Advertisement

Salar del Hombre Muerto, source of lithium-tolerant bacteria

  • Fabiana Lilian Martínez
  • Ingrid Georgina Orce
  • Verónica Beatriz Rajal
  • Verónica Patricia Irazusta
Original Paper
  • 98 Downloads

Abstract

The Salar del Hombre Muerto is a flat salt with great microbial activity despite the existing extreme conditions like high altitude, lack of water, low level of oxygen, high radiation and high concentration of sodium and lithium chloride. Despite these unfavorable conditions, we found microbial diversity with the presence of fungi, algae, and bacteria. From aqueous solutions and soil samples, a total of 238 bacteria were isolated and 186 of them were able to grow in the presence of salt. About 30% of the strains showed the ability to grow in solid medium proximally to a LiCl solution close to saturation (636 g/L). These isolates were characterized taking into account the morphology, Gram stain, ability to form biofilms and to produce pigments, and mainly according to the tolerance against lithium chloride. Bacillus was predominant among the most tolerant 26 microorganisms found, followed by Micrococcus and Brevibacterium. Members of the genera Kocuria, Curtobacterium and Halomonas were also represented among the bacteria with tolerance to 30 and 60 g/L of LiCl in defined liquid medium. All the capacities found in these microorganisms make them extremely interesting for biotechnological applications.

