyanni, K., Dimakopoulou, K., Samoli, E., Nikoloulopoulos, A. K., Petasakis, Y., et al. (2006). Short-term effects of ambient particles on cardiovascular and respiratory mortality. Epidemiology, 17, 230–233.  https://doi.org/10.1097/01.ede.0000199439.57655.6b.CrossRefGoogle Scholar
  24. Anderson, J. O., & Thundiyil, J. G. (2012). Clearing the air: A review of the effects of particulate matter air pollution on human health. Journal of Medical Toxicology, 8, 166–175.  https://doi.org/10.1007/s13181-011-0203-1.CrossRefGoogle Scholar
  25. Araújo, I., Costa, D., & de Moraes, R. (2014). Identification and characterization of particulate matter concentrations at construction jobsites. Sustainability, 6, 7666–7688.  https://doi.org/10.3390/su6117666.CrossRefGoogle Scholar
  26. Atiemo, M. S., Ofosu, G. F., Tutu, A. O., Palm, N. D., & Blankson, S. A. (2011). Contamination assessment of heavy metals in road dust from selected roads in Accra, Ghana. Research Journal of Environmental and Earth Sciences, 3(5), 473–480.Google Scholar
  27. Atkinson, R. W., Fuller, G. W., Anderson, H. R., Harrison, R. M., & Armstrong, B. (2010). Urban ambient particle metrics and health: A time-series analysis. Epidemiology, 21, 501–511.  https://doi.org/10.1097/EDE.0b013e3181debc88.CrossRefGoogle Scholar
  28. ATSDR. (1992). Toxicological profile for antimony and compounds. Agency Toxic Substances and Diseases Registry US Public Health Service (Vol. 136).  https://doi.org/10.3109/15569529909037564.
  29. ATSDR, (1992). Toxicological profile for antimony and compounds. Agency for Toxic Substances and Diseases Registry US Public Health Service (Vol. 136).  https://doi.org/10.3109/15569529909037564.
  30. ATSDR, (2004). Toxicological profile for copper. US Public Health Service, Agency for Toxic Substances and Disease Registry (pp. 121–189).  https://doi.org/10.1201/9781420061888_ch106.
  31. ATSDR, (2005). Toxicological profile for nickel. Agency for Toxic Substances and Diseases Registry US Public Health Service. (Vol. 397). http://dx.doi.org/10.1155/2013/286524.
  32. ATSDR, (2007a). Toxicological profile for Arsenic. Agency for Toxic Substances and Diseases Registry US Public Health Service (Vol. 24). http://dx.doi.org/10.1155/2013/286524.
  33. ATSDR, (2007b). Toxicological Profile for Lead. Agency for Toxic Substances and Diseases Registry US Public Health Service (Vol. 582).  https://doi.org/10.1201/9781420061888_ch106.
  34. ATSDR, (2012a). Toxicological profile for chromium. US Department of Health and Human Services (Vol. 592).Google Scholar
  35. ATSDR, (2012). Toxicological profile for cadmium. US Department of Health and Human Services (Vol. 487).Google Scholar
  36. ATSDR. (2012c). Toxicological profile for vanadium. Agency Toxic Substances Diseases Registry.  https://doi.org/10.1201/9781420061888_ch158.CrossRefGoogle Scholar
  37. Bahauddin, K. M., Uddin, T. S. (2010). Status of particulate matter and its impact on roadside population of Dhaka City, Bangladesh: A review study. In Proceeding of international conference on environmental aspects of Bangladesh (ICEAB10), Japan (pp. 125–128).Google Scholar
  38. Bargagli, B. (1998). Trace elements in terrestrial plants: An ecophysiological approach to biomonitoring and biorecovery. Berlin: Springer.Google Scholar
  39. Bascom, R., Bromberg, P. A., Costa, D. L., Devlin, R., Dockery, D. W., Frampton, M. W., et al. (1996). Health effects of outdoor air pollution. American Journal of Respiratory and Critical Care Medicine, 153, 477–498.CrossRefGoogle Scholar
  40. Bell, M. L., Belanger, K., Ebisu, K., Gent, J. F., & Leaderer, B. P. (2012). Relationship between birth weight and exposure to airborne fine particulate potassium and titanium during gestation. Environmental Research, 117, 83–89.  https://doi.org/10.1016/j.envres.2012.05.004.CrossRefGoogle Scholar
  41. Beltran, D., Belalcazar, L., Rojas, N. (2012). Spatial distribution of non-exhaust particulate matter emissions from road traffic for the city of Bogotá–Colombia. In International Emission Inventory Conference, Tampa. Google Scholar
  42. Bency, K. T., Jansy, J., Thakappan, B., Kumar, B., Sreelekha, T. T., Hareendran, N., Nair, P. K. K., Nair, M. K. (2003). A study on the air pollution related human diseases in Thiruvananthapuram City, Kerala. In: Proceedings of third international conference on environment and health (pp. 15–22).Google Scholar
  43. Berico, M., Luciani, A., & Formignani, M. (1997). Atmospheric aerosol in an urban area—measurements of TSP and PM10 standards and pulmonary deposition assessments. Atmospheric Environment, 31, 3659–3665.  https://doi.org/10.1016/S1352-2310(97)00204-5.CrossRefGoogle Scholar
  44. Bhatnagar, A. (2006). Environmental cardiology studying mechanistic links between pollution and heart disease. Circulation Research, 99, 692–705.  https://doi.org/10.1161/01.RES.0000243586.99701.cf.CrossRefGoogle Scholar
  45. Boman, C., Forsberg, B., & Sandström, T. (2006). Shedding new light on wood smoke: A risk factor for respiratory health. European Respiratory Journal, 27, 446–447.  https://doi.org/10.1183/09031936.06.00000806.CrossRefGoogle Scholar
  46. Bourliva, A., Papadopoulou, L., & Aidona, E. (2016). Study of road dust magnetic phases as the main carrier of potentially harmful trace elements. Science of the Total Environment, 553, 380–391.  https://doi.org/10.1016/j.scitotenv.2016.02.149.CrossRefGoogle Scholar
  47. Brook, R. D., Franklin, B., Cascio, W., Hong, Y., Howard, G., Lipsett, M., et al. (2004). Air pollution and cardiovascular disease a statement for healthcare professionals from the expert panel on population and prevention science of the American Heart Association. Circulation, 109, 2655–2671.  https://doi.org/10.1161/01.CIR.0000128587.30041.C8.CrossRefGoogle Scholar
  48. Brook, R. D., Urch, B., Dvonch, J. T., Bard, R. L., Speck, M., Keeler, G., et al. (2009). Insights into the mechanisms and mediators of the effects of air pollution exposure on blood pressure and vascular function in healthy humans. Hypertension, 54, 659–667.  https://doi.org/10.1161/HYPERTENSIONAHA.109.130237.CrossRefGoogle Scholar
  49. Brunekreef, B., Hoek, G., Schouten, L., Bausch-Goldbohm, S., Fischer, P., Armstrong, B., et al. (2009). Effects of long-term exposure to traffic-related air pollution on respiratory and cardiovascular mortality in the Netherlands: the NLCS-AIR study (p. 106). Inst: Research Report Health Effects Institute.Google Scholar
  50. Bukowiecki, N., Lienemann, P., Hill, M., Figi, R., Richard, A., Furger, M., et al. (2009). Real-world emission factors for antimony and other brake wear related trace elements: Size-segregated values for light and heavy duty vehicles. Environmental Science and Technology, 2009(43), 8072–8078.CrossRefGoogle Scholar
  51. Cadelis, G., Tourres, R., & Molinie, J. (2014). Short-term effects of the particulate pollutants contained in Saharan dust on the visits of children to the emergency department due to asthmatic conditions in Guadeloupe (French archipelago of the Caribbean). PLoS ONE.  https://doi.org/10.1371/journal.pone.0091136.CrossRefGoogle Scholar
  52. Casas, J. S., & Sordo, J. (2011). Lead: Chemistry, analytical aspects, environmental impact and health effects. Amsterdam: Elsevier.Google Scholar
  53. Censi, P., Spoto, S. E., Saiano, F., Sprovieri, M., & Mazzola, S. (2006). Heavy metals in coastal water systems: A case study from the northwestern Gulf of Thailand. Chemosphere, 64, 1167–1176.  https://doi.org/10.1016/j.chemosphere.2005.11.008.CrossRefGoogle Scholar
  54. Centers for Disease Control and Prevention. (2001). Managing elevated blood lead levels among young children: Recommendations from the advisory committee on childhood lead poisoning prevention. Atlanta.Google Scholar
  55. Chen, G., Wan, X., Yang, G., & Zou, X. (2015). Traffic-related air pollution and lung cancer: A meta-analysis. Thoracic Cancer, 6, 307–318.  https://doi.org/10.1111/1759-7714.12185.CrossRefGoogle Scholar
  56. Chen, T. L., Wise, S., Kraus, S. S., Shaffiey, F., Levine, K., Thompson, W. D., et al. (2010). Particulate hexavalent chromium is cytotoxic and genotoxic to the North Atlantic right whale (Eubalaena glacialis) lung and skin fibroblasts. Environmental and Molecular Mutagenesis, 51, 229–235.  https://doi.org/10.1002/em.20471.CrossRefGoogle Scholar
  57. Chen, J., Zheng, H., Wang, W., Liu, H., Lu, L., Bao, L., et al. (2006). Resuspension method for road surface dust collection and aerodynamic size distribution characterization. China Particuology, 4, 300–303.  https://doi.org/10.1016/S1672-2515(07)60279-6.CrossRefGoogle Scholar
  58. Cheng, H., He, J., Zou, X., Li, J., Liu, C., Liu, B., et al. (2015a). Characteristics of particle size for creeping and saltating sand grains in aeolian transport. Sedimentology, 62, 1497–1511.  https://doi.org/10.1111/sed.12191.CrossRefGoogle Scholar
  59. Cheng, Y., Lee, S., Gu, Z., Ho, K., Zhang, Y., Huang, Y., et al. (2015b). PM2.5 and PM10–2.5 chemical composition and source apportionment near a Hong Kong roadway. Particuology, 18, 96–104.  https://doi.org/10.1016/j.partic.2013.10.003.CrossRefGoogle Scholar
  60. Chepil, W. S. (1943). Soil erosion by wind, Soil research laboratory, department agricultural report, investigation, swift current Saskatchewan, Canada.Google Scholar
  61. Chepil, W. S. (1965). Transport by wind: Transport of soil and snow by wind. Agricultural Meteorology Monographs, 6, 123–132.CrossRefGoogle Scholar
  62. Chiou, S. F., & Tsai, C. J. (2001). Measurement of emission factor of road dust in a wind tunnel. Powder Technology, 118, 10–15.  https://doi.org/10.1016/S0032-5910(01)00289-3.CrossRefGoogle Scholar
  63. Choi, Y., & Fernando, H. J. S. (2008). Implementation of a windblown dust parameterization into MODELS-3/CMAQ: Application to episodic PM events in the US/Mexico border. Atmospheric Environment, 42(42), 6039–6046.  https://doi.org/10.1016/j.atmosenv.2008.03.038.CrossRefGoogle Scholar
  64. Chow, J. C., & Watson, J. (2007). Survey of measurement and composition of ultrafine particles. Aerosol Air Quality Research, 7, 121–173.CrossRefGoogle Scholar
  65. Christoforidis, A., & Stamatis, N. (2009). Heavy metal contamination in street dust and roadside soil along the major national road in Kavala’s region, Greece. Geoderma, 151, 257–263.  https://doi.org/10.1016/j.geoderma.2009.04.016.CrossRefGoogle Scholar
  66. Chuanwei, Z., Hanjie, W., Yuxu, Z., Yizhang, L., & Rongfei, W. (2015). Isotopic geochemistry of Cadmium: A review. Acta Geologica Sinica, 89, 2048–2057.CrossRefGoogle Scholar
