Environmental Geochemistry and Health

, Volume 41, Issue 1, pp 275–296 | Cite as

Sediment quality, elemental bioaccumulation and antimicrobial properties of mangroves of Indian Sundarban

  • Madhurima BakshiEmail author
  • Somdeep Ghosh
  • S. S. Ram
  • M. Sudarshan
  • Anindita Chakraborty
  • Jayanta Kumar Biswas
  • Sabry M. Shaheen
  • Nabeel Khan Niazi
  • Jörg Rinklebe
  • Punarbasu Chaudhuri
Original Paper


Mangroves have wide applications in traditional medicines due to their several therapeutic properties. Potentially toxic elements (PTEs), in mangrove habitats, need serious concern because of their toxicity, bioaccumulation capacity and ecotoxicological risks. In the current study, we aimed to examine sediment quality and bioaccumulation of PTEs in a mangrove-dominated habitat of Sundarban, India, and their relation with antimicrobial property of ten mangrove species of the region. Antimicrobial activity of different solvent fractions of mangrove leaves was assessed against seven microorganisms. The highest antimicrobial activity was detected in ethyl acetate and acetone-extracted fractions of Avicennia alba. Various sediment quality indices revealed progressively deteriorating nature of surface sediment having moderate contamination, however, low ecotoxicological risk. The accumulation factors (AF) for different PTEs indicate a gradual metal bioaccumulation in leaf tissue. Antimicrobial activities indicated both positive and negative correlations with manganese (Mn), copper (Cu), iron (Fe) and zinc (Zn) concentrations of mangrove species. Concentration of Mn showed a significant correlation with almost all the fractions, whereas Cu had correlation with ethyl acetate, acetone and methanol fractions (P < 0.05). The AF of Mn and Cu exhibited correlation with antimicrobial activities of acetone and methanol fractions, whereas Fe and Zn had correlation with hexane and ethyl acetate fractions. Overall, Mn, Fe, Cu and Zn concentrations of Acanthus ilicifolius and Avicennia alba leaves and in the surface sediments demonstrated the strongest association (P < 0.05) with their antimicrobial activity as also depicted in correlation and cluster analysis studies. Thus, this study will help to establish a link between the PTEs in mangrove ecosystem with their bioactivity.


Sundarban Mangrove Antimicrobial activity Sediment quality Potentially toxic metal Bioaccumulation 



MB and PC are thankful to UGC, University of Calcutta and Government of West Bengal, India [Grant No. UGC/971/Fellow (Univ)]; SG and PC acknowledge DST, Government of India [Grant number SR/FT/LS-155/2011]; MB, SG and PC acknowledge UGC-DAE, Kolkata Centre for providing financial and infrastructural support.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest among them.

Supplementary material

10653_2018_145_MOESM1_ESM.docx (288 kb)
Supplementary material 1 (DOCX 288 kb)


  1. Abrahim, G. M. S., & Parker, R. J. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environmental Monitoring and Assessment, 136, 227–238.CrossRefGoogle Scholar
  2. Agoramoorthy, G., Chen, F. A., & Hsu, M. J. (2008). Threat of heavy metal pollution in halophytic and mangrove plants of Tamil Nadu, India. Environmental Pollution, 155(2), 320–326.CrossRefGoogle Scholar
  3. Akhand, A., Chanda, A., Dutta, S., Hazra, S., & Sanyal, P. (2012). Comparative study of heavy metals in selected mangroves of Sundarban ecosystem, India. Journal of Environmental Biology, 33, 1045–1049.Google Scholar
  4. Altundag, H., Albayrak, S., Dundar, M. S., Tuzen, M., & Soylak, M. (2015). Investigation of the influence of selected soil and plant properties from sakarya, turkey, on the bioavailability of trace elements by applying an in vitro digestion model. Biological Trace Element Research, 168(1), 276–285.CrossRefGoogle Scholar
  5. Antizar-Ladislao, B., Mondal, P., Mitra, S., & Sarkar, S. K. (2015). Assessment of trace metal contamination level and toxicity in sediments from coastal regions of West Bengal, eastern part of India. Marine Pollution Bulletin, 101(2), 886–894.CrossRefGoogle Scholar
  6. Antoniadis, V., Golia, E. E., Shaheen, S. M., & Rinklebe, J. (2017a). Bioavailability and health risk assessment of potentially toxic elements in Thriasio Plain, near Athens, Greece. Environmental Geochemistry and Health, 39(2), 319–330.CrossRefGoogle Scholar