Keywords

Hypersaline environments Lithium Halotolerant bacteria Extremophiles 

Notes

Acknowledgements

This project was partially supported by Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) (PICT 2013-0932), by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (PIP 332), and by the Consejo de Investigaciones de la Universidad Nacional de Salta (Salta, Argentina) through the research projects N° 2070/4 and program 2070. Fabiana Lilian Martinez was a recipient of a doctoral fellowship from CONICET.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. Abrol, I. P., Yadav, J. S. P. & Massoud, F. I. (1988). Salt-affected soils and their management. Rome: Food and Agriculture Organization of the United Nations (FAO) http://www.fao.org/docrep/x5871e/x5871e00.htm#Contents. Accessed 14 June 2017.
  2. Ali, I., Prasongsuk, S., Akbar, A., Aslam, M., Lotrakul, P., Punnapayak, H., et al. (2016). Hypersaline habitats and halophilic microorganisms. Maejo International Journal of Science and Technology, 10(3), 330–345.Google Scholar
  3. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410.  https://doi.org/10.1016/S0022-2836(05)80360-2.CrossRefGoogle Scholar
  4. Amjres, H., Béjar, V., Quesada, E., Abrini, J., & Llamas, I. (2011). Halomonas rifensis sp. nov., an exopolysaccharide producing, halophilic bacterium isolated from a solar saltern. International Journal of Systematic and Evolutionary Microbiology, 61(11), 2600–2605.  https://doi.org/10.1099/ijs.0.027268-0.CrossRefGoogle Scholar
  5. Amoozegar, M. A., Ghazanfari, N., & Didari, M. (2012). Lead and cadmium bioremoval by Halomonas sp., an exopolysaccharide-producing halophilic bacterium. Progress in Biological Sciences, 2(1), 1–11.Google Scholar
  6. Arias, D., Cisternas, L. A., & Rivas, M. (2017). Biomineralization of calcium and magnesium crystals from seawater by halotolerant bacteria isolated from Atacama Salar (Chile). Desalination, 405, 1–9.  https://doi.org/10.1016/j.desal.2016.11.027.CrossRefGoogle Scholar
  7. Arora, S., Vanza, M. J., Mehta, R., Bhuva, C., & Patel, P. N. (2014). Halophilic microbes for bio-remediation of salt affected soils. African Journal of Microbiology Research, 8(33), 3070–3078.  https://doi.org/10.5897/AJMR2014.6960.CrossRefGoogle Scholar
  8. Belfiore, C., Curia, M. V., & Farías, M. E. (2017). Characterization of Rhodococcus sp. A5wh isolated from a high altitude Andean lake to unravel the survival strategy under lithium stress. Revista Argentina de Microbiología.  https://doi.org/10.1016/j.ram.2017.07.005.CrossRefGoogle Scholar
  9. Bui, E. N. (2013). Soil salinity: A neglected factor in plant ecology and biogeography. Journal of Arid Environments, 92, 14–25.CrossRefGoogle Scholar
  10. Chen, G., Chen, X., Yang, Y., Hay, A. G., Yu, X., & Chen, Y. (2011). Sorption and distribution of copper in unsaturated Pseudomonas putida CZ1 biofilms as determined by X-ray fluorescence microscopy. Applied and Environmental Microbiology, 77(14), 4719–4727.  https://doi.org/10.1128/AEM.00125-11.CrossRefGoogle Scholar
  11. Chien, C. C., Lin, B. C., & Wu, C. H. (2013). Biofilm formation and heavy metal resistance by an environmental Pseudomonas sp. Biochemical Engineering Journal, 78, 132–137.CrossRefGoogle Scholar
  12. Dalmaso, G. Z. L., Ferreira, D., & Vermelho, A. B. (2015). Marine extremophiles a source of hydrolases for biotechnological applications. Marine Drugs, 13, 1925–1965.  https://doi.org/10.3390/md13041925.CrossRefGoogle Scholar
  13. DasSarma, S. & DasSarma, P. (2017). Halophiles. In: eLS. Chichester: John Wiley & Sons, Ltd.  https://doi.org/10.1002/9780470015902.a0000394.pub4
  14. Dhakar, K., & Pandey, A. (2016). Wide pH range tolerance in extremophiles: Towards understanding an important phenomenon for future biotechnology. Applied Microbiology and Biotechnology, 100(6), 2499–2510.  https://doi.org/10.1007/s00253-016-7285-2.CrossRefGoogle Scholar
  15. Eaton, A. D., & American Public Health Association; American Water Works Association; Water Environment Federation. (2005). Standard Methods for the examination of water and wastewaters (21st ed.). Washington, DC: APHA-AWWA-WEF.Google Scholar
