Advertisement

Environmental Geochemistry and Health

, Volume 40, Issue 6, pp 2761–2771 | Cite as

Characterizing the composition and evolution of firework-related components in air aerosols during the Spring Festival

  • Keying Wu
  • Ming Duan
  • Hefan Liu
  • Zihang Zhou
  • Ye Deng
  • Danlin Song
  • Qinwen Tan
Original Paper
  • 47 Downloads

Abstract

To examine the impacts of fireworks, size-resolved PM samples were collected using a single-particle aerosol mass spectrometer before, during and after the Spring Festival in a megacity in Chengdu, China. Chemical composition and atmospheric behavior of urban particles were studied. Ten major single particle types were resolved with ART-2a algorithm including elemental and organic carbon (ECOC), EC, OC, levoglucosan (LEV), high molecular weight organic molecules (HOM), hard metal (HM), K rich, Na rich and SiO3. The average OC/EC ratios decreased in the order AY (4.7) > overall (4.1) > NY (4.0) > BY period (3.6), indicating that many organic pollutants had been generated after the Spring Festival. The concentrations of many species exhibited an increasing trend during the firework period, and the SOR and NOR showed a strong increase in NY period. SOR and NOR had a slight positive relationship with fireworks activity but no obvious relationship with temperature.

Keywords

Fireworks SPMAS PM2.5 Air pollution 

Notes

Acknowledgements

The financial support from “Atmospheric pollution emissions inventory of Chengdu in 2017 [No. HKY2017009-3]” and “Chengdu Key Laboratory of Atmospheric Research” is acknowledged.