  7. Antoniadis, V., Levizou, E., Shaheen, S. M., Ok, Y. S., Sebastian, A., Baum, C., et al. (2017b). Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation–A review. Earth-Science Reviews, 171, 621–645.CrossRefGoogle Scholar
  8. Antoniadis, V., Shaheen, S. M., Boersch, J., Frohne, T., Du Laing, G., & Rinklebe, J. (2017c). Bioavailability and risk assessment of potentially toxic elements in garden edible vegetables and soils around a highly contaminated former mining area in Germany. Journal of Environmental Management, 186, 192–200.CrossRefGoogle Scholar
  9. Arivuselvan, N., Silambarasan, D., Govindan, T., & Kathiresan, K. (2011). Antibacterial activity of mangrove leaf and bark extracts against human pathogens. Advances in Biological Research, 5(5), 251–254.Google Scholar
  10. Ayodele, J. T., & Bayero, A. S. (2010). Manganese concentrations in hair and fingernail of some Kano inhabitants. Journal of Applied Sciences and Environmental Management, 14(1), 17–21.CrossRefGoogle Scholar
  11. Badarudeen, A., Sajan, K., Srinivas, R., Maya, K., & Padmalal, D. (2014). Environmental significance of heavy metals in leaves and stems of Kerala mangroves, SW Coast of India.Google Scholar
  12. Bakshi, M., & Chaudhuri, P. (2014). Antimicrobial potential of leaf extracts of ten mangrove species from Indian Sundarban. Internationl Journal of Pharma and Bio Science, 5(1), 294–304.Google Scholar
  13. Bakshi, M., Ghosh, S., & Chaudhuri, P. (2015). Green synthesis, characterization and antimicrobial potential of sliver nanoparticles using three mangrove plants from Indian Sundarban. BioNanoScience, 5(3), 162–170.CrossRefGoogle Scholar
  14. Bakshi, M., Ram, S. S., Ghosh, S., Chakraborty, A., Sudarshan, M., & Chaudhuri, P. (2017). Micro-spatial variation of elemental distribution in estuarine sediment and their accumulation in mangroves of Indian Sundarban. Environmental Monitoring and Assessment, 189(5), 221.CrossRefGoogle Scholar
  15. Bandaranayake, W. M. (1998). Traditional and medicinal uses of mangroves. Mangroves and Salt Marshes, 2(3), 133–148.CrossRefGoogle Scholar
  16. Bandaranayake, W. M. (2002). Bioactivities, bioactive compounds and chemical constituents of mangrove plants. Wetlands Ecology and Management, 10(6), 421–452.CrossRefGoogle Scholar
  17. Banerjee, L. K., Sastry, A. R. K., & Nayar, M. P. (1989). Mangroves in India: identification manual. Calcutta: Botanical Survey of India.Google Scholar
  18. Banerjee, K., Senthilkumar, B., Purvaja, R., & Ramesh, R. (2012). Sedimentation and trace metal distribution in selected locations of Sundarbans mangroves and Hooghly estuary, northeast coast of India. Environmental Geochemistry and Health, 34(1), 27–42.CrossRefGoogle Scholar
  19. Bayen, S. (2012). Occurrence, bioavailability and toxic effects of trace metals and organic contaminants in mangrove ecosystems: a review. Environment International, 48, 84–101.CrossRefGoogle Scholar
  20. Birch, G. F. (2016). Determination of sediment metal background concentrations and enrichment in marine environments—a critical review. The Science of the Total Environment, 580, 13–831.Google Scholar
  21. Bobbarala, V., Vadlapudi, V. R., & Naidu, C. K. (2009). Antimicrobial potentialities of mangrove plant Avicennia marina. Journal of Pharmacy Research, 2(6), 1019–1021.Google Scholar
  22. Bodin, N., N’Gom-Kâ, R., Kâ, S., Thiaw, O. T., De Morais, L. T., Le Loc’h, F., et al. (2013). Assessment of trace metal contamination in mangrove ecosystems from Senegal, West Africa. Chemosphere, 90(2), 150–157.CrossRefGoogle Scholar
  23. Borkow, G., Zatcoff, R. C., & Gabbay, J. (2009). Reducing the risk of skin pathologies in diabetics by using copper impregnated socks. Medical Hypotheses, 73(6), 883–886.CrossRefGoogle Scholar
  24. Chakraborty, D., Bhar, S., Majumdar, J., & Santra, S. C. (2013). Heavy metal pollution and phytoremediation potential of Avicennia officinalis L. in the southern coast of the Hoogly estuarine system. International Journal of Environmental Science, 3(6), 2291–2303.Google Scholar
  25. Chatterjee, M., Massolo, S., Sarkar, S. K., Bhattacharya, A. K., Bhattacharya, B. D., Satpathy, K. K., et al. (2009). An assessment of trace element contamination in intertidal sediment cores of Sunderban mangrove wetland, India for evaluating sediment quality guidelines. Environmental Monitoring and Assessment, 150(1), 307–322.CrossRefGoogle Scholar