  16. Edbeib, M. F., Wahab, R. A., & Huyop, F. (2016). Halophiles: Biology, adaptation, and their role in decontamination of hypersaline environments. World Journal of Microbiology & Biotechnology, 32(8), 135.  https://doi.org/10.1007/s11274-016-2081-9.CrossRefGoogle Scholar
  17. Fasahati, P., Woo, E. C., & Liu, J. J. (2015). Industrial-scale bioethanol production from brown algae: Effects of pretreatment processes on plant economics. Applied Energy, 139, 175–187.CrossRefGoogle Scholar
  18. Fukuchi, S., Yoshimune, K., Wakayama, M., Moriguchi, M., & Nishikawa, K. (2003). Unique amino acid composition of proteins in halophilic bacteria. Journal of Molecular Biology, 327(2), 347–357.  https://doi.org/10.1016/S0022-2836(03)00150-5.CrossRefGoogle Scholar
  19. Gómez, P. I., Barriga, A., Cifuentes, A. S., & González, M. A. (2003). Effect of salinity on the quantity and quality of carotenoids accumulated by Dunaliella salina (strain CONC-007) and Dunaliella bardawil (strain ATCC 30861) chlorophyta. Biological Research, 36(2), 185–192.  https://doi.org/10.4067/S0716-97602003000200008.CrossRefGoogle Scholar
  20. Goswami, D., Pithwa, S., Dhandhukia, P., & Thakker, J. N. (2014). Delineating Kocuria turfanensis 2M4 as a credible PGPR: A novel IAA-producing bacteria isolated from saline desert. Journal of Plant Interactions, 9(1), 566–576.CrossRefGoogle Scholar
  21. Gürtler, V., & Stanisich, V. (1996). New approaches to typing and identification of bacteria using the 16s–23s rDNA spacer region. Microbiology, 142, 3–16.CrossRefGoogle Scholar
  22. Irazusta, V., Nieto-Peñalver, C. G., Cabral, M. E., Amoroso, M. J., & Castellanos de Figueroa, L. I. (2013). Relationship among carotenoid production, copper bioremediation and oxidative stress in Rhodotorula mucilaginosa RCL-11. Process Biochemistry, 48(5–6), 803–809.CrossRefGoogle Scholar
  23. Isbell, R. (1996). The Australian soil classification. Melbourne: CSIRO Publishing.Google Scholar
  24. Iyer, A., Mody, K., & Jha, B. (2005). Biosorption of heavy metals by a marine bacterium. Marine Pollution Bulletin, 50(3), 340–343.  https://doi.org/10.1016/j.marpolbul.2004.11.012.CrossRefGoogle Scholar
  25. Jin, Y., Weining, S., & Nevo, E. (2005). A MAPK gene from Dead Sea fungus confers stress tolerance to lithium salt and freezing-thawing: Prospects for saline agriculture. Proceedings of the National Academy of Sciences of the United States of America, 102(52), 18992–18997.  https://doi.org/10.1073/pnas.0509653102.CrossRefGoogle Scholar
  26. Lima, R. N., & Porto, A. L. (2016). Recent advances in marine enzymes for biotechnological processes. Advances in Food and Nutrition Research, 78, 153–192.  https://doi.org/10.1016/bs.afnr.2016.06.005.CrossRefGoogle Scholar
  27. Lowe, B. A., Marsh, T. L., Isaacs-Cosgrove, N., Kirkwood, R. N., Kiupel, M., et al. (2011). Microbial communities in the tonsils of healthy pigs. Veterinary Microbiology, 147(3–4), 346–357.  https://doi.org/10.1016/j.vetmic.2010.06.025.CrossRefGoogle Scholar
  28. Ma, Y., Galinski, E. A., Grant, W. D., Oren, A., & Ventosa, A. (2010). Halophiles 2010: Life in saline environments. Applied and Environmental Microbiology, 76(21), 6971–6981.  https://doi.org/10.1128/AEM.01868-10.CrossRefGoogle Scholar
  29. Majzlik, P., Strasky, A., Adam, V., Němec, M., Trnkova, L., Zehnalek, J., et al. (2011). Influence of zinc (II) and copper (II) ions on streptomyces bacteria revealed by electrochemistry. International Journal of Electrochemical Science, 6, 2171–2191.Google Scholar
  30. Mandelli, F., Miranda, V. S., Rodrigues, E., & Mercadante, A. Z. (2012). Identification of carotenoids with high antioxidant capacity produced by extremophile microorganisms. World Journal of Microbiology & Biotechnology, 28(4), 1781–1790.CrossRefGoogle Scholar
  31. Mata, J. A., Béjar, V., Llamas, I., Arias, S., Bressollier, P., Tallon, R., et al. (2006). Exopolysaccharides produced by the recently described halophilic bacteria Halomonas ventosae and Halomonas anticariensis. Research in Microbiology, 157(9), 827–835.  https://doi.org/10.1016/j.resmic.2006.06.004.CrossRefGoogle Scholar
  32. Merritt, J. H., Kadouri, D. E., & O’Toole, G. A. (2011). Growing and analyzing static biofilms. Current Protocols in Microbiology.  https://doi.org/10.1002/9780471729259.mc01b01s22.CrossRefGoogle Scholar