  67. Chung, J. Y., Yu, S. Do, & Hong, Y. S. (2014). Environmental source of arsenic exposure. Journal of Preventive Medicine and Public Health, 47, 253–257.  https://doi.org/10.3961/jpmph.14.036.CrossRefGoogle Scholar
  68. Churg, A., & Brauer, M. (2000). Ambient atmospheric particles in the airways of human lungs. Ultrastructural Pathology, 24, 353–361.  https://doi.org/10.1080/019131200750060014.CrossRefGoogle Scholar
  69. Clayton, D. B. (1989). Water pollution at Lowermoore North Cornwall: Report of the Lowermoore incident health advisory committee Truro, Cornwall District Health Authorization (Vol. 22).Google Scholar
  70. Cohen, A. J., Anderson, H. R., Ostro, B., Pandey, K. D., Krzyzanowski, M., Künzli, N., et al. (2005). The global burden of disease due to outdoor air pollution. Journal of Toxicology and Environmental Health, 68, 1301–1307.  https://doi.org/10.1080/15287390590936166.CrossRefGoogle Scholar
  71. Costigan, M., Cary, R., Dr. Dobson, S. (2001). Vanadium pentoxide and other inorganic vanadium compounds. Word Health Organization (pp. 1–51).Google Scholar
  72. Countess Environmental, (2006). WRAP fugitive dust handbook. prepared for WGA by Countess Environmental. Contract No. 30204-111.Google Scholar
  73. Csavina, J., Field, J., Taylor, M. P., Gao, S., Landázuri, A., Betterton, E. A., et al. (2012). A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations. Science of the Total Environment, 433, 58–73.  https://doi.org/10.1016/j.scitotenv.2012.06.013.CrossRefGoogle Scholar
  74. Currie, J., Neidell, M., & Schmieder, J. (2009). Air pollution and infant health: lessons from New Jersey. Journal of Health, 28, 688–703.  https://doi.org/10.1016/j.jhealeco.2009.02.001.air.CrossRefGoogle Scholar
  75. Davison, A. (1988). Cadmium fume inhalation and emphysema. Lancet, 331, 663–667.  https://doi.org/10.1016/S0140-6736(88)91474-2.CrossRefGoogle Scholar
  76. Desqueyroux, H., Pujet, J. C., Prosper, M., Squinazi, F., & Momas, I. (2002). Short-term effects of low-level air pollution on respiratory health of adults suffering from moderate to severe asthma. Environmental Research, 89, 29–37.  https://doi.org/10.1006/enrs.2002.4357.CrossRefGoogle Scholar
  77. Dockery, D. W., & Pope, C. A. (1994). Acute respiratory effects of particulate air pollution. Annual Review of Public Health, 15, 107–132.CrossRefGoogle Scholar
  78. Dockery, D. W., Pope, C. A., Xu, X., Spengler, J. D., Ware, J. H., Fay, M. E., et al. (1993). An association between air pollution and mortality in six US cities. New England Journal of Medicine, 329, 2002–2012.CrossRefGoogle Scholar
  79. Dockery, D. W., & Stone, P. H. (2007). Cardiovascular risks from fine particulate air pollution. New England Journal of Medicine, 3, 511–513.CrossRefGoogle Scholar
  80. Dolk, H., & Vrijheid, M. (2003). The impact of environmental pollution on congenital anomalies. British Medical Bulletin.  https://doi.org/10.1093/bmb/ldg024.CrossRefGoogle Scholar
  81. Dominici, F., McDermott, A., Daniels, D. (2003). Mortality among residents of 90 cities. In Special report: Revised analyses of time-series studies of air pollution and health (pp. 9–24). Boston: Health Effects Institute.Google Scholar
  82. Dongarrà, G., Varrica, D., Tamburo, E., & D’Andrea, D. (2012). Trace elements in scalp hair of children living in differing environmental contexts in Sicily (Italy). Environmental Toxicology and Pharmacology, 34, 160–169.  https://doi.org/10.1016/j.etap.2012.03.005.CrossRefGoogle Scholar
  83. Du, Y., Xu, X., Chu, M., Guo, Y., & Wang, J. (2016). Air particulate matter and cardiovascular disease : the epidemiological, biomedical and clinical evidence. Journal of Thoracic Disease, 8, 8–19.  https://doi.org/10.3978/j.issn.2072-1439.2015.11.37.CrossRefGoogle Scholar
  84. Ehrlich, C., Noll, G., Kalkoff, W. D., Baumbach, G., & Dreiseidler, A. (2007). PM10, PM2.5 and PM1.0-Emissions from industrial plants-Results from measurement programmes in Germany. Atmospheric Environment, 41, 6236–6254.  https://doi.org/10.1016/j.atmosenv.2007.03.059.CrossRefGoogle Scholar
  85. EPA, (1991). Zinc and compounds (CASRN 7440-66-6) |IRIS| (pp. 1–21).Google Scholar
  86. Eqani, S. A., Kanwal, A., Bhowmik, A. K., Sohail, M., Ullah, R., Ali, S. M., et al. (2016). Spatial distribution of dust-bound trace elements in Pakistan and their implications for human exposure. Environmental Pollution, 213, 213–222.  https://doi.org/10.1016/j.envpol.2016.02.017.CrossRefGoogle Scholar
  87. Estévez-García, J. A., Rojas-Roa, N. Y., & Rodríguez-Pulido, A. I. (2013). Occupational exposure to air pollutants: particulate matter and respiratory symptoms affecting traffic-police in Bogotá. Revista de Salud Publica, 15, 889–902.Google Scholar
  88. Etyemezian, V., Kuhns, H., Gillies, J., Green, M., Pitchford, M., & Watson, J. (2003). vehicle-based road dust emission measurement: I—methods and calibration. Atmospheric Environment, 37, 4559–4571.  https://doi.org/10.1016/S1352-2310(03)00528-4.CrossRefGoogle Scholar
  89. European Environment Agency. (2012). Particulate matter from natural sources and related reporting under the EU Air Quality Directive in 2008 and 2009. EEA Technical Report.  https://doi.org/10.2800/55574.CrossRefGoogle Scholar
  90. Fang, Y., Naik, V., Horowitz, L. W., & Mauzerall, D. L. (2013). Air pollution and associated human mortality: The role of air pollutant emissions, climate change and methane concentration increases from the preindustrial period to present. Atmospheric Chemistry and Physics, 13, 1377–1394.  https://doi.org/10.5194/acp-13-1377-2013.CrossRefGoogle Scholar
  91. Ferm, M., & Sjoberg, K. (2015). Concentrations and emission factors for PM2.5 and PM10 from road traffic in Sweden. Atmospheric Environment, 119, 211–219.  https://doi.org/10.1016/j.atmosenv.2015.08.037.CrossRefGoogle Scholar
  92. Ferreira-Baptista, L., & De Miguel, E. (2005). Geochemistry and risk assessment of street dust in Luanda. Angola: A Tropical Urban Environment, 39, 4501–4512.Google Scholar
  93. Fraser, M. P., Cass, G. R., & Simoneit, B. R. T. (1999). Particulate organic compounds emitted from motor vehicle exhaust and in the urban atmosphere. Atmospheric Environment, 33(33), 2715–2724.CrossRefGoogle Scholar
  94. Gallagher, C. M., Kovach, J. S., & Meliker, J. R. (2008). Urinary cadmium and osteoporosis in U.S. women ≥ 50 years of Age: NHANES 1988–1994 and 1999–2004. Environmental Health Perspectives.  https://doi.org/10.1289/ehp.11452.CrossRefGoogle Scholar
  95. Garg, B. D., Cadle, S. H., Mulawa, P. A., Groblicki, P. J., Laroo, C., & Parr, G. A. (2000). Brake wear particulate matter emissions. Environmental Science and Technology, 34, 4463–4469.  https://doi.org/10.1021/es001108h.CrossRefGoogle Scholar
  96. Gasser, M., Riediker, M., Mueller, L., Perrenoud, A., Blank, F., Gehr, P., et al. (2009). Toxic effects of brake wear particles on epithelial lung cells in vitro. Particle and Fibre Toxicology, 13, 1–13.  https://doi.org/10.1186/1743-8977-6-30.CrossRefGoogle Scholar
  97. Gehrig, R. (2004). PM10 emission of road traffic from Abrasion and resuspension processes. In Proceedings of the PM emission inventories scientific workshop. paper. Lago Maggiore, Italy.Google Scholar
  98. Geller, M. D., Ntziachristos, L., Mamakos, A., Samaras, Z., Schmitz, D. A., Froines, J. R., et al. (2006). Physicochemical and redox characteristics of particulate matter (PM) emitted from gasoline and diesel passenger cars. Atmospheric Environment, 40, 6988–7004.  https://doi.org/10.1016/j.atmosenv.2006.06.018.CrossRefGoogle Scholar
  99. Gharibvand, L., Beeson, W. L., Shavlik, D., Knutsen, R., Ghamsary, M., Soret, S., et al. (2017). The association between ambient fine particulate matter and incident adenocarcinoma subtype of lung cancer. Environmental Health, 16, 1–9.  https://doi.org/10.1186/s12940-017-0268-7.CrossRefGoogle Scholar
  100. Gietl, J. K., Lawrence, R., Thorpe, A. J., & Harrison, R. M. (2010). Identification of brake wear particles and derivation of a quantitative tracer for brake dust at a major road. Atmospheric Environment, 44, 141–146.  https://doi.org/10.1016/j.atmosenv.2009.10.016.CrossRefGoogle Scholar
  101. Gillies, J. A., Etyemezian, V., Kuhns, H., Nikolic, D., & Gillette, D. A. (2005). Effect of vehicle characteristics on unpaved road dust emissions. Atmospheric Environment, 39, 2341–2347.  https://doi.org/10.1016/j.atmosenv.2004.05.064.CrossRefGoogle Scholar
  102. Ginoux, P., Prospero, J. M., Torres, O., & Chin, M. (2004). Long-term simulation of global dust distribution with the GOCART model: Correlation with North Atlantic Oscillation. Environmental Modelling and Software, 19, 113–128.  https://doi.org/10.1016/S1364-8152(03)00114-2.CrossRefGoogle Scholar
  103. Godoi, R. H., Braga, D. M., Makarovska, Y., Alfoldy, B., Carvalho Filho, M. A. S., Van Grieken, R., et al. (2008). Inhable particulate matter from lime industries: Chemical composition and deposition in human respiratory tract. Atmospheric Environment, 42, 7027–7033.  https://doi.org/10.1016/j.atmosenv.2008.07.002.CrossRefGoogle Scholar
  104. Goering, P. L., Aposhian, H. V., Mass, M. J., Cebria, M., Beck, B. D., & Waalkes, M. P. (1999). The enigma of arsenic carcinogenesis: Role of metabolism. Toxicological Sciences: An Official Journal of the Society of Toxicology, 14, 5–14.CrossRefGoogle Scholar
  105. Gold, D. R., Litonjua, A., Schwartz, J., Lovett, E., Larson, A., Nearing, B., et al. (2000). Ambient pollution and heart rate variability. Circulation, 101, 1267–1273.  https://doi.org/10.1161/01.CIR.101.11.1267.CrossRefGoogle Scholar
  106. Goodwin, F. (1998). Zinc compounds. In J. Kroschwitz (Ed.), Kirk-Othmer encyclopedia of chemical technology (pp. 840–853). New York, NY: Wiley.Google Scholar
  107. Gradon, L. (2009). Resuspension of particles from surfaces: Technological, environmental and pharmaceutical aspects. Advanced Powder Technology, 20, 17–28.  https://doi.org/10.1016/j.apt.2008.10.009.CrossRefGoogle Scholar
  108. Guaita, R., Pichiule, M., Mate, T., Linares, C., & Diaz, J. (2011). Short-term impact of particulate matter (PM2.5) on respiratory mortality in Madrid. International Journal of Environmental Health Research, 21, 260–274.  https://doi.org/10.1080/09603123.2010.544033.CrossRefGoogle Scholar
  109. Guevara, M. (2016). Emissions of primary particulate matter, airborne particulate matter: Sources, atmospheric processes and health.  https://doi.org/10.1039/9781782626589-00001.