  26. Chatterjee, M. V. S. F. E., Silva Filho, E. V., Sarkar, S. K., Sella, S. M., Bhattacharya, A., Satpathy, K. K., et al. (2007). Distribution and possible source of trace elements in the sediment cores of a tropical macrotidal estuary and their ecotoxicological significance. Environment International, 33(3), 346–356.CrossRefGoogle Scholar
  27. Chaturvedi, U. C., Shrivastava, R., & Upreti, R. K. (2004). Viral infections and trace elements: A complex interaction. Current Science, 87(11), 1536–1554.Google Scholar
  28. Chaudhuri, P., & Guha, S. (2010). Potentiality of mangrove plant extracts for biocontrol of a pathogenic fungi, Fusarium oxysporum. Science and Culture, 76(7–8), 271–274.Google Scholar
  29. Chaudhuri, P., Nath, B., & Birch, G. (2014). Accumulation of trace metals in grey mangrove Avicennia marina fine nutritive roots: the role of rhizosphere processes. Marine Pollution Bulletin, 79(1), 284–292.CrossRefGoogle Scholar
  30. Chen, K. S., Tseng, C. L., & Lin, T. H. (1993). Trace elements in natural drugs determined by INAA. Journal of Radioanalytical and Nuclear Chemistry, 170(1), 265–280.CrossRefGoogle Scholar
  31. Cheng, W. H., & Yap, C. K. (2015). Potential human health risks from toxic metals via mangrove snail consumption and their ecological risk assessments in the habitat sediment from Peninsular Malaysia. Chemosphere, 135, 156–165.CrossRefGoogle Scholar
  32. Choudhury, S., Sree, A., Mukherjee, S. C., Pattnaik, P., & Bapuji, M. (2005). In vitro antibacterial activity of extracts of selected marine algae and mangroves against fish pathogens. Asian Fisheries Science, 18(3/4), 285–294.Google Scholar
  33. Chowdhury, R., Favas, P. J., Jonathan, M. P., Venkatachalam, P., Raja, P., & Sarkar, S. K. (2017). Bioremoval of trace metals from rhizosediment by mangrove plants in Indian Sundarban Wetland. Marine Pollution Bulletin, 124(2), 1078–1088.CrossRefGoogle Scholar
  34. Chuang, I. C., Chen, K. S., Huang, Y. L., Lee, P. N., & Lin, T. H. (2000). Determination of trace elements in some natural drugs by atomic absorption spectrometry. Biological Trace Element Research, 76(3), 235–244.CrossRefGoogle Scholar
  35. Cobanoglu, U., Demir, H., Sayir, F., Duran, M., & Mergan, D. (2010). Some mineral, trace element and heavy metal concentrations in lung cancer. Asian Pacific Journal of Cancer Prevention: APJCP, 11(5), 1383–1388.Google Scholar
  36. Datta, D., Chattopadhyay, R. N., & Deb, S. (2011). Prospective livelihood opportunities from the mangroves of the Sunderbans, India. Research Journal of Environmental Sciences, 5(6), 536.CrossRefGoogle Scholar
  37. Eldeen, I. M., & Effendy, M. A. (2013). Antimicrobial agents from mangrove plants and their endophytes. In A. Méndez-Vilas (Ed.), Microbial pathogens and strategies for combating them: Science, technology and education (pp. 872–882). Spain: Formatex Research Centre.Google Scholar
  38. Emsley, J. (2011). Nature’s building blocks: an AZ guide to the elements. Oxford: Oxford University Press.Google Scholar
  39. Farsad, F., Karbassi, A., Monavari, S. M., Mortazavi, M. S., & Farshchi, P. (2011). Development of a new pollution index for heavy metals in sediments. Biological Trace Element Research, 143(3), 1828–1842.CrossRefGoogle Scholar
  40. Ferati, F., Kerolli-Mustafa, M., & Kraja-Ylli, A. (2015). Assessment of heavy metal contamination in water and sediments of Trepça and Sitnica rivers, Kosovo, using pollution indicators and multivariate cluster analysis. Environmental Monitoring and Assessment, 187(6), 338.CrossRefGoogle Scholar
  41. Ghosh, S., Bakshi, M., Bhattacharyya, S., Nath, B., & Chaudhuri, P. (2015). A review of threats and vulnerabilities to mangrove habitats: with special emphasis on east coast of India. Journal of Earth Science and Climate Change, 6(4), 270.CrossRefGoogle Scholar
  42. Ghosh, S., Bakshi, M., Kumar, A., Ramanathan, A. L., Biswas, J. K., Bhattacharyya, S., et al. (2018). Assessing the potential ecological risk of Co, Cr, Cu, Fe and Zn in the sediments of Hooghly–Matla estuarine system, India. Environmental Geochemistry and Health. Scholar
  43. Ghosh, S., Ram, S. S., Bakshi, M., Chakraborty, A., Sudarshan, M., & Chaudhuri, P. (2016). Vertical and horizontal variation of elemental contamination in sediments of Hooghly Estuary, India. Marine Pollution Bulletin, 109(1), 539–549.CrossRefGoogle Scholar
