Advertisement

A comprehensive review on current status, mechanism, and possible sources of arsenic contamination in groundwater: a global perspective with prominence of Pakistan scenario

  • Waqar Ali
  • Atta Rasool
  • Muhammad Junaid
  • Hua Zhang
Review Paper

Abstract

Arsenic(As)-mediated contamination of groundwater resources in different parts of the world is a consequence of natural or anthropogenic sources, leading to adverse effects on the environment and human health. Millions of people from different countries are unfortunately consuming groundwater contaminated with alarming levels of As. Exposure to the high concentration of As for an extended period of time can cause devastating effects on human health such as skin lesions, cardiac disorders, discolouration and cancer. Until 2018, about 11 districts of Sindh and Punjab provinces in Pakistan had been found with As contamination in groundwater beyond the national defined permissible level, i.e. 50 µg/L. Tharparkar and Hyderabad (in Sindh province) along Indus river and Lahore and Kasur (in Punjab province) are well-known hotspots sites of natural geogenic As contamination in groundwater. Higher levels of Sulfates (SO42−), Chloride (Cl) and Carbonate (CO32−) along with the elevated values of electrical conductivity and basic pH, as well as augmented presence of “As V” species, were all an indication of oxidizing condition in groundwater, and these oxidizing conditions are identified as the primary mechanism of As contamination into aquifers of Pakistan via oxidative dissolution. The main aim of this review is to summarize and discuss the current contamination status of As in groundwater water globally with a special focus on Pakistan scenario, isotopic evidence to track sources of groundwater recharge and its effects on As contamination in groundwater with various redox conditions prevailing in Pakistan. In addition, public health consequences of As contamination and mitigation strategies for As removal from water resources have been also highlighted. In this review, the data were extracted from various cutting edge studies published in national and international journals.

Keywords

Arsenic Groundwater Sources Mechanisms Isotope evidence Comparison Health effects 

Notes

Acknowledgements

The authors are thankful to University of Chinese Academy of Sciences for providing scholarship to Waqar Ali, Muhammad Junaid, and Atta Rasool. This work is supported by the National Key R&D Program of China (No. 2017YFD0800302) and the Natural Science Foundation of China (4157312).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10653_2018_169_MOESM1_ESM.docx (260 kb)
Table S1 Major Arsenic-bearing minerals occurring in nature (Mandal and Suzuki 2002). Table S2 shows selective redox-sensitive compounds to identify redox condition.Table S3 Chronic Effects of Arsenic on Human Health (Barringer and Reilly 2013). Figure S1 Pakistan regions that are facing arsenic contamination in groundwater under various redox conditions comparison bivariate plots of Arsenic versus pH, EC (μS/cm), SO42− (mg/L), NO3 (mg/L), HCO3 (mg/L) and Mn (mg/L) (DOCX 260 kb)

References

  1. Abernathy, C. O., Thomas, D. J., & Calderon, R. L. (2003). Health effects and risk assessment of arsenic. The Journal of Nutrition, 133, 1536S–1538S.CrossRefGoogle Scholar
  2. Agusa, T., Kunito, T., Fujihara, J., Kubota, R., Minh, T. B., Thi Kim Trang, P., et al. (2004). Contamination by trace elements in groundwater of Vietnam. Biomedical Research on Trace Elements, 15, 339–341.Google Scholar
  3. Ahmad, T., Kahlown, M., Tahir, A. & Rashid, H. (2004). Arsenic an emerging issue: Experiences from Pakistan. In: Proceedings of the 30th WEDC international conference (pp. 459–466).Google Scholar
  4. Ahmed, M. F. (2001). An overview of arsenic removal technologies in Bangladesh and India. In Proceedings of BUET-UNU international workshop on technologies for arsenic removal from drinking water, Dhaka (pp. 5–7). Citeseer.Google Scholar
  5. Anawar, H. M., Akai, J., Komaki, K., Terao, H., Yoshioka, T., Ishizuka, T., et al. (2003). Geochemical occurrence of arsenic in groundwater of Bangladesh: Sources and mobilization processes. Journal of Geochemical Exploration, 77, 109–131.CrossRefGoogle Scholar
  6. Aposhian, H. V., Gurzau, E. S., Le, X. C., Gurzau, A., Healy, S. M., Lu, X., et al. (2000). Occurrence of monomethylarsonous acid in urine of humans exposed to inorganic arsenic. Chemical Research in Toxicology, 13, 693–697.CrossRefGoogle Scholar
  7. Arain, G. M., Aslam, M., & Majidano, S. A. (2007). A Preliminary Study on the arsenic contamination of underground water. Journal of the Chemical Society of Pakistan, 29, 463.Google Scholar