  110. Gunawardana, C., Goonetilleke, A., Egodawatta, P., Dawes, L., & Kokot, S. (2012). Source characterisation of road dust based on chemical and mineralogical composition. Chemosphere, 87, 163–170.  https://doi.org/10.1016/j.chemosphere.2011.12.012.CrossRefGoogle Scholar
  111. Guo, W., Zhao, R. X., J, Zhang, Bao, Y. Y., Wang, H., Yang, M., et al. (2011). Distribution characteristic and assessment of soil heavy metal pollution in the iron mining of Baotou in inner Mongolia. Chinese Journal of Environmental Sciences, 32, 3099–3105.Google Scholar
  112. Gurjar, B. R., Butler, T. M., Lawrence, M. G., & Lelieveld, J. (2008). Evaluation of emissions and air quality in megacities. Atmospheric Environment, 42, 1593–1606.  https://doi.org/10.1016/j.atmosenv.2007.10.048.CrossRefGoogle Scholar
  113. Gurung, A., & Bell, M. L. (2013). The state of scientific evidence on air pollution and human health in Nepal. Environmental Research, 124, 54–64.  https://doi.org/10.1016/j.envres.2013.03.007.CrossRefGoogle Scholar
  114. Gustafsson, M., Blomqvist, G., Gudmundsson, A., Dahl, A., Swietlicki, E., Bohgard, M., et al. (2008). Properties and toxicological effects of particles from the interaction between tyres, road pavement and winter traction material. Science of the Total Environment, 393, 226–240.  https://doi.org/10.1016/j.scitotenv.2007.12.030.CrossRefGoogle Scholar
  115. Hales, S., Blakely, T., & Woodward, A. (2012). Air pollution and mortality in New Zealand: Cohort study. Journal of Epidemiology and Community Health, 66, 468–473.  https://doi.org/10.1136/jech.2010.112490.CrossRefGoogle Scholar
  116. Hameed, A., Al Obaidy, M. J., & Al Mashhadi, A. A. (2013). Heavy metal contaminations in urban soil within Baghdad City, Iraq. Journal of Environmental Protection. (Irvine. Calif), 4, 72–82.Google Scholar
  117. Hamra, G. B., Guha, N., Cohen, A., Laden, F., Raaschou-Nielsen, O., Samet, J. M., et al. (2014). Outdoor particulate matter exposure and lung cancer: A systematic review and meta-analysis. Environmental Health Perspectives, 122, 906–911.  https://doi.org/10.1289/ehp.1408092.CrossRefGoogle Scholar
  118. Han, L., Zhuang, G., Cheng, S., Wang, Y., & Li, J. (2007). Characteristics of re-suspended road dust and its impact on the atmospheric environment in Beijing. Atmospheric Environment, 41, 7485–7499.  https://doi.org/10.1016/j.atmosenv.2007.05.044.CrossRefGoogle Scholar
  119. Harris, A. R., & Davidson, C. I. (2017). Particle resuspension in turbulent flow: A stochastic model for individual soil grains. Aerosol Science and Technology, 42, 613–628.  https://doi.org/10.1080/02786820802227337.CrossRefGoogle Scholar
  120. Harrison, R. M., Jones, A. M., Gietl, J., Yin, J., & Green, D. C. (2012). Estimation of the contributions of brake dust, tire wear, and resuspension to nonexhaust traffic particles derived from atmospheric measurements. Environmental Science and Technology, 46, 6523–6529.  https://doi.org/10.1021/es300894r.CrossRefGoogle Scholar
  121. Harrison, R. M., Jones, A. M., & Lawrence, R. G. (2004). Major component composition of PM10 and PM2.5 from roadside and urban background sites. Atmospheric Environment, 38, 4531–4538.  https://doi.org/10.1016/j.atmosenv.2004.05.022.CrossRefGoogle Scholar
  122. Heyder, J., Gebhart, J., Rudolf, G., Schiller, C. F., & Stahlhofen, W. (1986). Deposition of particles in the human respiratory tract in the size range 0.005-15 μm. Journal of Aerosol Science, 17, 811–825.  https://doi.org/10.1016/0021-8502(86)90035-2.CrossRefGoogle Scholar
  123. Hjortenkrans, D. S., Bergback, B. G., & Haggerud, A. V. (2007). Metal emissions from brake linings and tires: Case studies of Stockholm, Sweden 1995/1998 and 2005. Environmental Science and Technology, 41, 5224–5230.CrossRefGoogle Scholar
  124. Horst, T. W. (1978). Estimation of air concentrations due to the suspension of surface contamination. Atmospheric Environment, 12, 797–802.  https://doi.org/10.1016/0004-6981(78)90016-1.CrossRefGoogle Scholar
  125. Huneeus, N., Schulz, M., Balkanski, Y., Griesfeller, J., Prospero, J., Kinne, S., et al. (2011). Global dust model intercomparison in AeroCom phase I. Atmospheric Chemistry and Physics, 11, 7781–7816.  https://doi.org/10.5194/acp-11-7781-2011.CrossRefGoogle Scholar
  126. Hung-Lung, C., & Yao-Sheng, H. (2009). Particulate matter emissions from on-road vehicles in a freeway tunnel study. Atmospheric Environment, 43, 4014–4022.  https://doi.org/10.1016/j.atmosenv.2009.05.015.CrossRefGoogle Scholar
  127. Huo, Q., Zhang, N., Wang, X., Jiang, L., Ma, T., & Yang, Q. (2013). Effects of ambient particulate matter on human breast cancer: Is Xenogenesis responsible? PLoS ONE, 8, 1–7.  https://doi.org/10.1371/journal.pone.0076609.CrossRefGoogle Scholar
  128. Hussein, T., Johansson, C., Karlsson, H., & Hansson, H. (2008). Factors affecting non-tailpipe aerosol particle emissions from paved roads: On-road measurements in Stockholm, Sweden. Atmospheric Environment, 42(42), 688–702.  https://doi.org/10.1016/j.atmosenv.2007.09.064.CrossRefGoogle Scholar
  129. Hwang, H.-M., Fiala, M. J., Park, D., & Wade, T. L. (2016). Review of pollutants in urban road dust and stormwater runoff: part 1. Heavy metals released from vehicles. International Journal of Urban Sciences, 5934, 1–27.  https://doi.org/10.1080/12265934.2016.1193041.CrossRefGoogle Scholar
  130. Iijima, A., Sato, K., Yano, K., Tago, H., Kato, M., Kimura, H., et al. (2007). Particle size and composition distribution analysis of automotive brake abrasion dusts for the evaluation of antimony sources of airborne particulate matter. Atmospheric Environment, 41, 4908–4919.  https://doi.org/10.1016/j.atmosenv.2007.02.005.CrossRefGoogle Scholar
  131. IRIS, (2005). Nickel. Integrated Risk Information System, Washington, DC.Google Scholar
  132. Jafary, Z. A., Faridi, I. A., & Qureshi, H. J. (2007). Effects of airborne dust on lung function of the exposed subjects. Pakistan Journal Physiology, 3, 30–34.Google Scholar
  133. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7, 60–72.  https://doi.org/10.2478/intox-2014-0009.CrossRefGoogle Scholar
  134. Jerrett, M., Burnett, R. T., Ma, R., Arden Pope, C., Krewski, D., Newbold, K. B., et al. (2005). Spatial analysis of air pollution and mortality in Los Angeles. Epidemiology, 16, 727–736.  https://doi.org/10.1097/01.ede.0000181630.15826.7d.CrossRefGoogle Scholar
  135. Johansson, C., Norman, M., & Burman, L. (2009). Road traffic emission factors for heavy metals. Atmospheric Environment, 43, 4681–4688.  https://doi.org/10.1016/j.atmosenv.2008.10.024.CrossRefGoogle Scholar
  136. Kanu, M. O., Meludu, O. C., & Oniku, S. A. (2015). Evaluation of heavy metal contents in road dust of Jalingo, Taraba State, Nigeria. Jordan Journal of Earth Environmental Sciences, 7, 65–70.Google Scholar
  137. Karagulian, F., Belis, C. A., Dora, C. F. C., Prüss-Ustün, A. M., Bonjour, S., Adair-Rohani, H., et al. (2015). Contributions to cities’ ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmospheric Environment, 120, 475–483.  https://doi.org/10.1016/j.atmosenv.2015.08.087.CrossRefGoogle Scholar
  138. Karim, M. M., Matsui, H., & Guensler, R. (1998). A mathematical model of wind flow, vehicle wake, and pollutant concentration in urban road microenvironments. Part II: Model results. Transportation Research Part D: Transport and Environment, 3, 171–191.CrossRefGoogle Scholar
  139. Karita, K., Karita, K., Yano, E., Tamura, K., & Jinsart, W. (2004). Effects of working and residential location areas on air pollution related respiratory symptoms in policemen and their wives in Bangkok. Thailand the European Journal of Public Health, 14, 24–26.  https://doi.org/10.1093/eurpub/14.1.24.CrossRefGoogle Scholar
  140. Karmel, P. E., FitzGibbon, T. N., Cave, L. B. (2002). PM 2.5: Federal and New York regulation of fine particulate air pollution. California Environmental Law Report (pp. 226–237).Google Scholar
  141. Karr, C., Lumley, T., Schreuder, A., Davis, R., Larson, T., Ritz, B., et al. (2017). Original contribution effects of subchronic and chronic exposure to ambient air pollutants on infant bronchiolitis. American Journal of Epidemiology, 165, 553–560.  https://doi.org/10.1093/aje/kwk032.CrossRefGoogle Scholar
  142. Kartal, S., Aydın, Z., & Tokalıoglu, S. (2006). Fractionation of metals in street sediment samples by using the BCR sequential extraction procedure and multivariate statistical elucidation of the data. Journal of Hazardous Materials, 132, 80–89.  https://doi.org/10.1016/j.jhazmat.2005.11.091.CrossRefGoogle Scholar
  143. Kastner-Klein, P., Berkowicz, R., & Plate, E. J. (2000). Modelling of vehicle-induced turbulence in air pollution studies for streets. International Journal of Environment and Pollution, 14, 496–507.CrossRefGoogle Scholar
  144. Katanoda, K., Sobue, T., Satoh, H., Tajima, K., Suzuki, T., Nakatsuka, H., et al. (2011). An association between long-term exposure to ambient air pollution and mortality from lung cancer and respiratory diseases in Japan. Journal of Epidemiology, 21, 132–143.  https://doi.org/10.2188/jea.JE20100098.CrossRefGoogle Scholar