  44. Giordani, P., Minganti, V., Brignole, D., Malaspina, P., Cornara, L., & Drava, G. (2017). Is there a risk of trace element contamination in herbal preparations? A test study on the lichen Cetraria islandica. Chemosphere, 181, 778–785.CrossRefGoogle Scholar
  45. Gołdyn, B., Chudzińska, M., Barałkiewicz, D., & Celewicz-Gołdyn, S. (2015). Heavy metal contents in the sediments of astatic ponds: Influence of geomorphology, hydroperiod, water chemistry and vegetation. Ecotoxicology and Environmental Safety, 118, 103–111.CrossRefGoogle Scholar
  46. Gong, Q. J., Deng, J., Xiang, Y. C., Wang, Q. F., & Yang, L. Q. (2008). Calculating pollution indices by heavy metals in ecological geochemistry assessment and a case study in parks of Beijing. Journal of China University of Geosciences, 19, 230–241.CrossRefGoogle Scholar
  47. Gopal, B., & Chauhan, M. (2006). Biodiversity and its conservation in the Sundarban Mangrove Ecosystem. Aquatic Sciences-Research Across Boundaries, 68(3), 338–354.CrossRefGoogle Scholar
  48. Gowrishankar, R., Kumar, M., Menon, V., Divi, S. M., Saravanan, M., Magudapathy, P., et al. (2010). Trace element studies on Tinospora cordifolia (Menispermaceae), Ocimum sanctum (Lamiaceae), Moringa oleifera (Moringaceae), and Phyllanthus niruri (Euphorbiaceae) using PIXE. Biological Trace Element Research, 133(3), 357–363.CrossRefGoogle Scholar
  49. Guo, W., Huo, S., Xi, B., Zhang, J., & Wu, F. (2015). Heavy metal contamination in sediments from typical lakes in the five geographic regions of China: distribution, bioavailability, and risk. Ecological Engineering, 81, 243–255.CrossRefGoogle Scholar
  50. Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14(8), 975–1001.CrossRefGoogle Scholar
  51. Han, Y., Nishibe, S., Noguchi, Y., & Jin, Z. (2001). Flavonol glycosides from the stems of Trigonella foenum-graecum. Phytochemistry, 58(4), 577–580.CrossRefGoogle Scholar
  52. Hänsch, R., & Mendel, R. R. (2009). Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Current Opinion in Plant Biology, 12(3), 259–266.CrossRefGoogle Scholar
  53. He, B., Li, R., Chai, M., & Qiu, G. (2014). Threat of heavy metal contamination in eight mangrove plants from the Futian mangrove forest, China. Environmental Geochemistry and Health, 36(3), 467–476.CrossRefGoogle Scholar
  54. Islam, M. S., Ahmed, M. K., Habibullah-Al-Mamun, M., & Hoque, M. F. (2015). Preliminary assessment of heavy metal contamination in surface sediments from a river in Bangladesh. Environmental Earth Sciences, 73(4), 1837–1848.CrossRefGoogle Scholar
  55. Jennerjahn, T. C., & Ittekkot, V. (2002). Relevance of mangroves for the production and deposition of organic matter along tropical continental margins. Naturwissenschaften, 89(1), 23–30.CrossRefGoogle Scholar
  56. Jiang, X., Lu, W. X., Zhao, H. Q., Yang, Q. C., & Yang, Z. P. (2014). Potential ecological risk assessment and prediction of soil heavy-metal pollution around coal gangue dump. Natural Hazards and Earth System Sciences, 14(6), 1599–1610.CrossRefGoogle Scholar
  57. Khajure, P. V., & Rathod, J. L. (2010). Antimicrobial activity of extracts of Acanthus ilicifolius extracted from the mangroves of Karwar coast Karnataka. Recent Research in Science and Technology, 2(6), 98–99.Google Scholar
  58. Lacerda, L. D., & Abrao, J. J. (1984). Heavy metal accumulation by mangrove and saltmarsh intertidal sediments. Revista Brasileira de Botanica, 7, 49–52.Google Scholar
  59. Lajayer, B. A., Ghorbanpour, M., & Nikabadi, S. (2017). Heavy metals in contaminated environment: Destiny of secondary metabolite biosynthesis, oxidative status and phytoextraction in medicinal plants. Ecotoxicology and Environmental Safety, 145, 377–390.CrossRefGoogle Scholar
  60. Liebezeit, G., & Rau, M. T. (2006). New Guinean mangroves—Traditional usage and chemistry of natural products. Senckenbergiana maritima, 36(1), 1–10.CrossRefGoogle Scholar
  61. Liu, W. H., Zhao, J. Z., Ouyang, Z. Y., Söderlund, L., & Liu, G. H. (2005). Impacts of sewage irrigation on heavy metal distribution and contamination in Beijing, China. Environment International, 31(6), 805–812.CrossRefGoogle Scholar
  62. Long, E. R., Macdonald, D. D., Smith, S. L., & Calder, F. D. (1995). Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management, 19(1), 81–97.CrossRefGoogle Scholar