  8. Arain, M. B., Kazi, T. G., Baig, J. A., Jamali, M. K., Afridi, H. I., Jalbani, N., et al. (2009a). Respiratory effects in people exposed to arsenic via the drinking water and tobacco smoking in southern part of Pakistan. Science of the Total Environment, 407, 5524–5530.CrossRefGoogle Scholar
  9. Arain, M., Kazi, T., Baig, J., Jamali, M., Afridi, H., Shah, A., et al. (2009b). Determination of arsenic levels in lake water, sediment, and foodstuff from selected area of Sindh, Pakistan: Estimation of daily dietary intake. Food and Chemical Toxicology, 47, 242–248.CrossRefGoogle Scholar
  10. Aziz, H. M., Bhattacharya, P., Sracek, O., Ahmed, K. M., von Brömssen, M., & Jacks, G. (2009). Geological controls on groundwater chemistry and arsenic mobilization: Hydrogeochemical study along an EW transect in the Meghna basin, Bangladesh. Journal of Hydrology, 378, 105–118.CrossRefGoogle Scholar
  11. Azizullah, A., Khattak, M. N. K., Richter, P., & Häder, D.-P. (2011). Water pollution in Pakistan and its impact on public health: A review. Environment International, 37, 479–497.CrossRefGoogle Scholar
  12. Baig, J. A., Kazi, T. G., Arain, M. B., Afridi, H. I., Kandhro, G. A., Sarfraz, R. A., et al. (2009). Evaluation of arsenic and other physico-chemical parameters of surface and ground water of Jamshoro, Pakistan. Journal of Hazardous Materials, 166, 662–669.CrossRefGoogle Scholar
  13. Baig, J. A., Kazi, T. G., Shah, A. Q., Afridi, H. I., Kandhro, G. A., Khan, S., et al. (2011). Evaluation of arsenic levels in grain crops samples, irrigated by tube well and canal water. Food and Chemical Toxicology, 49, 265–270.CrossRefGoogle Scholar
  14. Bard, A. J., Parsons, R., & Jordan, J. (1985). Standard potentials in aqueous solution. Boca Raton: CRC Press.Google Scholar
  15. Barringer, J. L., & Reilly, P. A. (2013). Arsenic in groundwater: A summary of sources and the biogeochemical and hydrogeologic factors affecting arsenic occurrence and mobility. New York: INTECH Open Access Publisher.Google Scholar
  16. Berg, M., Stengel, C., Trang, P. T. K., Viet, P. H., Sampson, M. L., Leng, M., et al. (2007). Magnitude of arsenic pollution in the Mekong and Red River Deltas: Cambodia and Vietnam. Science of the Total Environment, 372, 413–425.CrossRefGoogle Scholar
  17. Berg, M., Tran, H. C., Nguyen, T. C., Pham, H. V., Schertenleib, R., & Giger, W. (2001). Arsenic contamination of groundwater and drinking water in Vietnam: A human health threat. Environmental Science and Technology, 35, 2621–2626.CrossRefGoogle Scholar
  18. Berg, M., Trang, P. T. K., Stengel, C., Buschmann, J., Viet, P. H., Van Dan, N., et al. (2008). Hydrological and sedimentary controls leading to arsenic contamination of groundwater in the Hanoi area, Vietnam: The impact of iron-arsenic ratios, peat, river bank deposits, and excessive groundwater abstraction. Chemical Geology, 249, 91–112.CrossRefGoogle Scholar
  19. Bhutta, M., Chaudhry, M. & Chaudhry, A. (2005). Groundwater quality and availability in Pakistan. In Proceedings of the seminar on strategies to address the present and future water quality issues.Google Scholar
  20. Bibi, M., Ahmed, F., & Ishiga, H. (2008). Geochemical study of arsenic concentrations in groundwater of the Meghna River Delta, Bangladesh. Journal of Geochemical Exploration, 97, 43–58.CrossRefGoogle Scholar
  21. Bibi, S., Farooqi, A., Hussain, K., & Haider, N. (2015). Evaluation of industrial based adsorbents for simultaneous removal of arsenic and fluoride from drinking water. Journal of Cleaner Production, 87, 882–896.CrossRefGoogle Scholar
  22. Bissen, M., & Frimmel, F. H. (2003). Arsenic: A review. Part I—Occurrence, toxicity, speciation, mobility. Acta Hydrochimica et Hydrobiologica, 31, 9–18.CrossRefGoogle Scholar
  23. Bowell, R. J., Alpers, C. N., Jamieson, H. E., Nordstrom, D. K., & Majzlan, J. (2014). The environmental geochemistry of arsenic: An overview. Reviews in Mineralogy and Geochemistry, 79, 1–16.CrossRefGoogle Scholar
  24. Boyle, D., Turner, R., & Hall, G. (1998). Anomalous arsenic concentrations in groundwaters of an island community, Bowen Island, British Columbia. Environmental Geochemistry and Health, 20, 199–212.CrossRefGoogle Scholar
  25. Brahman, K. D., Kazi, T. G., Afridi, H. I., Naseem, S., Arain, S. S., & Ullah, N. (2013). Evaluation of high levels of fluoride, arsenic species and other physicochemical parameters in underground water of two sub districts of Tharparkar, Pakistan: A multivariate study. Water Research, 47, 1005–1020.CrossRefGoogle Scholar
  26. Brammer, H., & Ravenscroft, P. (2009). Arsenic in groundwater: A threat to sustainable agriculture in South and South-east Asia. Environment International, 35, 647–654.CrossRefGoogle Scholar
  27. Bundschuh, J., Litter, M., Ciminelli, V. S., Morgada, M. E., Cornejo, L., Hoyos, S. G., et al. (2010). Emerging mitigation needs and sustainable options for solving the arsenic problems of rural and isolated urban areas in Latin America: A critical analysis. Water Research, 44, 5828–5845.CrossRefGoogle Scholar