  145. Kaul, D. S., & Sharma, M. (2009). Traffic generated non-exhaust particulate emissions from concrete pavement: A mass and particle size study for two-wheelers and small cars. Atmospheric Environment, 43, 5691–5697.  https://doi.org/10.1016/j.atmosenv.2009.07.032.CrossRefGoogle Scholar
  146. Kelly, F. J., & Fussell, J. C. (2012). Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmospheric Environment, 60, 504–526.  https://doi.org/10.1016/j.atmosenv.2012.06.039.CrossRefGoogle Scholar
  147. Keshavarzi, B., Tazarvi, Z., Ali, M., & Najmeddin, A. (2015). Chemical speciation, human health risk assessment and pollution level of selected heavy metals in urban street dust of Shiraz, Iran. Atmospheric Environment, 119, 1–10.  https://doi.org/10.1016/j.atmosenv.2015.08.001.CrossRefGoogle Scholar
  148. Keuken, M. P., Henzing, J. S., Zandveld, P., van den Elshout, S., & Karl, M. (2012). Dispersion of particle numbers and elemental carbon from road traffic, a harbour and an airstrip in the Netherlands. Atmospheric Environment, 54, 320–327.  https://doi.org/10.1016/j.atmosenv.2012.01.012.CrossRefGoogle Scholar
  149. Kexin, L., Liang, T., Wang, L., & Yang, Z. (2015). Contamination and health risk assessment of heavy metals in road dust in Bayan Obo Mining Region in Inner Mongolia, North China. Journal of Geographical Sciences, 25, 1439–1451.  https://doi.org/10.1007/s11442-015-1244-1.CrossRefGoogle Scholar
  150. Khairy, M. A., Barakat, A. O., Mostafa, A. R., & Wade, T. L. (2011). Multielement determination by flame atomic absorption of road dust samples in Delta Region, Egypt. Microchemical Journal, 97, 234–242.  https://doi.org/10.1016/j.microc.2010.09.012.CrossRefGoogle Scholar
  151. Kim, K., Ara, S., Kabir, E., & Brown, R. J. C. (2013). A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environment International, 60, 71–80.  https://doi.org/10.1016/j.envint.2013.07.019.CrossRefGoogle Scholar
  152. Kim, K.-H., Kabir, E., & Kabir, S. (2015). A review on the human health impact of airborne particulate matter. Environment International, 74, 136–143.  https://doi.org/10.1016/j.envint.2014.10.005.CrossRefGoogle Scholar
  153. Klaassen, C. D. (2008). Toxicology the basic science of poisons. Toxicology.  https://doi.org/10.1036/0071470514.CrossRefGoogle Scholar
  154. Kligerman, A. D., Doerr, C. L., Tennant, A. H., Harrington-Brock, K., Allen, J. W., Winkfield, E., et al. (2003). Methylated trivalent arsenicals as candidate ultimate genotoxic forms of arsenic: induction of chromosomal mutations but not gene mutations. Environmental and Molecular Mutagenesis, 42, 192–205.  https://doi.org/10.1002/em.10192.CrossRefGoogle Scholar
  155. Komárek, M., Ettler, V., Chrastný, V., & Mihaljevič, M. (2008). Lead isotopes in environmental sciences: A review. Environment International, 34, 562–577.  https://doi.org/10.1016/j.envint.2007.10.005.CrossRefGoogle Scholar
  156. Krewski, D. (2009). Evaluating the effects of ambient air pollution on life expectancy. New England Journal of Medicine, 360, 413–415.  https://doi.org/10.1056/NEJMe0809178.CrossRefGoogle Scholar
  157. Krewski, D., Yokel, R. A., Nieboer, E., Borchelt, D., Cohen, J., Kacew, S., Lindsay, J., Mahfouz, A.M., Rondeau, V. (2009). Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide, Department of epidemiology and community medicine, Faculty of medicine, University of Ottawa, Ottawa, Ontario, Canada.  https://doi.org/10.1080/10937400701597766.human.
  158. Kumar, R., Nagar, J. K., Kumar, H., Kushwah, A. S., Meena, M., Kumar, P., et al. (2007). Association of indoor and outdoor air pollutant level with respiratory problems among children in an industrial area of Delhi, India. Archives of Environmental & Occupational Health, 62, 75–80.  https://doi.org/10.3200/AEOH.62.2.75-80.CrossRefGoogle Scholar
  159. Kumar, R., Nagar, J. K., Kumar, H., Kushwah, A. S., Meena, M., Kumar, P., et al. (2008). Indoor air pollution and respiratory function of children in Ashok Vihar, Delhi: An exposure-response study. Asia-Pacific Journal of Public Health, 20, 36–48.  https://doi.org/10.1177/1010539507308248.CrossRefGoogle Scholar
  160. Kumar, P., Pirjola, L., Ketzel, M., & Harrison, R. M. (2013). Nanoparticle emissions from 11 non-vehicle exhaust sources: A review. Atmospheric Environment, 67(67), 252–277.  https://doi.org/10.1016/j.atmosenv.2012.11.011.CrossRefGoogle Scholar
  161. Kupiainen, K. (2007). Road dust from pavement wear and traction sanding. Finnish Environment Institute: Finland Helsinki.Google Scholar
  162. Kupiainen, K. J., Tervahattu, H., Ra, M., Aurela, M., & Hillamo, R. (2005). Size and composition of airborne particles from pavement wear, tires, and traction sanding. Environmental Science and Technology, 39, 699–706.  https://doi.org/10.1021/es035419e.CrossRefGoogle Scholar
  163. Lannerö, E., Wickman, M., van Hage, M., Bergström, A., Pershagen, G., & Nordvall, L. (2008). Exposure to environmental tobacco smoke and sensitisation in children. Environment Expo, 63, 172–176.  https://doi.org/10.1136/thx.2007.079053.CrossRefGoogle Scholar
  164. Lawrence, S., Sokhi, R., Ravindra, K., Mao, H., Douglas, H., & Bull, I. D. (2013). Source apportionment of traffic emissions of particulate matter using tunnel measurements. Atmospheric Environment, 77, 548–557.  https://doi.org/10.1016/j.atmosenv.2013.03.040.CrossRefGoogle Scholar
  165. Lebowitz, M. D. (1996). Epidemiological studies of the respiratory effects of air pollution. European Respiratory Journal, 9, 1029–1054.  https://doi.org/10.1183/09031936.96.09051029.CrossRefGoogle Scholar
  166. Levason, W., & Spicer, D. M. (1987). The chemistry of copper and silver in their higher oxidation states. Coordination Chemistry Reviews, 76, 45–120.  https://doi.org/10.1016/0010-8545(87)85002-6.CrossRefGoogle Scholar
  167. Li, H., Qian, X., Hu, W., Wang, Y., & Gao, H. (2013). Chemical speciation and human health risk of trace metals in urban street dusts from a metropolitan city, Nanjing, SE China. Science of the Total Environment, 456–457, 212–221.  https://doi.org/10.1016/j.scitotenv.2013.03.094.CrossRefGoogle Scholar
  168. Lifset, R. J., Eckelman, M. J., Harper, E. M., Hausfather, Z., & Urbina, G. (2012). Metal lost and found: Dissipative uses and releases of copper in the United States 1975–2000. Science of the Total Environment, 417–418, 138–147.  https://doi.org/10.1016/j.scitotenv.2011.09.075.CrossRefGoogle Scholar
  169. Lighty, J. A. S., Veranth, J. M., & Sarofim, A. F. (2000). Combustion aerosols: Factors governing their size and composition and implications to human health. Journal of the Air and Waste Management Association, 50, 1565–1618.  https://doi.org/10.1080/10473289.2000.10464197.CrossRefGoogle Scholar
  170. Lin, C. C., Chen, S. J., Huang, K. L., Hwang, W. I., Chang-Chien, G. P., & Lin, W. Y. (2005). Characteristics of metals in nano/ultrafine/fine/coarse particles collected beside a heavily trafficked road. Environmental Science and Technology, 39, 8113–8122.  https://doi.org/10.1021/es048182a.CrossRefGoogle Scholar
  171. Liora, N., Markakis, K., Poupkou, A., Giannaros, T. M., & Melas, D. (2015). The natural emissions model (NEMO): Description, application and model evaluation. Atmospheric Environment, 122, 493–504.  https://doi.org/10.1016/j.atmosenv.2015.10.014.CrossRefGoogle Scholar
  172. Lodhi, A., Ghauri, B., Khan, M. R., Rahman, S., & Shafique, S. (2009). Particulate matter (PM2. 5) concentration and source apportionment in Lahore. Journal of the Brazilian Chemical Society, 20, 1811–1820.CrossRefGoogle Scholar
  173. Løndahl, J., Massling, A., Pagels, J., Swietlicki, E., Bräuner, E., & Loft, S. (2007). Size-resolved respiratory-tract deposition of fine and ultrafine hydrophobic and hygroscopic aerosol particles during rest and exercise. Inhalation Toxicology, 19, 1–8.CrossRefGoogle Scholar
  174. Loosmore, G. A., & Hunt, J. R. (2010). Dust resuspension without saltation Gwen. Journal Geophysical Research, 105, 20663–20672.  https://doi.org/10.1029/2000JD900271.Dust.CrossRefGoogle Scholar
  175. Lu, X., Wang, L., Lei, K., Huang, J., & Zhai, Y. (2009). Contamination assessment of copper, lead, zinc, manganese and nickel in street dust of Baoji, NW China. Journal of Hazardous Materials, 161, 1058–1062.  https://doi.org/10.1016/j.jhazmat.2008.04.052.CrossRefGoogle Scholar
  176. Lu, X., Wu, X., Wang, Y., Chen, H., Gao, P., & Fu, Y. (2014). Risk assessment of toxic metals in street dust from a medium-sized industrial city of China. Ecotoxicology and Environmental Safety, 106, 154–163.  https://doi.org/10.1016/j.ecoenv.2014.04.022.CrossRefGoogle Scholar
  177. Lyles, L. (1988). Basic wind erosion processes, In Agriculture, Ecosystems and Environment (pp. 91–101).Google Scholar
  178. Ma, Q., Cai, S., Wang, S., Zhao, B., Martin, R. V., Brauer, M., et al. (2017). Impacts of coal burning on ambient PM2.5 pollution in China. Atmospheric Chemistry and Physics, 17, 4477–4491.  https://doi.org/10.5194/acp-17-4477-2017.CrossRefGoogle Scholar
  179. Mafuyai, M. G., Kamoh, N. M., Kangpe, N. S., Ayuba, S. M., & Eneji, I. S. (2015). Heavy metals contamination in roadside dust along major traffic roads in Jos metropolitan area, Nigeria. European Journal of Earth and Environment, 5, 48–58.Google Scholar