  33. Mishra, D., Kim, D. J., Ralph, D. E., Ahn, J. G., & Rhee, Y. H. (2008). Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans. Waste Management, 28(2), 333–338.  https://doi.org/10.1016/j.wasman.2007.01.010.CrossRefGoogle Scholar
  34. Moraga, N. B., Poma, H. R., Amoroso, M. J., & Rajal, V. B. (2014). Isolation and characterization of indigenous Streptomyces and Lentzea strains from soils containing boron compounds in Argentina. Journal of Basic Microbiology, 54(6), 568–577.  https://doi.org/10.1002/jobm.201200714.CrossRefGoogle Scholar
  35. Oren, A. (2002). Molecular ecology of extremely halophilic Archaea and Bacteria. FEMS Microbiology Ecology, 39, 1–7.CrossRefGoogle Scholar
  36. Oren, A. (2008). Microbial life at high salt concentrations: Phylogenetic and metabolic diversity. Saline Systems, 4(1), 2.  https://doi.org/10.1186/1746-1448-4-2.CrossRefGoogle Scholar
  37. Oren, A. (2010). Industrial and environmental applications of halophilic microorganisms. Environmental Technology, 31(8–9), 825–834.  https://doi.org/10.1080/09593330903370026.CrossRefGoogle Scholar
  38. Polti, M. A., Amoroso, M. J., & Abate, C. M. (2007). Chromium (VI) resistance and removal by actinomycete strains isolated from sediments. Chemosphere, 67(4), 660–667.CrossRefGoogle Scholar
  39. Pospiech, A., & Neumann, B. (1995). A versatile quick-prep of genomic DNA from gram-positive bacteria. Trends in Genetics, 11(6), 217–218.  https://doi.org/10.1016/S0168-9525(00)89052-6.CrossRefGoogle Scholar
  40. Rengasamy, P., & Olsson, K. A. (1991). Sodicity and soil structure. Australian Journal of Soil Research, 29(6), 935–952.CrossRefGoogle Scholar
  41. Rodriguez-Valera, F. (1988). Characteristics and microbial ecology of hypersaline environments. In F. Rodriguez-Valera (Ed.), Halophilic bacteria (pp. 3–30). Boca Raton: CRC Press.Google Scholar
  42. Sarafin, Y., Donio, M. B. S., Velmurugan, S., Michaelbabu, M., & Citarasu, T. (2014). Kocuria marina BS-15 a biosurfactant producing halophilic bacteria isolated from solar salt works. Saudi Journal of Biological Sciences.  https://doi.org/10.1016/j.sjbs.2014.01.001.CrossRefGoogle Scholar
  43. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596–1599.CrossRefGoogle Scholar
  44. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680.CrossRefGoogle Scholar
  45. Tschitschko, B., Williams, T. J., Allen, M. A., Zhong, L., Raftery, M. J., & Cavicchioli, R. (2016). Ecophysiological distinctions of haloarchaea from a hypersaline Antarctic lake as determined by metaproteomics. Applied and Environmental Microbiology, 82(11), 3165–3173.  https://doi.org/10.1128/AEM.00473-16.CrossRefGoogle Scholar
  46. Tsuruta, T. (2005). Removal and recovery of lithium using various microorganisms. Journal of Bioscience and Bioengineering, 100(5), 562–566.  https://doi.org/10.1263/jbb.100.562.CrossRefGoogle Scholar
  47. Ventosa, A. (2006). Unusual micro-organisms from unusual habitats: hypersaline environments. Symposia-society for general microbiology (Vol. 66, pp. 223–255) Cambridge: Cambridge University Press; 1999.Google Scholar
  48. Wong, V. N. L., Greene, R. S. B., Dalal, R. C., & Murphy, B. W. (2010). Soil carbon dynamics in saline and sodic soils: A review. Soil Use and Management, 26(1), 2–11.  https://doi.org/10.1111/j.1475-2743.2009.00251.x.CrossRefGoogle Scholar
  49. Yumoto, I., Hirota, K., Goto, T., Nodasaka, Y., & Nakajima, K. (2005). Bacillus oshimensis sp. nov., a moderately halophilic, non-motile alkaliphile. International Journal of Systematic and Evolutionary Microbiology, 55, 907–911.CrossRefGoogle Scholar
  50. Yumoto, I., Yamaga, S., Sogabe, Y., Nodasaka, Y., Matsuyama, H., Nakajima, K., et al. (2003). Bacillus krulwichiae sp. nov., a halotolerant obligate alkaliphile that utilizes benzoate and m-hydroxybenzoate. International Journal of Systematic and Evolutionary Microbiology, 53, 1531–1536.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Universidad Nacional de Salta (UNSa)SaltaArgentina
  2. 2.Facultad de IngenieríaUNSaSaltaArgentina
  3. 3.Singapore Centre for Environmental Life Sciences Engineering (SCELSE), School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
  4. 4.Facultad de Ciencias NaturalesUNSaSaltaArgentina

Personalised recommendations