  28. Cadic, G. (2002). Problème de l'arsenic dans l'eau potable en savoie - Phase 1 : pré-diagnostic. Montpellier, ENGREF; Chambéry, Conseil Général de Savoie. 45 p.Google Scholar
  29. Carrizales, L., Razo, I., Téllez-Hernández, J. I., Torres-Nerio, R., Torres, A., Batres, L. E., et al. (2006). Exposure to arsenic and lead of children living near a copper-smelter in San Luis Potosi, Mexico: Importance of soil contamination for exposure of children. Environmental Research, 101, 1–10.CrossRefGoogle Scholar
  30. Chadha, D., & Ray, S. (1999). High incidence of arsenic in groundwater in West Bengal (p. 138). West Bengal: CGWB Report.Google Scholar
  31. Chowdhury, T. R., Basu, G. K., Mandal, B. K., Biswas, B. K., Samanta, G., Chowdhury, U. K., et al. (1999). Arsenic poisoning in the Ganges delta. Nature, 401, 545–546.CrossRefGoogle Scholar
  32. Christensen, T. H., Bjerg, P. L., Banwart, S. A., Jakobsen, R., Heron, G., & Albrechtsen, H.-J. (2000). Characterization of redox conditions in groundwater contaminant plumes. Journal of Contaminant Hydrology, 45, 165–241.CrossRefGoogle Scholar
  33. Chwirka, J. D., Thomson, B. M., & Stomp, J. M., III. (2000). Removing arsenic from groundwater. Journal of American Water Works Association, 92, 79.CrossRefGoogle Scholar
  34. Clark, I. D., & Fritz, P. (1997). Environmental isotopes in hydrogeology. Boca Raton: CRC Press.Google Scholar
  35. Compendium, F. A. (1975). Munneapolis, Vol. 13. Los Angeles: The Miller Publishing Company.Google Scholar
  36. Cook, J. (1987). Left bank outfall drain stage I project: Scavenger well studies and pilot project. Nottingham: British Geological Survey.Google Scholar
  37. Cook, P. G., & Herczeg, A. L. (2012). Environmental tracers in subsurface hydrology. Springer.Google Scholar
  38. Cullen, W. R., & Reimer, K. J. (1989). Arsenic speciation in the environment. Chemical Reviews, 89, 713–764.CrossRefGoogle Scholar
  39. Das, H., Mitra, A. K., Sengupta, P., Hossain, A., Islam, F., & Rabbani, G. (2004). Arsenic concentrations in rice, vegetables, and fish in Bangladesh: A preliminary study. Environment International, 30, 383–387.CrossRefGoogle Scholar
  40. Deng, Y., Wang, Y., et al. (2009). Speciation and enrichment of arsenic in strongly reducing shallow aquifers at western Hetao Plain, northern China. Environmental Geology, 56(7), 1467–1477.CrossRefGoogle Scholar
  41. Farooq, S., Hashmi, I., Qazi, I. A., Qaiser, S., & Rasheed, S. (2008). Monitoring of coliforms and chlorine residual in water distribution network of Rawalpindi, Pakistan. Environmental Monitoring and Assessment, 140, 339–347.CrossRefGoogle Scholar
  42. Farooqi, A., Masuda, H., & Firdous, N. (2007a). Toxic fluoride and arsenic contaminated groundwater in the Lahore and Kasur districts, Punjab, Pakistan and possible contaminant sources. Environmental Pollution, 145, 839–849.CrossRefGoogle Scholar
  43. Farooqi, A., Masuda, H., Kusakabe, M., Naseem, M., & Firdous, N. (2007b). Distribution of highly arsenic and fluoride contaminated groundwater from east Punjab, Pakistan, and the controlling role of anthropogenic pollutants in the natural hydrological cycle. Geochemical Journal, 41, 213–234.CrossRefGoogle Scholar
  44. Fields, K. A., Chen, A. S., & Wang, L. (2000a). Arsenic removal from drinking water by coagulation/filtration and lime softening plants. Washington: National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency.Google Scholar
  45. Fields, K. A., Chen, A. S., Wang, L., & Sorg, T. J. (2000b). Arsenic removal from drinking water by iron removal plants. Washington: National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency.Google Scholar
  46. Gao, X., & Li, P. (2012). Concentration and fractionation of trace metals in surface sediments of intertidal Bohai Bay, China. Marine Pollution Bulletin, 64, 1529–1536.CrossRefGoogle Scholar
  47. Gomez-Caminero, A., Howe, P. D., Hughes, M., Kenyon, E., Lewis, D., Moore, M., Aitio, A., et al. (2001). Environmental health criteria 224 arsenic and arsenic compounds. Geneva: World Health Organization.Google Scholar
  48. Greenman, D. W., Swarzenski, W. V., & Bennett, G. D. (1967). Ground-water hydrology of the Punjab, West Pakistan, with emphasis on problems caused by canal irrigation. Washington: US Government Printing Office.Google Scholar
  49. Guo, Q., Guo, H., Yang, Y., Han, S., & Zhang, F. (2014). Hydrogeochemical contrasts between low and high arsenic groundwater and its implications for arsenic mobilization in shallow aquifers of the northern Yinchuan Basin, PR China. Journal of Hydrology, 518, 464–476.CrossRefGoogle Scholar