  180. Manders, A. M. M., Schaap, M., Querol, X., Albert, M. F. M. A., Vercauteren, J., Kuhlbusch, T. A. J., et al. (2010). Sea salt concentrations across the European continent. Atmospheric Environment, 44, 2434–2442.  https://doi.org/10.1016/j.atmosenv.2010.03.028.CrossRefGoogle Scholar
  181. Maret, W., & Sandstead, H. H. (2006). Zinc requirements and the risks and benefits of zinc supplementation. Journal of Trace Elements in Medicine and Biology, 20, 3–18.  https://doi.org/10.1016/j.jtemb.2006.01.006.CrossRefGoogle Scholar
  182. Martin, S., & Griswold, W. (2009). Human health effects of heavy metals. Environmental Science and Technology, 15, 1–6.Google Scholar
  183. Mascagni, P., Consonni, D., Bregante, G., Chiappino, G., & Toffoletto, F. (2003). Olfactory function in workers exposed to moderate airborne cadmium levels. Neurotoxicology, 24, 717–724.  https://doi.org/10.1016/S0161-813X(03)00024-X.CrossRefGoogle Scholar
  184. Mathissen, M., Scheer, V., Kirchner, U., Vogt, R., & Benter, T. (2012). Non-exhaust PM emission measurements of a light duty vehicle with a mobile trailer. Atmospheric Environment, 59, 232–242.  https://doi.org/10.1016/j.atmosenv.2012.05.020.CrossRefGoogle Scholar
  185. McConnell, R., Berhane, K., Gilliland, F., Molitor, J., Thomas, D., Lurmann, F., et al. (2003). Prospective study of air pollution and bronchitic symptoms in children with asthma. American Journal of Respiratory and Critical Care Medicine, 168, 790–797.  https://doi.org/10.1164/rccm.200304-466OC.CrossRefGoogle Scholar
  186. Meza-Figueroa, D., De la O-Villanueva, M., & De la Parra, M. L. (2007). Heavy metal distribution in dust from elementary schools in Hermosillo, Sonora, Mexico. Atmospheric Environment, 41, 276–288.  https://doi.org/10.1016/j.atmosenv.2006.08.034.CrossRefGoogle Scholar
  187. MFE. (2002). Ambient air quality guidelines 2002 update. Air Quality Report No 32 158.Google Scholar
  188. Miller, R. L., Cakmur, R. V., Perlwitz, J., Geogdzhayev, I. V., Ginoux, P., Koch, D., et al. (2006). Mineral dust aerosols in the NASA Goddard Institute for Space Sciences ModelE atmospheric general circulation model. Journal Geophysical Research, 111, 1–19.  https://doi.org/10.1029/2005JD005796.CrossRefGoogle Scholar
  189. Miller, K. A., Siscovick, D. S., Sheppard, L., Shepherd, K., Sullivan, J. H., Anderson, G. L., et al. (2007). Long-term exposure to air pollution and incidence of cardiovascular events in women. New England Journal of Medicine, 363, 477–558.  https://doi.org/10.1056/NEJMp1002530.CrossRefGoogle Scholar
  190. Moncmanová, A. (2007). Environmental factors that influence the deterioration of materials.  https://doi.org/10.2495/978-1-84564-032-3/01.CrossRefGoogle Scholar
  191. Moosmüller, H., Gillies, J. A., Rogers, C. F., DuBois, D. W., Chow, J. C., Watson, J. G., et al. (1998). Particulate emission rates for unpaved shoulders along a paved road. Journal of the Air and Waste Management Association, 48, 398–407.  https://doi.org/10.1080/10473289.1998.10463694.CrossRefGoogle Scholar
  192. Morais, S., e Costa, F. G., de Lourdes Pereira, M. (2012). Heavy metals and human health. In Environmental health: Emerging issues practice (pp. 227–246).  https://doi.org/10.5772/1519.Google Scholar
  193. Moynier, F., Blichert-Toft, J., Telouk, P., Luck, J. M., & Albarède, F. (2007). Comparative stable isotope geochemistry of Ni, Cu, Zn, and Fe in chondrites and iron meteorites. Geochimica et Cosmochimica Acta, 71, 4365–4379.  https://doi.org/10.1016/j.gca.2007.06.049.CrossRefGoogle Scholar
  194. Müller, G. (1997). Schwermetalle in den sedimenten des Rheins-Veranderungenseit. Umsch Wiss Tech, 79, 778–783.Google Scholar
  195. Nagar, J. K., Akolkar, A. B., & Kumar, R. (2014). A review on airborne particulate matter and its sources, chemical composition and impact on human respiratory system. International Journal of Environmental Sciences, 5, 447–463.  https://doi.org/10.6088/ijes.2014050100039.CrossRefGoogle Scholar
  196. Namikas, S. L. (2003). Field measurement and numerical modelling of aeolian mass flux distributions on a sandy beach. Sedimentology, 50, 303–326.  https://doi.org/10.1046/j.1365-3091.2003.00556.x.CrossRefGoogle Scholar
  197. Nandasena, S., Wickremasinghe, A. R., & Sathiakumar, N. (2013). Indoor air pollution and respiratory health of children in the developing world. World Journal of Clinical Pediatrics, 2, 6–15.  https://doi.org/10.5409/wjcp.v2.i2.6.CrossRefGoogle Scholar
  198. Nanzetta, M. K., & Holmén, B. A. (2004). Roadside particle number distributions and relationships between number concentrations, meteorology, and traffic along a northern california freeway. Journal of the Air and Waste Management Association, 54, 540–554.  https://doi.org/10.1080/10473289.2004.10470926.CrossRefGoogle Scholar
  199. Nel, A. (2007). Toxic potential of materials. Science, 311, 622–627.  https://doi.org/10.1126/science.1114397.CrossRefGoogle Scholar
  200. Newell, R., & Rogers, K. (2003). The US experience with the phasedown of lead in gasoline. Washington, DC: Resources for the Future.Google Scholar
  201. Nicholson, K. W. (1988). A review of particle resuspension. Atmospheric Environment, 22, 2639–2651.CrossRefGoogle Scholar
  202. Nicholson, K. W. (2009). The dispersion, deposition and resuspension of atmospheric contamination in the outdoor urban environment, radioactivity in the environment. Amsterdam: Elsevier.  https://doi.org/10.1016/s1569-4860(09)00402-1.CrossRefGoogle Scholar
  203. Nicholson, K. W., & Branson, J. R. (1990). Factors affecting resuspension by road traffic. Science of the Total Environment, 93, 349–358.  https://doi.org/10.1016/0048-9697(90)90126-F.CrossRefGoogle Scholar
  204. NIOSH. (2003a). NIOSH pocket guide to chemical hazards. In Zinc oxide. National Institute for Occupational Safety and Health: Washington, DC.Google Scholar
  205. NIOSH. (2003b). NIOSH pocket guide to chemical hazards. In Zinc chloride. National Institute for Occupational Safety and Health: Washington, DC.Google Scholar
  206. NIOSH. (2012). Vanadium compounds. NIOSH pocket guide to chemical hazards. Atlanta, GA: National Institute for Occupational Safety and Health. Centers for Disease Control and Prevention.Google Scholar
  207. Nkhama, E., Ndhlovu, M., Timothy Dvonch, J., Siziya, S., & Voyi, K. (2015). Prevalence and determinants of mucous membrane irritations in a community near a cement factory in Zambia: A cross sectional study. International Journal of Environmental Research and Public Health, 12, 871–887.  https://doi.org/10.3390/ijerph120100871.CrossRefGoogle Scholar
  208. Oberdörster, G., Oberdörster, E., & Oberdörster, J. (2005). Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives, 113, 823–839.  https://doi.org/10.1289/ehp.7339.CrossRefGoogle Scholar
  209. Ohnishi, S., & Kawanishi, S. (2002). Double base lesions of DNA by a metabolite of carcinogenic benzo[a]pyrene. Biochemical and Biophysical Research Communications, 290, 778–782.  https://doi.org/10.1006/bbrc.2001.6249.CrossRefGoogle Scholar
  210. Oksza-Chocimowoski, G. V. (1977). Generalized model of the time-dependent weathering haft-life of the resuspension factor. In Report ORP/LV-77-4 Environmental Protection Agency, Ias Vegas, Nevada.Google Scholar
  211. Olajire, A. A., & Ayodele, E. (1997). Contamination of roadside soil and grass with heavy metals. Environment International, 23, 91–101.CrossRefGoogle Scholar
  212. Olujimi, O., Steiner, O., & Goessler, W. (2015). Pollution indexing and health risk assessments of trace elements in indoor dusts from classrooms, living rooms and offices in Ogun State, Nigeria. Journal of African Earth Sciences, 101, 396–404.  https://doi.org/10.1016/j.jafrearsci.2014.10.007.CrossRefGoogle Scholar
  213. Omole, D. O., Eng, B., Rusyniak, D. E., Arroyo, A., Acciani, J., Froberg, B., et al. (2006). Heavy metals toxicity and the environment. Clinical Toxicology, 100, 365–396.  https://doi.org/10.1007/978-3-7643-8338-1.CrossRefGoogle Scholar
  214. OSHA. (2002). Gases, vapors, fumes, dusts, and mists. In Safety and health regulations for construction. Occupational safety and health administration. Code of Federal regulations. 29 CFR 1926.55.Google Scholar
  215. OSHA. (2002). Limits for air contaminants. In Occupational safety and health standards. Occupational safety and health administration. Code of Federal Regulations. 29 CFR 1910.1000.Google Scholar
  216. OSHA. (2003). Safety and health regulations for construction. In Gases, vapors, fumes, dusts, and mists. Occupational Safety and Health Administration.29 CFR 1926.55, Append. A Washington, DC.Google Scholar
  217. OSHA. (2004). Cadmium in workplace atmospheres. In Occupational safety and health administration.Google Scholar
  218. OSHA. (2011a). Toxic and hazardous substances. In Occupational safety and health administration. Code of Federal Regulations 29 CFR 1910.1000, Table Z 1.Google Scholar
  219. OSHA. (2011b). Toxic and hazardous substances. In Occupational safety and health standards. Occupational safety and health administration. Code of Federal regulations 29 CFR 1910.1000, Table Z 1. Google Scholar
  220. Osweiler, G. D., Carson, T. L., Buck, W. B., & Van Gelder, G. A. (1985). Clinical and diagnostic veterinary toxicology. Dubuque: Kendall/Hunt Publishing Company.Google Scholar