  63. Long, E. R., & MacDonald, D. D. (1998). Recommended uses of empirically derived, sediment quality guidelines for marine and estuarine ecosystems. Human and Ecological Risk Assessment, 4(5), 1019–1039.CrossRefGoogle Scholar
  64. Macdonald, D. D., Carr, R. S., Calder, F. D., Long, E. R., & Ingersoll, C. G. (1996). Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology, 5(4), 253–278.CrossRefGoogle Scholar
  65. MacFarlane, G. R., Koller, C. E., & Blomberg, S. P. (2007). Accumulation and partitioning of heavy metals in mangroves: a synthesis of field-based studies. Chemosphere, 69(9), 1454–1464.CrossRefGoogle Scholar
  66. Mahdavian, K., Ghaderian, S. M., & Torkzadeh-Mahani, M. (2017). Accumulation and phytoremediation of Pb, Zn, and Ag by plants growing on Koshk lead–zinc mining area, Iran. Journal of Soils and Sediments, 17(5), 1310–1320.CrossRefGoogle Scholar
  67. Manna, S., Mondal, P. P., Mukhopadhyay, A., Akhand, A., Hazra, S., & Mitra, D. (2013). Vegetation cover change analysis from multitemporal satellite data in Jharkhali Island, Sundarbans, India. Indian Journal of Geo-Marine Sciences, 42(3), 331–342.Google Scholar
  68. Massolo, S., Bignasca, A., Sarkar, S. K., Chatterjee, M., Bhattacharya, B. D., & Alam, A. (2012). Geochemical fractionation of trace elements in sediments of Hugli River (Ganges) and Sundarban wetland (West Bengal, India). Environmental Monitoring and Assessment, 184(12), 7561–7577.CrossRefGoogle Scholar
  69. Menghan, W., Stefano, A., Annamaria, L., Claudia, C., Antonio, C., Wanjun, L., et al. (2015). Compositional analysis and pollution impact assessment: A case study in the Gulfs of Naples and Salerno. Estuarine, Coastal and Shelf Science, 160, 22–32.CrossRefGoogle Scholar
  70. Mitra, A., Barua, P., Zaman, S., & Banerjee, K. (2012). Analysis of trace metals in commercially important crustaceans collected from UNESCO protected world heritage site of Indian Sundarbans. Turkish Journal of Fisheries and Aquatic Sciences, 12(1), 53–66.CrossRefGoogle Scholar
  71. Mondal, C. K., &, Mondal. B. (2011). Ethno-traditional medicinal uses of mangrove plants of Sundarbans-a study. In Proceedings of the international symposium on minor fruits and medicinal plants for health and ecological security (ISMF & MP), West Bengal, India, (pp. 91–93). Bidhan Chandra Krishi Viswandyalaya.Google Scholar
  72. Moore, F., Akhbarizadeh, R., Keshavarzi, B., & Tavakoli, F. (2015). Potential health risk of herbal distillates and decoctions consumption in Shiraz, Iran. Biological Trace Element Research, 167(2), 326–337.CrossRefGoogle Scholar
  73. Mulaudzi, R. B., Tshikalange, T. E., Olowoyo, J. O., Amoo, S. O., & Du Plooy, C. P. (2017). Antimicrobial activity, cytotoxicity evaluation and heavy metal content of five commonly used South African herbal mixtures. South African Journal of Botany, 112, 314–318.CrossRefGoogle Scholar
  74. Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. GeoJournal, 2, 108–118.Google Scholar
  75. Naeem, A., Rehman, M. Z. U. S., Akhtar, T., Ok, Y. S., & Rengel, Z. (2016). Genetic variation in cadmium accumulation and tolerance among wheat cultivars at the seedling stage. Communications in Soil Science and Plant Analysis, 47(5), 554–562.CrossRefGoogle Scholar
  76. Naskar, K., Mandal, R., & Ghosh, A. (2002). Important medicinal plants from Indian Sunderbans. In Proceedings of national seminar and workshop on Indian systems of medicine and homeopathy, Ramakrishna Mission Ashrama, Narendrapur, West Bengal, India.Google Scholar
  77. Nath, B., Birch, G., & Chaudhuri, P. (2013). Trace metal biogeochemistry in mangrove ecosystems: a comparative assessment of acidified (by acid sulfate soils) and non-acidified sites. Science of the Total Environment, 463, 667–674.CrossRefGoogle Scholar
  78. Nath, B., Birch, G., & Chaudhuri, P. (2014a). Assessment of sediment quality in Avicennia marina-dominated embayments of Sydney Estuary: the potential use of pneumatophores (aerial roots) as a bio-indicator of trace metal contamination. Science of the Total Environment, 472, 1010–1022.CrossRefGoogle Scholar
  79. Nath, B., Chaudhuri, P., & Birch, G. (2014b). Assessment of biotic response to heavy metal contamination in Avicennia marina mangrove ecosystems in Sydney Estuary, Australia. Ecotoxicology and Environmental Safety, 107, 284–290.CrossRefGoogle Scholar