  50. Guo, H., Zhang, B., Wang, G., & Shen, Z. (2010). Geochemical controls on arsenic and rare earth elements approximately along a groundwater flow path in the shallow aquifer of the Hetao Basin, Inner Mongolia. Chemical Geology, 270, 117–125.CrossRefGoogle Scholar
  51. Gupta, S., & Gupta, V. (2013). Speciation and toxicity of arsenic: A human carcinogen. Research Journal of Recent Sciences, 2, 45–53.Google Scholar
  52. Gurung, J. K., Ishiga, H., & Khadka, M. S. (2005). Geological and geochemical examination of arsenic contamination in groundwater in the Holocene Terai Basin, Nepal. Environmental Geology, 49, 98–113.CrossRefGoogle Scholar
  53. Halim, M., Majumder, R., Nessa, S., Oda, K., Hiroshiro, Y., Saha, B., et al. (2009). Groundwater contamination with arsenic in Sherajdikhan, Bangladesh: Geochemical and hydrological implications. Environmental Geology, 58, 73–84.CrossRefGoogle Scholar
  54. Haque, S., & Johannesson, K. H. (2006). Arsenic concentrations and speciation along a groundwater flow path: The Carrizo Sand aquifer, Texas, USA. Chemical Geology, 228, 57–71.CrossRefGoogle Scholar
  55. Haque, M. N., Morrison, G., Perrusquia, G., Gutierréz, M., Aguilera, A., Cano-Aguilera, I., et al. (2007). Characteristics of arsenic adsorption to sorghum biomass. Journal of Hazardous Materials, 145, 30–35.CrossRefGoogle Scholar
  56. Haque, I. U., Nabi, D., Baig, M., Hayat, W., & Trefry, M. (2008). Groundwater arsenic contamination: A multi-directional emerging threat to water scarce areas of Pakistan. IAHS Publication, 324, 24.Google Scholar
  57. Hashmi, I., Farooq, S., & Qaiser, S. (2009). Chlorination and water quality monitoring within a public drinking water supply in Rawalpindi Cantt (Westridge and Tench) area, Pakistan. Environmental Monitoring and Assessment, 158, 393–403.CrossRefGoogle Scholar
  58. Hassan, K. M., Fukuhara, T., Hai, F. I., Bari, Q. H., & Islam, K. M. S. (2009). Development of a bio-physicochemical technique for arsenic removal from groundwater. Desalination, 249, 224–229.CrossRefGoogle Scholar
  59. Hinrichsen, D., & Tacio, H. (2002). The coming freshwater crisis is already here. The linkages between population and water. Washington, DC: Woodrow Wilson International Center for Scholars.Google Scholar
  60. Hopenhayn-Rich, C., Biggs, M. L., Fuchs, A., Bergoglio, R., Tello, E. E., Nicolli, H., et al. (1996). Bladder cancer mortality associated with arsenic in drinking water in Argentina. Epidemiology, 7, 117–124.CrossRefGoogle Scholar
  61. Hudson-Edwards, K. A., & Archer, J. (2012). Geochemistry of As-, F-and B-bearing waters in and around San Antonio de los Cobres, Argentina, and implications for drinking and irrigation water quality. Journal of Geochemical Exploration, 112, 276–284.CrossRefGoogle Scholar
  62. Hug, S. J., Canonica, L., Wegelin, M., Gechter, D., & Von Gunten, U. (2001). Solar oxidation and removal of arsenic at circumneutral pH in iron containing waters. Environmental Science and Technology, 35, 2114–2121.CrossRefGoogle Scholar
  63. Iqbal, S. (2001). Arsenic contamination in Pakistan. In Presentation at a UN-ESCAP meeting, geology and health: Solving the arsenic crisis in the Asia-Pacific region.Google Scholar
  64. Jabeen, S., Shah, M., Ahmed, I., Khan, S., & Hayat, M. (2014). Physico-chemical parameters of surface and ground water and their environmental impact assessment in the Haripur Basin, Pakistan. Journal of Geochemical Exploration, 138, 1–7.CrossRefGoogle Scholar
  65. Jain, C., & Singh, R. (2012). Technological options for the removal of arsenic with special reference to South East Asia. Journal of Environmental Management, 107, 1–18.CrossRefGoogle Scholar
  66. Jehangir, M. (2002). Bacteriological contamination and upward trend in nitrate contents, observed in drinking water of Rawalpindi and Islamabad. Pakistan: The Network Consumer Protection in Pakistan.Google Scholar
  67. Kazi, T., Arain, M., Jamali, M., Jalbani, N., Afridi, H., Sarfraz, R., et al. (2009). Assessment of water quality of polluted lake using multivariate statistical techniques: A case study. Ecotoxicology and Environmental Safety, 72, 301–309.CrossRefGoogle Scholar
  68. Kendall, C. (1998). Tracing nitrogen sources and cycling in catchments. Isotope Tracers in Catchment Hydrology, 1, 519–576.CrossRefGoogle Scholar
  69. Kim, K.-W., Chanpiwat, P., Hanh, H. T., Phan, K., & Sthiannopkao, S. (2011). Arsenic geochemistry of groundwater in Southeast Asia. Frontiers of Medicine, 5, 420–433.CrossRefGoogle Scholar
  70. Kim, M.-J., Nriagu, J., & Haack, S. (2002). Arsenic species and chemistry in groundwater of southeast Michigan. Environmental Pollution, 120, 379–390.CrossRefGoogle Scholar
  71. Kinniburgh, D. (2001). Arsenic contamination of groundwater in Bangladesh. Final Report. http://www.bgs.ac.uk/research/groundwater/health/arsenic/Bangladesh/reports. html.