  221. Owen, P. R. (1964). Saltation of uniform grains in air. Journal of Fluid Mechanics, 20, 225–262.CrossRefGoogle Scholar
  222. Ozaki, H., Watanabe, I., & Kuno, K. (2004). Investigation of the heavy metal sources in relation to automobiles. Water, Air, and Soil pollution, 157, 209–223.CrossRefGoogle Scholar
  223. Pagotto, C., Rémy, N., Legret, M., & Le Cloirec, P. (2001). Heavy metal pollution of road dust and roadside soil near a major rural highway. Environmental Technology, 22, 307–319.  https://doi.org/10.1080/09593332208618280.CrossRefGoogle Scholar
  224. Panko, J. M., Chu, J., Kreider, M. L., & Unice, K. M. (2013). Measurement of airborne concentrations of tire and road wear particles in urban and rural areas of France, Japan, and the United States. Atmospheric Environment, 72, 192–199.  https://doi.org/10.1016/j.atmosenv.2013.01.040.CrossRefGoogle Scholar
  225. Panyacosit, L. (2000). A review of particulate matter and health: Focus on developing countries approved by project leader. In IIASA Interim Report (p. 53).Google Scholar
  226. Pathak, A. K., Yadav, S., Kumar, P., & Kumar, R. (2013). Source apportionment and spatial-temporal variations in the metal content of surface dust collected from an industrial area adjoining Delhi, India. Science of the Total Environment, 443, 662–672.  https://doi.org/10.1016/j.scitotenv.2012.11.030.CrossRefGoogle Scholar
  227. Pearson, J., Bachireddy, C., Shyamprasad, S., Goldfine, A., & Brownstein, J. (2010). Association between fine particulate matter and diabetes prevalence in the US. Diabetes Care, 33, 2196–2201.  https://doi.org/10.2337/dc10-0698.CrossRefGoogle Scholar
  228. Pelletier, B., Santer, R., & Vidot, J. (2007). Retrieving of particulate matter from optical measurements: A semiparametric approach. Journal of Geophysical Research: Atmospheres, 112, 1–10.  https://doi.org/10.1029/2005JD006737.CrossRefGoogle Scholar
  229. Peng, R. D., Bell, M. L., Geyh, A. S., McDermott, A., Zeger, S. L., Samet, J. M., et al. (2009). Emergency admissions for cardiovascular and respiratory diseases and the chemical composition of fine particle air pollution. Environmental Health Perspectives, 117, 957–963.  https://doi.org/10.1289/ehp.0800185.CrossRefGoogle Scholar
  230. Pérez, N., Pey, J., Cusack, M., Reche, C., Querol, X., Alastuey, A., et al. (2010). Variability of Particle Number, Black Carbon, and PM 10, PM 2. 5, and PM 1 levels and speciation: Influence of road traffic emissions on urban air quality. Aerosol Science and Technology, 44, 487–499.  https://doi.org/10.1080/02786821003758286.CrossRefGoogle Scholar
  231. Pirjola, L., Johansson, C., Kupiainen, K., Stojiljkovic, A., Hussein, T., & Karlsson, H. (2010). Road dust emissions from paved roads measured using different mobile systems road dust emissions from paved roads measured using different mobile systems. Journal of the Air and Waste Management Association, 60, 1422–1433.  https://doi.org/10.3155/1047-3289.60.12.1422.CrossRefGoogle Scholar
  232. Pollack, B., Colburn, D. S., Flasar, F. M., Kahn, R., Carlston, C. E., & Pidek, D. (1979). Properties and effects of dust particles suspended in the Martian atmosphere. Journal Geophysical Research, 84, 2929–2956.CrossRefGoogle Scholar
  233. Poonam, P., Nandar, S. K., Kathuria, S., & Ramesh, V. (2017). Effects of air pollution on the skin: A review. Indian Journal of Dermatology, Venereology, and Leprology, 83, 415–423.  https://doi.org/10.4103/0378-6323.199579.CrossRefGoogle Scholar
  234. Pope, C. A., III, Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., & Thurston, G. D. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Journal of the American Medical Association, 287, 1132–1141.  https://doi.org/10.1001/jama.287.9.1132.CrossRefGoogle Scholar
  235. Pope, C. A., & Dockery, D. W. (2006). Health effects of fine particulate air pollution: Lines that connect. Journal of the Air and Waste Management Association, 56, 709–742.  https://doi.org/10.1080/10473289.2006.10464485.CrossRefGoogle Scholar
  236. Pothikamjorn, S. L., Ruxrungthan, K., Thampanitchawong, P., Fuangthong, R., & Phanupak, P. (2002). Impacts of particulate air pollution on allergic disease, allergic skin reactivity and lung function. Asian Pacific Journal of Allergy and Immunology, 20, 77–83.Google Scholar
  237. Prasad, A. S., Brewer, G. J., Schoomaker, E. B., & Rabbani, P. (1978). Hypocupremia induced by zinc therapy in adults. JAMA, 240, 2166–2168.CrossRefGoogle Scholar
  238. Puett, R. C., Hart, J. E., Yanosky, J. D., Paciorek, C., Schwartz, J., Suh, H., et al. (2009). Chronic fine and coarse particulate exposure, mortality, and coronary heart disease in the Nurses’ Health Study. Environmental Health Perspectives, 117, 1697–1701.  https://doi.org/10.1289/ehp.0900572.CrossRefGoogle Scholar
  239. Qin, X., Qian, Z., Vaughn, M. G., Trevathan, E., Emo, B., Paul, G., et al. (2015). Gender-specific differences of interaction between obesity and air pollution on stroke and cardiovascular diseases in Chinese adults from a high pollution range area: A large population based cross sectional study. Science of the Total Environment, 529, 243–248.  https://doi.org/10.1016/j.scitotenv.2015.05.041.CrossRefGoogle Scholar
  240. Querol, X., Alastuey, A., Rodriguez, S., Plana, F., Mantilla, E., & Ruiz, C. R. (2001). Monitoring of PM10 and PM2.5 around primary particulate anthropogenic emission sources. Atmospheric Environment, 35, 845–858.  https://doi.org/10.1016/S1352-2310(00)00387-3.CrossRefGoogle Scholar
  241. Querol, X., Pey, J., Pandolfi, M., Alastuey, A., Cusack, M., Pérez, N., et al. (2009). African dust contributions to mean ambient PM10 mass-levels across the Mediterranean Basin. Atmospheric Environment, 43, 4266–4277.  https://doi.org/10.1016/j.atmosenv.2009.06.013.CrossRefGoogle Scholar
  242. Raaschou-Nielsen, O., Andersen, Z. J., Beelen, R., Samoli, E., Stafoggia, M., Weinmayr, G., et al. (2013). Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). Lancet Oncology, 14, 813–822.  https://doi.org/10.1016/S1470-2045(13)70279-1.CrossRefGoogle Scholar
  243. Raaschou-Nielsen, O., Andersen, Z. J., Hvidberg, M., Jensen, S. S., Ketzel, M., Sørensen, M., et al. (2011). Lung cancer incidence and long-term exposure to air pollution from traffic. Environmental Health Perspectives, 119, 860–865.  https://doi.org/10.1289/ehp.1002353.CrossRefGoogle Scholar
  244. Raj, S. P., Neena, K., Swahit, K., Singh, B., & Kaji, S. R. (2014). Determination of heavy metals in street dust from different types of land use of Kathmandu Valley. Nepal, 4, 82–92.Google Scholar
  245. Ramlan, M. N., & Badri, M. A. (1989). Heavy metals in tropical city street dust and roadside soils: a case of Kuala Lumpur, Malaysia. Environmental Technology Letter, 10, 4356–4444.  https://doi.org/10.1080/09593338909384759.CrossRefGoogle Scholar
  246. Rasheed, H., Slack, R., & Kay, P. (2016). Human health risk assessment for arsenic: A critical review. Critical Reviews in Environment Science and Technology, 46, 1529–1583.  https://doi.org/10.1080/10643389.2016.1245551.CrossRefGoogle Scholar
  247. Saeedi, M., Li, L. Y., & Salmanzadeh, M. (2012). Heavy metals and polycyclic aromatic hydrocarbons: Pollution and ecological risk assessment in street dust of Tehran. Journal of Hazardous Materials, 227–228, 9–17.  https://doi.org/10.1016/j.jhazmat.2012.04.047.CrossRefGoogle Scholar
  248. Sanchez-Cabeza, J. A., Garcia-Talavera, M., Costa, E., Peña, V., Garcia-Orellana, J., Masqué, P., et al. (2007). Regional calibration of erosion radiotracers (210Pb and 137Cs): Atmospheric fluxes to soils (northern Spain). Environmental Science and Technology, 41, 1324–1330.  https://doi.org/10.1021/es061356z.CrossRefGoogle Scholar
  249. Sanders, P. G., Xu, N., Dalka, T. O. M. M., & Maricq, M. M. (2003). Airborne brake wear Debris: Size distributions, composition, and a comparison of dynamometer and vehicle tests. Environmental Science and Technology, 37, 4060–4069.  https://doi.org/10.1021/es034145s.CrossRefGoogle Scholar
  250. Sandrini, S., Giulianelli, L., Decesari, S., Fuzzi, S., Cristofanelli, P., Marinoni, A., et al. (2014). In situ physical and chemical characterisation of the Eyjafjallajökull aerosol plume in the free troposphere over Italy. Atmospheric Chemistry and Physics, 14, 1075–1092.  https://doi.org/10.5194/acp-14-1075-2014.CrossRefGoogle Scholar
  251. Sarnat, J. A., Brown, K. W., Schwartz, J., Coull, B. A., & Koutrakis, P. (2005). Ambient gas concentrations and personal particulate matter exposures. Epidemiology, 16, 385–395.  https://doi.org/10.1097/01.ede.0000155505.04775.33.CrossRefGoogle Scholar
  252. Savage, P. (2016). Copper isotopes. In W. White (Ed.), Encyclopedia of geochemistry. Encyclopedia of earth sciences series. Cham: Springer.  https://doi.org/10.1007/978-3-319-39193-9.CrossRefGoogle Scholar
  253. Schauer, J. J., Lough, G. C., Shafer, M. M., Christensen, W. F., Arndt, M. F., DeMinter, J. T., et al. (2006). Characterization of metals emitted from motor vehicles. Research Report (Health Effects Institute), 133, 1–76. (discussion 77–88).Google Scholar
  254. Schroeder, W. H., Dobson, M., Kane, D. M., & Johnson, N. D. (1987). Toxic trace elements associated with airborne pariacnlaie matter: A review. Journal of Air Pollution Control Association, 37, 1267–1285.  https://doi.org/10.1080/08940630.1987.10466321.CrossRefGoogle Scholar