  80. Obiajunwa, E., Adebajo, A., & Omobuwajo, O. (2002). Essential and trace element contents of some Nigerian medicinal plants. Journal of Radioanalytical and Nuclear Chemistry, 252(3), 473–476.CrossRefGoogle Scholar
  81. Prabhu, V. V., & Guruvayoorappan, C. (2013). Inhibition of metastatic lung cancer in C57BL/6 mice by marine mangrove Rhizophora apiculata. Asian Pacific Journal of Cancer Prevention, 14(3), 1833–1840.CrossRefGoogle Scholar
  82. Pramanick, P., Zaman, S., Rudra, T., Guha, A., & Mitra, A. (2015). Heavy metals in a dominant seaweed species from the Islands of Indian Sundarbans. International Journal of Life Science and Pharma Research, 5(2), 64–71.Google Scholar
  83. Pytlakowska, K., Kita, A., Janoska, P., Połowniak, M., & Kozik, V. (2012). Multi-element analysis of mineral and trace elements in medicinal herbs and their infusions. Food Chemistry, 135(2), 494–501.CrossRefGoogle Scholar
  84. Qi, H. X., Li, H. Z., Ma, P., & You, J. (2015). Integrated sediment quality assessment through biomarker responses and bioavailability measurements: Application in Tai Lake, China. Ecotoxicology and Environmental Safety, 119, 148–154.CrossRefGoogle Scholar
  85. Rai, U. N., Sinha, S., Tripathi, R. D., & Chandra, P. (1995). Wastewater treatability potential of some aquatic macrophytes: removal of heavy metals. Ecological Engineering, 5(1), 5–12.CrossRefGoogle Scholar
  86. Rajan, J. P., Singh, K. B., Kumar, S., & Mishra, R. K. (2014). Trace elements content in the selected medicinal plants traditionally used for curing skin diseases by the natives of Mizoram, India. Asian Pacific Journal of Tropical Medicine, 7, S410–S414.CrossRefGoogle Scholar
  87. Rajurkar, N. S., & Damame, M. M. (1998). Mineral content of medicinal plants used in the treatment of diseases resulting from urinary tract disorders. Applied Radiation and Isotopes, 49(7), 773–776.CrossRefGoogle Scholar
  88. Ramesh, R., Ramanathan, A. L., James, R. A., Subramanian, V., Jacobsen, S. B., & Holland, H. D. (1999). Rare earth elements and heavy metal distribution in estuarine sediments of east coast of India. Hydrobiologia, 397, 89–99.CrossRefGoogle Scholar
  89. Ravisankar, R., Sivakumar, S., Chandrasekaran, A., Kanagasabapathy, K. V., Prasad, M. V. R., & Satapathy, K. K. (2015). Statistical assessment of heavy metal pollution in sediments of east coast of Tamilnadu using energy dispersive X-ray fluorescence spectroscopy (EDXRF). Applied Radiation and Isotopes, 102, 42–47.CrossRefGoogle Scholar
  90. Reimann, C., & de Caritat, P. D. (2000). Intrinsic flaws of element enrichment factors (EFs) in environmental geochemistry. Environmental Science and Technology, 34(24), 5084–5091.CrossRefGoogle Scholar
  91. Reimann, C., Englmaier, P., Fabian, K., Gough, L., Lamothe, P., & Smith, D. (2015). Biogeochemical plant–soil interaction: variable element composition in leaves of four plant species collected along a south–north transect at the southern tip of Norway. Science of the Total Environment, 506, 480–495.CrossRefGoogle Scholar
  92. Rinklebe, J., Knox, A. S., & Paller, M. (2017). Trace elements in waterlogged soils and sediments: CRC Press. New York: Taylor & Francis Group.Google Scholar
  93. Rinklebe, J., & Shaheen, S. M. (2017). Geochemical distribution of Co, Cu, Ni, and Zn in soil profiles of Fluvisols, Luvisols, Gleysols, and Calcisols originating from Germany and Egypt. Geoderma, 307, 122–138.CrossRefGoogle Scholar
  94. Rizwan, M., Ali, S., Adrees, M., Rizvi, H., Zia-ur-Rehman, M., Hannan, F., et al. (2016). Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review. Environmental Science and Pollution Research, 23(18), 17859–17879.CrossRefGoogle Scholar
  95. Sałata, A., & Dąbek, L. (2017). Sediments from stormwater drainage system as sorbents of organic and inorganic pollutants. In E3S Web of Conferences (Vol. 22, p. 00152). EDP Sciences.Google Scholar
  96. Salomons, W., & Förstner, U. (1984). Sediments and the transport of metals. In Metals in the hydrocycle (pp. 63–98). Berlin: Springer.CrossRefGoogle Scholar
  97. Samanta, K., & Hazra, S. (2012). Landuse/landcover change study of Jharkhali Island Sundarbans, West Bengal using remote sensing and GIS. International Journal of Geomatics and Geosciences, 3(2), 299.Google Scholar