  72. Kinniburgh, D., Smedley, P., Davies, J., Huq, S., Ahmad, K. & Ahmed, K. (2000). The groundwater arsenic problem in Bangladesh. In: WEDC conference (pp. 230–231).Google Scholar
  73. Kinniburgh, D. G., & Kosmus, W. (2002). Arsenic contamination in groundwater: Some analytical considerations. Talanta, 58, 165–180.CrossRefGoogle Scholar
  74. Korte, N. (1991). Naturally occurring arsenic in groundwaters of the Midwestern United States. Environmental Geology and Water Sciences, 18, 137–141.CrossRefGoogle Scholar
  75. Kouras, A., Katsoyiannis, I., & Voutsa, D. (2007). Distribution of arsenic in groundwater in the area of Chalkidiki, Northern Greece. Journal of Hazardous Materials, 147, 890–899.CrossRefGoogle Scholar
  76. Krishna, A. K., Satyanarayanan, M., & Govil, P. K. (2009). Assessment of heavy metal pollution in water using multivariate statistical techniques in an industrial area: A case study from Patancheru, Medak District, Andhra Pradesh, India. Journal of Hazardous Materials, 167, 366–373.CrossRefGoogle Scholar
  77. Kumar, P., Kumar, M., Ramanathan, A., & Tsujimura, M. (2010). Tracing the factors responsible for arsenic enrichment in groundwater of the middle Gangetic Plain, India: A source identification perspective. Environmental Geochemistry and Health, 32, 129–146.CrossRefGoogle Scholar
  78. Liu, C.-W., Lin, K.-H., & Kuo, Y.-M. (2003). Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Science of the Total Environment, 313, 77–89.CrossRefGoogle Scholar
  79. Ma, H. Z., Xia, Y. J., Wu, K. G., Sun, T. Z., & Mumford, J. L. (1999). Human exposure to arsenic and health effects in Bayingnormen, Inner Mongolia. In W. R. Chappell, C. O. Abernathy, & R. Calderon (Eds.), Arsenic exposure and health effects (pp. 127–131). Amsterdam: Elsevier.CrossRefGoogle Scholar
  80. Malana, M. A., & Khosa, M. A. (2011). Groundwater pollution with special focus on arsenic, Dera Ghazi Khan-Pakistan. Journal of Saudi Chemical Society, 15, 39–47.CrossRefGoogle Scholar
  81. Mandal, B. K. (1996). Arsenic in groundwater in seven districts of West Bengal, India-the biggest arsenic calamity in the world. Current Scienc, 70, 976–986.Google Scholar
  82. Mandal, B. K., & Suzuki, K. T. (2002). Arsenic round the world: A review. Talanta, 58, 201–235.CrossRefGoogle Scholar
  83. Masuda, H., Mitamura, M., Farooqi, A. M., Muhanmad, N., Owada, M., Okazaki, K., et al. (2010). Geologic structure and geochemical characteristics of sediments of fluoride and arsenic contaminated groundwater aquifer in Kalalanwala and its vicinity, Punjab, Pakistan. Geochemical Journal, 44, 489–505.CrossRefGoogle Scholar
  84. Matschullat, J. (2000). Arsenic in the geosphere: A review. Science of the Total Environment, 249, 297–312.CrossRefGoogle Scholar
  85. Matschullat, J., Borba, R. P., Deschamps, E., Figueiredo, B. R., Gabrio, T., & Schwenk, M. (2000). Human and environmental contamination in the Iron Quadrangle, Brazil. Applied Geochemistry, 15, 181–190.CrossRefGoogle Scholar
  86. McClintock, T. R., Chen, Y., Bundschuh, J., Oliver, J. T., Navoni, J., Olmos, V., et al. (2012). Arsenic exposure in Latin America: Biomarkers, risk assessments and related health effects. Science of the Total Environment, 429, 76–91.CrossRefGoogle Scholar
  87. Mladenov, N., Wolski, P., Hettiarachchi, G. M., Murray-Hudson, M., Enriquez, H., Damaraju, S., et al. (2014). Abiotic and biotic factors influencing the mobility of arsenic in groundwater of a through-flow island in the Okavango Delta, Botswana. Journal of Hydrology, 518, 326–341.CrossRefGoogle Scholar
  88. Muhammad, S., Shah, M. T., & Khan, S. (2010). Arsenic health risk assessment in drinking water and source apportionment using multivariate statistical techniques in Kohistan region, northern Pakistan. Food and Chemical Toxicology, 48, 2855–2864.CrossRefGoogle Scholar
  89. Mukherjee, A., Bhattacharya, P., Shi, F., Fryar, A. E., Mukherjee, A. B., Xie, Z. M., et al. (2009). Chemical evolution in the high arsenic groundwater of the Huhhot basin (Inner Mongolia, PR China) and its difference from the western Bengal basin (India). Applied Geochemistry, 24, 1835–1851.CrossRefGoogle Scholar
  90. Mukherjee, A., & Fryar, A. E. (2008). Deeper groundwater chemistry and geochemical modeling of the arsenic affected western Bengal basin, West Bengal, India. Applied Geochemistry, 23, 863–894.CrossRefGoogle Scholar
  91. Mukherjee, A., Fryar, A. E., & Rowe, H. D. (2007). Regional-scale stable isotopic signatures of recharge and deep groundwater in the arsenic affected areas of West Bengal, India. Journal of Hydrology, 334, 151–161.CrossRefGoogle Scholar