  255. Schutte, R., Nawrot, T. S., Richart, T., Thijs, L., Vanderschueren, D., Kuznetsova, T., et al. (2008). Bone resorption and environmental exposure to cadmium in women: A population study. Environmental Health Perspectives, 116, 777–783.  https://doi.org/10.1289/ehp.11167.CrossRefGoogle Scholar
  256. Sehmel, G. A. (1973). Particle resuspension from an asphalt road caused by car and truck traffic. Atmospheric Environment, 7, 291–309.  https://doi.org/10.1016/0004-6981(73)90078-4.CrossRefGoogle Scholar
  257. Sehmel, G. A. (1980). Particle resuspension: A review. Environment International, 4, 107–127.  https://doi.org/10.1016/0160-4120(80)90005-7.CrossRefGoogle Scholar
  258. Sezgin, N., Ozcan, H. K., Demir, G., Nemlioglu, S., & Bayat, C. (2004). Determination of heavy metal concentrations in street dusts in Istanbul E-5 highway. Environment International, 29, 979–985.  https://doi.org/10.1016/S0160-4120(03)00075-8.CrossRefGoogle Scholar
  259. Shah, M. H., & Shaheen, N. (2007). Statistical analysis of atmospheric trace metals and particulate fractions in Islamabad, Pakistan. Journal of Hazardous Materials, 147, 759–767.CrossRefGoogle Scholar
  260. Shandilya, K. K., Khare, M., & Gupta, A. B. (2007). Suspended particulate matter distribution in rural-industrial satna and in urban-industrial South Delhi. Environmental Monitoring and Assessment.  https://doi.org/10.1007/s10661-006-9337-z.CrossRefGoogle Scholar
  261. Shao, Y. (2001). A model for mineral dust emission. Journal Geophysical Research, 20, 239–254.Google Scholar
  262. Shao, Y. P. (2008). Physics and modelling of wind erosion (2nd ed.). Heidelberg: Springer.Google Scholar
  263. Sheffield, P., Roy, A., Wong, K., & Trasande, L. (2011). Fine particulate matter pollution linked to respiratory illness in infants and increased hospital costs. Health Affairs, 30, 871–878.  https://doi.org/10.1377/hlthaff.2010.1279.CrossRefGoogle Scholar
  264. Shi, G., Chen, Z., Xu, S., Zhang, J., Wang, L., Bi, C., et al. (2008). Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China. Environmental Pollution, 156, 251–260.  https://doi.org/10.1016/j.envpol.2008.02.027.CrossRefGoogle Scholar
  265. Shrey, K., Suchit, A., Deepika, D., Shruti, K., & Vibha, R. (2010). Air pollutants: The key stages in the pathway towards the development of cardiovascular disorders. Environmental Toxicology and Pharmacology, 31, 1–9.  https://doi.org/10.1016/j.etap.2010.09.002.CrossRefGoogle Scholar
  266. Simkhovich, B. Z., Kleinman, M. T., & Kloner, R. A. (2008). Air pollution and cardiovascular injury. Journal of the American College of Cardiology, 52, 719–726.  https://doi.org/10.1016/j.jacc.2008.05.029.CrossRefGoogle Scholar
  267. Singh, S. N., & Sharma, R. (2009). Study of human exposure to fine particulates and respiratory tract depositions in residents of an industrial environment in India. Journal of Scientific and Industrial Research (India), 68, 66–70.Google Scholar
  268. Sofiev, M., Soares, J., Prank, M., De Leeuw, G., & Kukkonen, J. (2011). A regional-to-global model of emission and transport of sea salt particles in the atmosphere. Journal of Geophysical Research: Atmospheres.  https://doi.org/10.1029/2010jd014713.CrossRefGoogle Scholar
  269. Solomon, P. A., & Sioutas, C. (2008). Continuous and semicontinuous monitoring techniques for particulate matter mass and chemical components: A synthesis of findings from EPA’s particulate matter supersites program and related studies. Journal of the Air and Waste Management Association, 58, 164–195.  https://doi.org/10.3155/1047-3289.58.2.164.CrossRefGoogle Scholar
  270. Srogi, K. (2007). Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: A review. Environmental Chemistry Letters, 5, 169–195.  https://doi.org/10.1007/s10311-007-0095-0.CrossRefGoogle Scholar
  271. Stern, G., Latzin, P., Roosli, M., Fuchs, O., Proietti, E., Kuehni, C., et al. (2013). A prospective study of the impact of air pollution on respiratory symptoms and infections in infants. American Journal of Respiratory and Critical Care Medicine, 187, 1341–1348.  https://doi.org/10.1164/rccm.201211-2008OC.CrossRefGoogle Scholar
  272. Stohl, A., Prata, A. J., Eckhardt, S., Clarisse, L., Durant, A., Henne, S., et al. (2011). Determination of time-and height-resolved volcanic ash emissions and their use for quantitative ash dispersion modeling: The 2010 Eyjafjallajökull eruption. Atmospheric Chemistry and Physics, 11, 4333–4351.  https://doi.org/10.5194/acp-11-4333-2011.CrossRefGoogle Scholar
  273. Strickland, M. J., Darrow, L. A., Klein, M., Flanders, W. D., Sarnat, J. A., Waller, L. A., et al. (2010). Short-term associations between ambient air pollutants and pediatric asthma emergency department visits. American Journal of Respiratory and Critical Care Medicine, 182, 307–316.  https://doi.org/10.1164/rccm.200908-1201OC.CrossRefGoogle Scholar
  274. Sun, Q., Hong, X., & Wold, L. E. (2010). Cardiovascular effects of ambient particulate air pollution exposure. Circulation, 121, 2755–2765.  https://doi.org/10.1161/CIRCULATIONAHA.109.893461.CrossRefGoogle Scholar
  275. Sutherlnnd, A. J. (1967). Proposed mechanism for sediment entrainment by turbulent flows. Journal of Geophysical Research, 72, 6183–6194.CrossRefGoogle Scholar
  276. Tam, A. C., Leung, W. P., Zapka, W., Ziemlich, W., & Tam, A. C. (2004). Laser-cleaning techniques for removal of surface particulates. Journal of Applied Physics, 71, 3515–3523.CrossRefGoogle Scholar
  277. Tang, R., Ma, K., Zhang, Y., & Mao, Q. (2013). The spatial characteristics and pollution levels of metals in urban street dust of Beijing, China. Applied Geochemistry, 35, 88–98.  https://doi.org/10.1016/j.apgeochem.2013.03.016.CrossRefGoogle Scholar
  278. Taylor, S. R., & McLennan, S. M. (1985). The continental crust: Its composition and evolution. Oxford: Blackwell Scientific Publications.Google Scholar
  279. Tchounwou, P. B., Centeno, J. A., & Patlolla, A. K. (2004). Arsenic toxicity, mutagenesis, and carcinogenesis—a health risk assessment and management approach. Molecular and Cellular Biochemistry, 255, 47–55.CrossRefGoogle Scholar
  280. Thorpe, A., & Harrison, R. M. (2008). Sources and properties of non-exhaust particulate matter from road traffic: A review. Science of the Total Environment, 400, 270–282.  https://doi.org/10.1016/j.scitotenv.2008.06.007.CrossRefGoogle Scholar
  281. Thorpe, A. J., Harrison, R. M., Boulter, P. G., & Mccrae, I. S. (2007). Estimation of particle resuspension source strength on a major London Road. Atmospheric Environment, 41(41), 8007–8020.  https://doi.org/10.1016/j.atmosenv.2007.07.006.CrossRefGoogle Scholar
  282. Thorsteinsson, T., Jóhannsson, T., Stohl, A., & Kristiansen, N. I. (2012). High levels of particulate matter in Iceland due to direct ash emissions by the Eyjafjallajkull eruption and resuspension of deposited ash. Journal of Geophysical Research: Solid Earth, 117, 1–9.  https://doi.org/10.1029/2011JB008756.CrossRefGoogle Scholar
  283. Tian, H. Z., Lu, L., Cheng, K., Hao, J. M., Zhao, D., Wang, Y., et al. (2012). Science of the total environment anthropogenic atmospheric nickel emissions and its distribution characteristics in China. Science of the Total Environment, 418, 148–157.  https://doi.org/10.1016/j.scitotenv.2011.11.069.CrossRefGoogle Scholar
  284. Tokalioglu, S., Kartal, Senol, & Birol, G. (2003). Application of a three-stage sequential extraction procedure for the determination of extractable metal. Turkish Journal of Chemistry, 27, 333–346.Google Scholar
  285. Tomczak, A., Miller, A. B., Weichenthal, S. A., To, T., Wall, C., van Donkelaar, A., et al. (2016). Long-term exposure to fine particulate matter air pollution and the risk of lung cancer among participants of the Canadian National Breast Screening Study. International Journal of Cancer, 139, 1958–1966.  https://doi.org/10.1002/ijc.30255.CrossRefGoogle Scholar
  286. Turner, M. C., Krewski, D., Pope, C. A., Chen, Y., Gapstur, S. M., & Thun, M. J. (2011). Long-term ambient fine particulate matter air pollution and lung cancer in a large cohort of never-smokers. American Journal of Respiratory and Critical Care Medicine, 184, 1374–1381.  https://doi.org/10.1164/rccm.201106-1011OC.CrossRefGoogle Scholar
  287. Ubwa, S. T., Abah, J., Ada, C. A., & Alechenu, E. (2015). Levels of some heavy metals contamination of street dust in the industrial and high traffic density areas of Jos Metropolis. Sci: Journal of Biodiversity and Environmental Sciences.Google Scholar
  288. Ullah, H., Liu, G., Yousaf, B., Ubaid, M., & Abbas, Q. (2017). Combustion characteristics and retention-emission of selenium during co-firing of torrefied biomass and its blends with high ash coal. Bioresource Technology, 245, 73–80.  https://doi.org/10.1016/j.biortech.2017.08.144.CrossRefGoogle Scholar
  289. Ullah, H., Liu, G., Yousaf, B., Ali, M. U., Abbas, Q., Munir, M. A. M., et al. (2018). Developmental selenium exposure and health risk in daily foodstuffs: A systematic review and meta-analysis. Ecotoxicology and Environmental Safety, 149, 291–306.  https://doi.org/10.1016/j.ecoenv.2017.11.056.CrossRefGoogle Scholar