  98. Sany, S. B. T., Salleh, A., Sulaiman, A. H., Sasekumar, A., Tehrani, G. H. A. Z. A. L. E. H. M. O. N. A. Z. A. M. I., & Rezayi, M. A. J. I. D. (2012). Distribution characteristics and ecological risk of heavy metals in surface sediments of West Port, Malaysia. Environment Protection Engineering, 38(4), 139–155.Google Scholar
  99. Sarkar, S. K., Frančišković-Bilinski, S., Bhattacharya, A., Saha, M., & Bilinski, H. (2004). Levels of elements in the surficial estuarine sediments of the Hugli River, northeast India and their environmental implications. Environment International, 30(8), 1089–1098.CrossRefGoogle Scholar
  100. Sarkar, S. K., Mondal, P., Biswas, J. K., Kwon, E. E., Ok, Y. S., & Rinklebe, J. (2017). Trace elements in surface sediments of the Hooghly (Ganges) estuary: Distribution and contamination risk assessment. Environmental Geochemistry and Health,  39(6), 1245–1258.CrossRefGoogle Scholar
  101. Schiff, K. C., & Weisberg, S. B. (1999). Iron as a reference element for determining trace metal enrichment in southern California coastal shelf sediments. Marine Environmental Research, 48(2), 161–176.CrossRefGoogle Scholar
  102. Schneider, A. R., Cancès, B., Breton, C., Ponthieu, M., Morvan, X., Conreux, A., et al. (2016). Comparison of field portable XRF and aqua regia/ICPAES soil analysis and evaluation of soil moisture influence on FPXRF results. Journal of Soils and Sediments, 16(2), 438–448.CrossRefGoogle Scholar
  103. Selvaraju, R., Raman, R. G., Narayanaswamy, R., Valliappan, R., & Baskaran, R. (2009). Trace element analysis in hepatitis B affected human blood serum by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Romanian Journal Biophys, 19(1), 35–42.Google Scholar
  104. Shaheen, S. M., Shams, M. S., Khalifa, M. R., Mohamed, A., & Rinklebe, J. (2017). Various soil amendments and environmental wastes affect the (im) mobilization and phytoavailability of potentially toxic elements in a sewage effluent irrigated sandy soil. Ecotoxicology and Environmental Safety, 142, 375–387.CrossRefGoogle Scholar
  105. Shtangeeva, I. V. (1994). Variation of the elemental composition of plants and soils. Journal of Radioanalytical and Nuclear Chemistry, 177(2), 381–391.CrossRefGoogle Scholar
  106. Shtangeeva, I., Alber, D., Bukalis, G., Stanik, B., & Zepezauer, F. (2009). Multivariate statistical analysis of nutrients and trace elements in plants and soil from northwestern Russia. Plant and Soil, 322(1–2), 219–228.CrossRefGoogle Scholar
  107. Singh, A. K., & Singh, M. (2006). Lead decline in the Indian environment resulting from the petrol-lead phase out programme. Science of the Total Environment, 368(2–3), 686–694.CrossRefGoogle Scholar
  108. Subramanian, V. (1993). Phosphorus, silicon, and some trace contaminants in the Ganges Estuary. Estuaries and Coasts, 16(3), 453–458.CrossRefGoogle Scholar
  109. Subramanian, V., Jha, P. K., & Van Grieken, R. (1988). Heavy metals in the Ganges estuary. Marine Pollution Bulletin, 19(6), 290–293.CrossRefGoogle Scholar
  110. Subramanian, R., Subbramaniyan, P., & Raj, V. (2012). Determination of some minerals and trace elements in two tropical medicinal plants. Asian Pacific Journal of Tropical Biomedicine, 2(2), S555–S558.CrossRefGoogle Scholar
  111. Sutherland, R. A. (2000). Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environmental geology, 39(6), 611–627.CrossRefGoogle Scholar
  112. Sutton, D. C., Gillan, F. T., & Susic, M. (1985). Naphthofuranonephytoalexins from the grey mangrove, Avicennia marina. Phytochemistry, 24(12), 2877–2879.CrossRefGoogle Scholar
  113. Swain, S. S., Ray, D. K., & Chand, P. K. (2012). ED-XRF spectrometry-based trace element composition of genetically engineered rhizoclones vis-à-vis natural roots of a multi-medicinal plant, butterfly pea (Clitoria ternatea L.). Journal of Radioanalytical and Nuclear Chemistry, 293(2), 443–453.CrossRefGoogle Scholar
  114. Taylor, S. R., & McLennan, S. M. (1985). The continental crust: its composition and evolution. Oxford: Blackwell.Google Scholar
  115. Tolonen, M. (1990). Vitamins and minerals in health and nutrition. New York: Elsevier.Google Scholar
  116. Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresuntersuchungen, 33(1), 566–575.CrossRefGoogle Scholar