  92. Mukherjee, A., Sengupta, M. K., Hossain, M. A., Ahamed, S., Das, B., Nayak, B., et al. (2006). Arsenic contamination in groundwater: A global perspective with emphasis on the Asian scenario. Journal of Health, Population and Nutrition, 24, 142–163.Google Scholar
  93. Mushtaq, N., Younas, A., Mashiatullah, A., Javed, T., Ahmad, A., & Farooqi, A. (2018). Hydrogeochemical and isotopic evaluation of groundwater with elevated arsenic in alkaline aquifers in Eastern Punjab, Pakistan. Chemosphere, 200, 576.CrossRefGoogle Scholar
  94. Nath, B., Jean, J.-S., Lee, M.-K., Yang, H.-J., & Liu, C.-C. (2008). Geochemistry of high arsenic groundwater in Chia-Nan plain, Southwestern Taiwan: Possible sources and reactive transport of arsenic. Journal of Contaminant Hydrology, 99, 85–96.CrossRefGoogle Scholar
  95. Navoni, J., De Pietri, D., Olmos, V., Gimenez, C., Mitre, G. B., de Titto, E., et al. (2014). Human health risk assessment with spatial analysis: Study of a population chronically exposed to arsenic through drinking water from Argentina. Science of the Total Environment, 499, 166–174.CrossRefGoogle Scholar
  96. Nguyen, V. A., Bang, S., Viet, P. H., & Kim, K.-W. (2009). Contamination of groundwater and risk assessment for arsenic exposure in Ha Nam province, Vietnam. Environment International, 35, 466–472.CrossRefGoogle Scholar
  97. Niazi, N. K. (2017). Comment on the “Extensive arsenic contamination in high-pH unconfined aquifers in the Indus Valley”. Science Advances, 3(8), 5.Google Scholar
  98. Nickson, R., McArthur, J., Burgess, W., Ahmed, K. M., Ravenscroft, P., & Rahmanñ, M. (1998). Arsenic poisoning of Bangladesh groundwater. Nature, 395, 338.CrossRefGoogle Scholar
  99. Nickson, R., McArthur, J., Ravenscroft, P., Burgess, W., & Ahmed, K. (2000). Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Applied Geochemistry, 15, 403–413.CrossRefGoogle Scholar
  100. Nickson, R., McArthur, J., Shrestha, B., Kyaw-Myint, T., & Lowry, D. (2005). Arsenic and other drinking water quality issues, Muzaffargarh District, Pakistan. Applied Geochemistry, 20, 55–68.CrossRefGoogle Scholar
  101. Nimick, D. A. (1998). Arsenic hydrogeochemistry in an irrigated river valley: A reevaluation. Ground Water, 36, 743.CrossRefGoogle Scholar
  102. Nitzsche, K. S., Lan, V. M., Trang, P. T. K., Viet, P. H., Berg, M., Voegelin, A., et al. (2015a). Arsenic removal from drinking water by a household sand filter in Vietnam: Effect of filter usage practices on arsenic removal efficiency and microbiological water quality. Science of the Total Environment, 502, 526–536.CrossRefGoogle Scholar
  103. Nitzsche, K. S., Weigold, P., Lösekann-Behrens, T., Kappler, A., & Behrens, S. (2015b). Microbial community composition of a household sand filter used for arsenic, iron, and manganese removal from groundwater in Vietnam. Chemosphere, 138, 47–59.CrossRefGoogle Scholar
  104. Pakistan, W. (2007). Pakistan’s water at risk, water and health related issues and key recommendations. Lahore: Freshwater and Toxics Programme, Communications Division, WWF Pakistan.Google Scholar
  105. Parmar, S., & Singh, V. (2015). Phytoremediation approaches for heavy metal pollution: A review. Journal of Plant Science and Research, 2, 139.Google Scholar
  106. Phan, K., Sthiannopkao, S., Kim, K.-W., Wong, M. H., Sao, V., Hashim, J. H., et al. (2010). Health risk assessment of inorganic arsenic intake of Cambodia residents through groundwater drinking pathway. Water Research, 44, 5777–5788.CrossRefGoogle Scholar
  107. Podgorski, J. E., Eqani, S. A. M. A. S., Khanam, T., Ullah, R., Shen, H., & Berg, M. (2017). Extensive arsenic contamination in high-pH unconfined aquifers in the Indus Valley. Science Advances, 3, e1700935.CrossRefGoogle Scholar
  108. Polizzotto, M. L., Kocar, B. D., Benner, S. G., Sampson, M., & Fendorf, S. (2008). Near-surface wetland sediments as a source of arsenic release to ground water in Asia. Nature, 454, 505–508.CrossRefGoogle Scholar
  109. Rabbani, U., Mahar, G., Siddique, A., & Fatmi, Z. (2017). Risk assessment for arsenic-contaminated groundwater along River Indus in Pakistan. Environmental Geochemistry and Health, 39, 179–190.CrossRefGoogle Scholar
  110. Rafique, T., Naseem, S., Usmani, T. H., Bashir, E., Khan, F. A., & Bhanger, M. I. (2009). Geochemical factors controlling the occurrence of high fluoride groundwater in the Nagar Parkar area, Sindh, Pakistan. Journal of Hazardous Materials, 171, 424–430.CrossRefGoogle Scholar
  111. Rahman, A., Lee, H., & Khan, M. A. (1997). Domestic water contamination in rapidly growing megacities of Asia: Case of Karachi, Pakistan. Environmental Monitoring and Assessment, 44, 339–360.CrossRefGoogle Scholar
  112. Rasool, A., Farooqi, A., Masood, S., & Hussain, K. (2016a). Arsenic in groundwater and its health risk assessment in drinking water of Mailsi, Punjab, Pakistan. Human and Ecological Risk Assessment: An International Journal, 22, 187–202.CrossRefGoogle Scholar