  290. US-EPA. (1999). Cadmium and compounds. http://www.epa.gov/ttnuatw1/hlthef/cadmium.html. Accessed 9 March 2018.
  291. US-EPA. (2000). National air pollutant emission trends: 1900-1998. US Environmental Protection Agency 19001998.Google Scholar
  292. Valavanidis, A., Fiotakis, K., & Vlachogianni, T. (2008). Airborne particulate matter and human health: toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. Journal of Environmental Science and Health, Part C Environmental Carcinogenesis Ecotoxicology Reviews, 26, 339–362.  https://doi.org/10.1080/10590500802494538.CrossRefGoogle Scholar
  293. Van Dingenen, R., Raes, F., Putaud, J. P., Baltensperger, U., Charron, A., Facchini, M. C., et al. (2004). A European aerosol phenomenology-1: Physical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmospheric Environment, 38, 2561–2577.  https://doi.org/10.1016/j.atmosenv.2004.01.040.CrossRefGoogle Scholar
  294. Varrica, D., Bardelli, F., Dongarrà, G., & Tamburo, E. (2013). Speciation of Sb in airborne particulate matter, vehicle brake linings, and brake pad wear residues. Atmospheric Environment, 64, 18–24.  https://doi.org/10.1016/j.atmosenv.2012.08.067.CrossRefGoogle Scholar
  295. Ventura, G. T., Gall, L., Siebert, C., Prytulak, J., Szatmari, P., Hürlimann, M., et al. (2015). The stable isotope composition of vanadium, nickel, and molybdenum in crude oils. Applied Geochemistry, 59, 104–117.  https://doi.org/10.1016/j.apgeochem.2015.04.009.CrossRefGoogle Scholar
  296. Victoria, A., Cobbina, S. J., Dampare, S. B., & Duwiejuah, A. B. (2014). Heavy metals concentration in road dust in the Bolgatanga Municipality. Ghana, 2, 74–80.  https://doi.org/10.12691/jephh-2-4-1.CrossRefGoogle Scholar
  297. Vincent, J. H., Emmett, P. C., Mark, D., Vincent, J. H., Emmett, P. C., & Mark, D. (1985). The effects of turbulence on the entry of airborne particles into a blunt dust sampler. Aerosol Science and Technology, 4, 17–29.  https://doi.org/10.1080/02786828508959036.CrossRefGoogle Scholar
  298. Visher, G. S. (1969). Grain size distributions and depositional processes. Journal of Sedimentary Petrology, 39, 1074–1106.Google Scholar
  299. Waheed, S., Rahman, A., & Khalid, N. (2009). Assessment of air quality of two metropolitan cities in Pakistan: elemental analysis using INAA and ASS. Radiochimica Acta, 94, 161–166.  https://doi.org/10.1524/ract.2006.94.3.161.CrossRefGoogle Scholar
  300. Wåhlin, P., Berkowicz, R., & Palmgren, F. (2006). Characterisation of traffic-generated particulate matter in Copenhagen. Atmospheric Environment, 40, 2151–2159.  https://doi.org/10.1016/j.atmosenv.2005.11.049.CrossRefGoogle Scholar
  301. Walsh, C. T., Sandstead, H. H., Prasad, A. S., Newberne, P. M., & Fraker, P. J. (1994). Zinc: Health effects and research priorities for the 1990s. Environmental Health Perspectives, 102, 5–46.  https://doi.org/10.1289/ehp.941025.CrossRefGoogle Scholar
  302. Wan, D., Han, Z., Yang, J., Yang, G., & Liu, X. (2016). Heavy metal pollution in settled dust associated with different urban functional areas in a heavily air-polluted city in North China. International Journal of Environmental Research and Public Health.  https://doi.org/10.3390/ijerph13111119.CrossRefGoogle Scholar
  303. Wang, J., Li, S., Cui, X., Li, H., Qian, X., Wang, C., et al. (2016). Bioaccessibility, sources and health risk assessment of trace metals in urban park dust in Nanjing, Southeast China. Ecotoxicology and Environmental Safety, 128, 161–170.  https://doi.org/10.1016/j.ecoenv.2016.02.020.CrossRefGoogle Scholar
  304. Wang, Z., Ren, S., & Huang, N. (2014). Saltation of non-spherical sand particles. PLoS ONE, 9, 1–9.  https://doi.org/10.1371/journal.pone.0105208.CrossRefGoogle Scholar
  305. Wang, W. H., Wong, M. H., Leharne, S., Fisher, B., & Me, K. (1998). Fractionation and biotoxicity of heavy metals in urban dusts collected from Hong Kong and London. Environmental Geochemistry and Health, 20, 185–198.CrossRefGoogle Scholar
  306. Watson, J. G., Chow, J. C., Lowenthal, D. H., Kreisberg, N. M., Hering, S. V., & Stolzenburg, M. R. (2006). Variations of nanoparticle concentrations at the Fresno Supersite. Science of the Total Environment, 358, 178–187.  https://doi.org/10.1016/j.scitotenv.2005.04.046.CrossRefGoogle Scholar
  307. Wei, X., Gao, B., Wang, P., Zhou, H., & Lu, J. (2015). Pollution characteristics and health risk assessment of heavy metals in street dusts from different functional areas in Beijing, China. Ecotoxicology and Environmental Safety, 112, 186–192.  https://doi.org/10.1016/j.ecoenv.2014.11.005.CrossRefGoogle Scholar
  308. Wei, B., Jiang, F., Li, X., & Mu, S. (2009). Spatial distribution and contamination assessment of heavy metals in urban road dusts from Urumqi, NW China. Microchemical Journal, 93, 147–152.  https://doi.org/10.1016/j.microc.2009.06.001.CrossRefGoogle Scholar
  309. WHO. (2000). Air quality guidelines for Europe. Environmental Science and Pollution Research, 3, 23.  https://doi.org/10.1007/BF02986808.CrossRefGoogle Scholar
  310. WHO. (2006). Air quality guide lines of WHO for particulate matters, Ozone, nitrogen dioxide and Sulphur dioxide, Global update 2005. WHO/SDE/PHE/OEH/06.02.World Health Organisation.Google Scholar
  311. WHO/IPCS. (1998). World Health Organization. Geneva, Switzerland: 1988. Environmental Health Criteria 61: Chromium. (pp. 1–197).Google Scholar
  312. Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J. A., Orlando, J. J., et al. (2010). The Fire INventory from NCAR (FINN)—A high resolution global model to estimate the emissions from open burning. Geoscientific Model Development, 3, 2439–2476.  https://doi.org/10.5194/gmdd-3-2439-2010.CrossRefGoogle Scholar
  313. Wik, A., & Dave, G. (2009). Occurrence and effects of tire wear particles in the environment—A critical review and an initial risk assessment. Environmental Pollution Journal, 157, 1–11.  https://doi.org/10.1016/j.envpol.2008.09.028.CrossRefGoogle Scholar
  314. Williams, C. R., & Harrison, R. M. (1984). Cadmium in the atmosphere. Experientia, 40, 29–36.  https://doi.org/10.1007/BF01959099.CrossRefGoogle Scholar
  315. Winiwarter, W., Bauer, H., Caseiro, A., & Puxbaum, H. (2009). Quantifying emissions of primary biological aerosol particle mass in Europe. Atmospheric Environment, 43, 1403–1409.  https://doi.org/10.1016/j.atmosenv.2008.01.037.CrossRefGoogle Scholar
  316. Wu, Y., Hao, J., Li, W., & Fu, L. (2002). Calculating emissions of exhaust particulate matter from motor vehicles with PART5 model. Environmental Sciences, 23, 6–10.Google Scholar
  317. Wu, F., Qi, Y., Yu, H., Tian, S., Hou, Z., & Huang, F. (2016). Vanadium isotope measurement by MC-ICP-MS. Chemical Geology, 421, 17–25.  https://doi.org/10.1016/j.chemgeo.2015.11.027.CrossRefGoogle Scholar
  318. Yang, J., Teng, Y., Song, L., & Zuo, R. (2016). Tracing sources and contamination assessments of heavy metals in road and foliar dusts in a typical mining city, China. PLoS ONE, 11, e0168528.  https://doi.org/10.1371/journal.pone.0168528.CrossRefGoogle Scholar
  319. Yongming, H., Peixuan, D., Junji, C., & Posmentier, E. S. (2006). Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Science of the Total Environment, 355, 176–186.  https://doi.org/10.1016/j.scitotenv.2005.02.026.CrossRefGoogle Scholar
  320. Yousaf, B., Amina, Liu, G., Wang, R., Imtiaz, M., Rizwan, M. S., Zia-ur-Rehman, M., Qadir, A., & Si, Y. (2016a). The importance of evaluating metal exposure and predicting human health risks in urban-periurban environments influenced by emerging industry. Chemosphere, 150, 79–89.  https://doi.org/10.1016/j.chemosphere.2016.02.007.CrossRefGoogle Scholar
  321. Yousaf, B., Liu, G., Wang, R., Imtiaz, M., Zia-ur-Rehman, M., Munir, M. A. M., et al. (2016b). Bioavailability evaluation, uptake of heavy metals and potential health risks via dietary exposure in urban-industrial areas. Environmental Science and Pollution Research, 23, 22443–22453.  https://doi.org/10.1007/s11356-016-7449-8.CrossRefGoogle Scholar
  322. Yousaf, B., Liu, G., Abbas, Q., Wang, R., Imtiaz, M., & Zia-ur-Rehman, M. (2017). Investigating the uptake and acquisition of potentially toxic elements in plants and health risks associated with the addition of fresh biowaste amendments to industrially contaminated soil. Land Degradation & Development, 28(8), 2596–2607.  https://doi.org/10.1002/ldr.2821.CrossRefGoogle Scholar
  323. Zanobetti, A., & Schwartz, J. (2009). The effect of fine and coarse particulate air pollution on mortality: A national analysis. Environmental Health Perspectives, 117, 898–903.  https://doi.org/10.1289/ehp.0800108.CrossRefGoogle Scholar
  324. Zemp, E., Elsasser, S., Schindler, C., Künzli, N., Perruchoud, A. P., Monn, C., et al. (1999). Long-term ambient air pollution and respiratory symptoms in adults (SAPALDIA Study). American Journal of Respiratory and Critical Care Medicine, 159, 1257–1266.CrossRefGoogle Scholar
  325. Zender, C. S., Bian, H., & Newman, D. (2003). Mineral dust entrainment and deposition (DEAD) model: Description and 1990s dust climatology. Journal Geophysical Research, 108, 1–19.  https://doi.org/10.1029/2002JD002775.CrossRefGoogle Scholar
  326. Zheng, N., Liu, J., Wang, Q., & Liang, Z. (2010a). Assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China. Science of the Total Environment, 408, 726–733.  https://doi.org/10.1016/j.scitotenv.2009.10.075.CrossRefGoogle Scholar
  327. Zheng, N., Liu, J., Wang, Q., & Liang, Z. (2010b). Heavy metals exposure of children from stairway and sidewalk dust in the smelting district, northeast of China. Atmospheric Environment, 44, 3239–3245.  https://doi.org/10.1016/j.atmosenv.2010.06.002.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Muhammad Ubaid Ali
    • 1
    • 2
  • Guijian Liu
    • 1
    • 2
  • Balal Yousaf
    • 1
    • 2
  • Habib Ullah
    • 1
  • Qumber Abbas
    • 1
  • Mehr Ahmad Mujtaba Munir
    • 1
  1. 1.CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space SciencesUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China
  2. 2.State Key Laboratory of Loess and Quaternary Geology, Institute of Earth EnvironmentThe Chinese Academy of SciencesXi’anPeople’s Republic of China

Personalised recommendations