  117. Tyokumbur, E. T., & Okorie, T. (2011). Bioconcentration of trace metals in the tissues of two leafy vegetables widely consumed in South West Nigeria. Biological Trace Element Research, 140(2), 215–224.CrossRefGoogle Scholar
  118. Valentino, L. A. (2006). Heavy metal FIX for Christmas wounds. Blood, 108(9), 2888.CrossRefGoogle Scholar
  119. Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29–38.CrossRefGoogle Scholar
  120. Watts, M. J., Mitra, S., Marriott, A. L., & Sarkar, S. K. (2017). Source, distribution and ecotoxicological assessment of multielements in superficial sediments of a tropical turbid estuarine environment: A multivariate approach. Marine Pollution Bulletin, 115(1), 130–140.CrossRefGoogle Scholar
  121. Wedepohl, K. H. (1995). The composition of the continental crust. Geochimica etCosmochimica Acta, 59(7), 1217–1232.CrossRefGoogle Scholar
  122. Willey, N. J., & Fawcett, K. (2006). Inter-taxa differences in root uptake of 103/106 Ru by plants. Journal of Environmental Radioactivity, 86(2), 227–240.CrossRefGoogle Scholar
  123. Xie, J. T., Mehendale, S. R., Wang, A., Han, A. H., Wu, J. A., Osinski, J., et al. (2004). American ginseng leaf: ginsenoside analysis and hypoglycemic activity. Pharmacological Research, 49(2), 113–117.CrossRefGoogle Scholar
  124. Yagi, S., AbdRahman, A. E., ELhassan, G. O., & Mohammed, M. A. (2013). Elemental analysis of ten sudanese medicinal plants using X-ray fluorescence. Journal of Applied and Industrial Sciences, 1(1), 49–53.Google Scholar
  125. Zeiner, M., Cindrić, I. J., Požgaj, M., Pirkl, R., Šilić, T., & Stingeder, G. (2015). Influence of soil composition on the major, minor and trace metal content of Velebit biomedical plants. Journal of Pharmaceutical and Biomedical Analysis, 106, 153–158.CrossRefGoogle Scholar
  126. Zhang, J., & Liu, C. L. (2002). Riverine composition and estuarine geochemistry of particulate metals in China—weathering features, anthropogenic impact and chemical fluxes. Estuarine, Coastal and Shelf Science, 54, 1051–1070.CrossRefGoogle Scholar
  127. Zhang, J. E., Liu, J. L., Ouyang, Y., Liao, B. W., & Zhao, B. L. (2010). Removal of nutrients and heavy metals from wastewater with mangrove Sonneratia apetala Buch-Ham. Ecological Engineering, 36(6), 807–812.CrossRefGoogle Scholar
  128. Zhao, D., Wan, S., Yu, Z., & Huang, J. (2015). Distribution, enrichment and sources of heavy metals in surface sediments of Hainan Island rivers, China. Environmental Earth Sciences, 74(6), 5097–5110.CrossRefGoogle Scholar
  129. Zhou, Y. W., Peng, Y. S., Li, X. L., & Chen, G. Z. (2011). Accumulation and partitioning of heavy metals in mangrove rhizosphere sediments. Environmental Earth Sciences, 64(3), 799–807.CrossRefGoogle Scholar
  130. Zhu, F., Chen, X., Yuan, Y., Huang, M., Sun, H., & Xiang, W. (2009). The chemical investigations of the mangrove plant Avicennia marina and its endophytes. The Open Natural Products Journal, 2(1), 24–32.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Madhurima Bakshi
    • 1
    Email author
  • Somdeep Ghosh
    • 1
  • S. S. Ram
    • 1
    • 2
    • 3
  • M. Sudarshan
    • 2
  • Anindita Chakraborty
    • 2
  • Jayanta Kumar Biswas
    • 4
  • Sabry M. Shaheen
    • 5
    • 6
  • Nabeel Khan Niazi
    • 8
    • 9
  • Jörg Rinklebe
    • 6
    • 7
  • Punarbasu Chaudhuri
    • 1
  1. 1.Department of Environmental ScienceUniversity of CalcuttaKolkataIndia
  2. 2.UGC-DAE Consortium for Scientific Research, Kolkata CentreKolkataIndia
  3. 3.Ion Beam LaboratoryInstitute of PhysicsBhubaneswarIndia
  4. 4.Enviromicrobiology, Ecotoxicology and Ecotechnology Research Laboratory, Department of Ecological Studies and International Centre for Ecological EngineeringUniversity of KalyaniKalyaniIndia
  5. 5.Department of Soil and Water Sciences, Faculty of AgricultureUniversity of KafrelsheikhKafr El-SheikhEgypt
  6. 6.Laboratory of Soil- and Groundwater-Management, Institute of Foundation Engineering, Water- and Waste-Management, School of Architecture and Civil EngineeringUniversity of WuppertalWuppertalGermany
  7. 7.Department of Environment, Energy and GeoinformaticsSejong UniversitySeoulRepublic of Korea
  8. 8.Institute of Soil and Environmental SciencesUniversity of Agriculture FaisalabadFaisalabadPakistan
  9. 9.Southern Cross GeoScienceSouthern Cross UniversityLismoreAustralia

Personalised recommendations