  113. Rasool, A., Farooqi, A., Xiao, T., Masood, S., & Kamran, M. A. (2016b). Elevated levels of arsenic and trace metals in drinking water of Tehsil Mailsi, Punjab, Pakistan. Journal of Geochemical Exploration, 169, 89–99.CrossRefGoogle Scholar
  114. Rasool, A., Xiao, T., Baig, Z. T., Masood, S., Mostofa, K. M., & Iqbal, M. (2015). Co-occurrence of arsenic and fluoride in the groundwater of Punjab, Pakistan: Source discrimination and health risk assessment. Environmental Science and Pollution Research, 22, 19729–19746.CrossRefGoogle Scholar
  115. Ravenscroft, P., Brammer, H., & Richards, K. (2009). Arsenic pollution: A global synthesis. London: Wiley.CrossRefGoogle Scholar
  116. Robertson, F. N. (1989). Arsenic in ground-water under oxidizing conditions, south-west United States. Environmental Geochemistry and Health, 11, 171–185.CrossRefGoogle Scholar
  117. Rosemann, N. (2005). Drinking water crises in Pakistan and the issue of bottled water: The Case of Nestle’s Pure Life. Islamabad: Actionaid Pakistan.Google Scholar
  118. Rowland, H. A., Omoregie, E. O., Millot, R., Jimenez, C., Mertens, J., Baciu, C., et al. (2011). Geochemistry and arsenic behaviour in groundwater resources of the Pannonian Basin (Hungary and Romania). Applied Geochemistry, 26, 1–17.CrossRefGoogle Scholar
  119. Saltori, R. (2004). Arsenic contamination in Afghanistan: Preliminary findings (pp. 1–15). Kabul: DACCAR.Google Scholar
  120. Sancha, A. M. (2006). Review of coagulation technology for removal of arsenic: Case of Chile. Journal of Health, Population and Nutrition, 24, 267–272.Google Scholar
  121. Sancha, A., & Castro de Esparza, M. (2000). Arsenic status and handling in Latin America. Santiago: Universidad de Chile.Google Scholar
  122. Shah, A. Q., Kazi, T. G., Arain, M. B., Jamali, M. K., Afridi, H. I., Jalbani, N., et al. (2009). Accumulation of arsenic in different fresh water fish species: Potential contribution to high arsenic intakes. Food Chemistry, 112, 520–524.CrossRefGoogle Scholar
  123. Shakoor, M. B., Bibi, I., Niazi, N. K., Shahid, M., Nawaz, M. F., Farooqi, A., et al. (2018). The evaluation of arsenic contamination potential, speciation and hydrogeochemical behaviour in aquifers of Punjab, Pakistan. Chemosphere, 199, 737–746.CrossRefGoogle Scholar
  124. Shemirani, F., Baghdadi, M., & Ramezani, M. (2005). Preconcentration and determination of ultra trace amounts of arsenic(III) and arsenic(V) in tap water and total arsenic in biological samples by cloud point extraction and electrothermal atomic absorption spectrometry. Talanta, 65, 882–887.CrossRefGoogle Scholar
  125. Smedley, P. (2001). Groundwater Quality: Pakistan. British Geological Survey.Google Scholar
  126. Smedley, P. (2005). Arsenic occurrence in groundwater in South and East Asia. In: Kemper, K. (Ed.) Towards a more effective operational response. Arsenic contamination of groundwater in South and East Asian Countries (pp. 20–97). New Delhi, India: World Bank. http://nora.nerc.ac.uk/id/eprint/500048/1/MyVersion2013.pdf.
  127. Smedley, P., Edmunds, W., & Pelig-Ba, K. (1996). Mobility of arsenic in groundwater in the Obuasi gold-mining area of Ghana: Some implications for human health. Geological Society, London, Special Publications, 113, 163–181.CrossRefGoogle Scholar
  128. Smedley, P., & Kinniburgh, D. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568.CrossRefGoogle Scholar
  129. Smedley, P., Nicolli, H., Macdonald, D., Barros, A., & Tullio, J. (2002). Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa, Argentina. Applied Geochemistry, 17, 259–284.CrossRefGoogle Scholar
  130. Stanger, G., Van Truong, T., Ngoc, K. L. T. M., Luyen, T., & Thanh, T. T. (2005). Arsenic in groundwaters of the Lower Mekong. Environmental Geochemistry and Health, 27, 341–357.CrossRefGoogle Scholar
  131. Stüben, D., Berner, Z., Chandrasekharam, D., & Karmakar, J. (2003). Arsenic enrichment in groundwater of West Bengal, India: Geochemical evidence for mobilization of As under reducing conditions. Applied Geochemistry, 18, 1417–1434.CrossRefGoogle Scholar
  132. Stute, M., Zheng, Y., Schlosser, P., Horneman, A., Dhar, R., Datta, S., et al. (2007). Hydrological control of As concentrations in Bangladesh groundwater. Water Resources Research, 43, W09417.CrossRefGoogle Scholar
  133. Tabassum, R. A., Shahid, M., Dumat, C., Niazi, N. K., Khalid, S., Shah, N. S. et al. (2018). Health risk assessment of drinking arsenic-containing groundwater in Hasilpur, Pakistan: Effect of sampling area, depth, and source. Environmental Science and Pollution Research International.  https://doi.org/10.1007/s11356-018-1276-z.
  134. Thakur, J. K., Thakur, R. K., Ramanathan, A., Kumar, M., & Singh, S. K. (2010). Arsenic contamination of groundwater in Nepal: An overview. Water, 3, 1–20.CrossRefGoogle Scholar
  135. Thirunavukkarasu, O., Viraraghavan, T., & Subramanian, K. (2003). Arsenic removal from drinking water using granular ferric hydroxide. Water Sa, 29, 161–170.CrossRefGoogle Scholar
  136. Thundiyil, J. G., Yuan, Y., Smith, A. H., & Steinmaus, C. (2007). Seasonal variation of arsenic concentration in wells in Nevada. Environmental Research, 104, 367–373.CrossRefGoogle Scholar
  137. Tournassat, C., Charlet, L., Bosbach, D., & Manceau, A. (2002). Arsenic(III) oxidation by birnessite and precipitation of manganese(II) arsenate. Environmental Science and Technology, 36, 493–500.CrossRefGoogle Scholar
  138. Tsuji, J. S., Perez, V., Garry, M. R., & Alexander, D. D. (2014). Association of low-level arsenic exposure in drinking water with cardiovascular disease: A systematic review and risk assessment. Toxicology, 323, 78–94.CrossRefGoogle Scholar
  139. Ullah, R., Malik, R. N., & Qadir, A. (2009). Assessment of groundwater contamination in an industrial city, Sialkot, Pakistan. African Journal of Environmental Science and Technology, 3, 429.Google Scholar
  140. US Department of Health and Human Services. (2000). Toxicological profile for arsenic.Google Scholar
  141. Violante, A., Ricciardella, M., Del Gaudio, S., & Pigna, M. (2006). Coprecipitation of arsenate with metal oxides: Nature, mineralogy, and reactivity of aluminum precipitates. Environmental Science and Technology, 40, 4961–4967.CrossRefGoogle Scholar
  142. Wade, T. J., Xia, Y., Wu, K., Li, Y., Ning, Z., Le, X. C., et al. (2009). Increased mortality associated with well-water arsenic exposure in Inner Mongolia, China. International Journal of Environmental Research and Public Health, 6, 1107–1123.CrossRefGoogle Scholar
  143. Wang, L., Condit, W. E., & Chen, A. S. (2004). Technology selection and system design US EPA arsenic removal technology demonstration program round 1. Washington: National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency.Google Scholar
  144. Welch, A. H., Westjohn, D., Helsel, D. R., & Wanty, R. B. (2000a). Arsenic in ground water of the United States: Occurrence and geochemistry. Groundwater, 38, 589–604.CrossRefGoogle Scholar
  145. Welch, A. H., Westjohn, D., Helsel, D. R., & Wanty, R. B. (2000b). Arsenic in ground water of the United States: Occurrence and geochemistry. Ground Water, 38, 589–604.CrossRefGoogle Scholar
  146. Wolf, R. (1974). Occupational arsenic lesions in vintagers. Berufs-Dermatosen, 22, 34.Google Scholar
  147. Xie, X., Wang, Y., Su, C., Li, J., & Li, M. (2012). Influence of irrigation practices on arsenic mobilization: Evidence from isotope composition and Cl/Br ratios in groundwater from Datong Basin, northern China. Journal of Hydrology, 424, 37–47.CrossRefGoogle Scholar
  148. Xie, X., Wang, Y., Su, C., Liu, H., Duan, M., & Xie, Z. (2008). Arsenic mobilization in shallow aquifers of Datong Basin: Hydrochemical and mineralogical evidences. Journal of Geochemical Exploration, 98, 107–115.CrossRefGoogle Scholar
  149. Yadav, I. C., Devi, N. L., Mohan, D., Shihua, Q., & Singh, S. (2014). Assessment of groundwater quality with special reference to arsenic in Nawalparasi district, Nepal using multivariate statistical techniques. Environmental Earth Sciences, 72, 259–273.CrossRefGoogle Scholar
  150. Zheng, Y., Stute, M., Van Geen, A., Gavrieli, I., Dhar, R., Simpson, H., et al. (2004). Redox control of arsenic mobilization in Bangladesh groundwater. Applied Geochemistry, 19, 201–214.CrossRefGoogle Scholar
  151. Zhu, G., Li, Z., Su, Y., Ma, J., & Zhang, Y. (2007). Hydrogeochemical and isotope evidence of groundwater evolution and recharge in Minqin Basin, Northwest China. Journal of Hydrology, 333, 239–251.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Waqar Ali
    • 1
    • 2
  • Atta Rasool
    • 1
    • 2
  • Muhammad Junaid
    • 2
    • 3
  • Hua Zhang
    • 1
  1. 1.State Key Laboratory of Environmental Geochemistry, Institute of GeochemistryChinese Academy of SciencesGuiyangChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Research Center for Environment and Health, Chongqing Institute of Green and Intelligent TechnologyChinese Academy of SciencesChongqingChina

Personalised recommendations