References

  1. Bi, X., Zhang, G., Li, L., Wang, X., Li, M., & Sheng, G. (2011). Mixing state of biomass burning particles by single particle aerosol mass spectrometer in the urban area of PRD, China. Atmospheric Environment, 45, 3447–3453.CrossRefGoogle Scholar
  2. Cao, J. J., Lee, S. C., Chow, J. C., Watson, J. G., Ho, K. F., Zhang, R. J., et al. (2007). Spatial and seasonal distributions of carbonaceous aerosols over China. Journal Geophysical Research, 112, 2–11.CrossRefGoogle Scholar
  3. Conkling, J. A. (1985). Chemistry of pyrotechnics: Basic principles and theory. NewYork, NY: Marcel Dekker Inc.Google Scholar
  4. Dallosto, M., & Harrison, R. (2006). Chemical characterisation of single airborne particles in Athens (Greece) by ATOFMS. Atmospheric Environment, 40, 7614–7631.CrossRefGoogle Scholar
  5. Deka, P., & Hoque, R. R. (2014). Diwali fireworks: Early signs of impact on PM10 properties of rural Brahmaputra Valley. Aerosol and Air Quality Research, 14(6), 1752–1762.CrossRefGoogle Scholar
  6. Gan, Z., Li, J., Li, X. D., Yue, X., Guo, L. L., Tang, J. H., et al. (2010). Impact of anthropogenic emissions and open biomass burning on regional carbonaceous aerosols in South China. Environmental Pollution, 158, 3392–3400.CrossRefGoogle Scholar
  7. Gross, D. S., Galli, M. E., Silva, P. J., & Prather, K. A. (2000). Relative sensitivity factors for alkali metal and ammonium cations in single-particle aerosol time-of-flight mass spectra. Analytical Chemistry, 72, 416–422.CrossRefGoogle Scholar
  8. He, G. Y., Luo, B., Chen, J. W., Zhang, W., Liao, Q. Y., & Liu, P. C. (2014a). The impact of fireworks on air quality during the spring festival in Chengdu downtown area. Sichuan Environment, 1, 014.Google Scholar
  9. He, H., Wang, Y., Ma, Q., Ma, J., Chu, B., Ji, D., et al. (2014b). CORRIGENDUM: Mineral dust and NOx promote the conversion of SO2 to sulfate in heavy pollution days. Scientific Reports, 4, 4172.CrossRefGoogle Scholar
  10. Healy, R. M., Hellebust, S., Kourtchev, I., Allanic, A., O’Connor, I. P., & Bell, J. M. (2010). Source apportionment of PM2.5 in Cork Harbour, Ireland using a combination of single particle mass spectrometry and quantitative semi-continuous measurements. Atmospheric Chemistry and Physics, 10, 9593–9613.CrossRefGoogle Scholar
  11. Huang, R. J., Zhang, Y., Bozzetti, C., Ho, K. F., Cao, J. J., Han, Y., et al. (2014). High secondary aerosol contribution to particulate pollution during haze events in China. Nature, 514, 218–222.CrossRefGoogle Scholar
  12. Li, L., Huang, Z. X., Dong, J. G., Li, M., Gao, W., Nian, H. Q., et al. (2011). Real time bipolar time-of-flight mass spectrometer for analyzing single aerosol particles. International Journal of Mass Spectrometry, 303, 118–124.CrossRefGoogle Scholar
  13. Meng, Z., & Seinfeld, J. H. (1994). On the source of the submicrometer droplet mode of urban and regional aerosols. Aerosol Science and Technology, 20, 253–265.CrossRefGoogle Scholar
  14. Moffet, R. C., de Foy, B., Molina, L. T., Molina, M. J., & Prather, K. A. (2008). Measurement of ambient aerosols in northern Mexico City by single particle mass spectrometry. Atmospheric Chemistry and Physics, 8, 4499–4516.CrossRefGoogle Scholar
  15. Moffet, R. C., & Prather, K. A. (2009). In-situ measurements of the mixing state and optical properties of soot with implications for radiative forcing estimates. Proceedings of the National Academy of Sciences of the United States of America, 106, 11872–11877.CrossRefGoogle Scholar
  16. Munster, J., Hanson, G. N., Jackson, W. A., & Rajagopalan, S. (2009). The fallout from fireworks: perchlorate in total deposition. Water, Air, and Soil pollution, 198(1–4), 149–153.CrossRefGoogle Scholar
  17. National-Statistics. (2014). Chengdu statistics 2014. Beijing: China Statistics Press.Google Scholar
  18. Ohta, S., & Okita, T. (1990). A chemical characterization of atmospheric aerosol in Sapporo. Atmospheric Environment, 24, 815–822.CrossRefGoogle Scholar
  19. Pathak, R. K., Wu, W. S., & Wang, T. (2008). Summertime PM2.5 ionic species in four major cities of China: Nitrate formation in an ammonia-deficient atmosphere. Atmospheric Chemistry and Physics, 9, 1711–1722.CrossRefGoogle Scholar
  20. Pierson, W. R., Brachaczek, W. W., & Mckee, D. E. (1979). Sulfate emissions from catalyst equipped automobiles on the highway. Journal of the Air and Waste Management Association, 29, 255–257.Google Scholar
  21. Qin, Y., & Xie, S. D. (2011). Historical estimation of carbonaceous aerosol emissions from biomass open burning in China for the period 1990–2005. Environmental Pollution, 159, 3316.CrossRefGoogle Scholar
  22. Silva, P. J., Carlin, R. A., & Prather, K. A. (2000). Single particle analysis of suspended soil dust from Southern California. Atmospheric Environment, 34, 1811–1820.CrossRefGoogle Scholar
  23. Song, X. H., Hopke, P. K., Fergenson, D. P., & Prather, K. A. (1999). Classification of single particles analyzed by ATOFMS using an artificial neural network, ART-2 A. Analytical Chemistry, 71, 860–865.CrossRefGoogle Scholar
  24. Sufen, G. (2009). Application progresses on controlled atmosphere grain storage technology by purging nitrogen. Grain Storage, 4, 005.Google Scholar
  25. Sun, Y., Zhuang, G., Tang, A., Wang, Y., & An, Z. (2006). Chemical characteristics of PM2.5 and PM10 in Haze–Fog episodes in Beijing. Environmental Science and Technology, 40, 3148.CrossRefGoogle Scholar
  26. Tian, H. Z., Lu, L., Cheng, K., Hao, J. M., Zhao, D., & Wang, Y. (2012). Anthropogenic atmospheric nickel emissions and its distribution characteristics in China. Science of the Total Environment, 417, 148–157.CrossRefGoogle Scholar
  27. Vecchi, R., Bernardoni, V., Cricchio, D., D’Alessandro, A., Fermo, P., Lucarelli, F., et al. (2008). The impact of fireworks on airborne particles. Atmospheric Environment, 42(6), 1121–1132.CrossRefGoogle Scholar
  28. Wang, F., Cheng, Q., Highland, L., Miyajima, M., Wang, H., & Yan, C. (2009). Preliminary investigation of some large landslides triggered by the 2008 Wenchuan earthquake, Sichuan Province, China. Landslides, 6(1), 47–54.CrossRefGoogle Scholar
  29. Wang, Y., Zhuang, G. S., Xu, C., & An, Z. S. (2007). The air pollution caused by the burning of fireworks during the lantern festival in Beijing. Atmospheric Environment, 41, 417–431.CrossRefGoogle Scholar
  30. Watson, J. G., Chow, J. C., & Houck, J. E. (2001). PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995. Chemosphere, 43(8), 1141–1151.CrossRefGoogle Scholar
  31. Xing, X., Qi, S., Zhang, J., Wu, C., Zhang, Y., Yang, D., et al. (2011). Spatial distribution and source diagnosis of polycyclic aromatic hydrocarbons in soils from Chengdu Economic Region, Sichuan Province, western China. Journal of Geochemical Exploration, 110(2), 146–154.CrossRefGoogle Scholar
  32. Xu, H., Cao, J., Ho, K., Ding, H., Han, Y., Wang, G., et al. (2012). Lead concentrations in fine particulate matter after the phasing out of leaded gasoline in Xi’an. China Atmospheric Environment, 46, 217–224.CrossRefGoogle Scholar
  33. Yao, X., Chan, C. K., Fang, M., Cadle, S., Chan, T., Mulawa, P., et al. (2002). The water-soluble ionic composition of PM2.5 in Shanghai and Beijing. China Atmospheric Environment, 36, 4223–4234.CrossRefGoogle Scholar
  34. Ye, L., You, H., Yao, J., Kang, X., & Tang, L. (2013). Seasonal variation and factors influencing perchlorate in water, snow, soil and corns in Northeastern China. Chemosphere, 90(10), 2493–2498.CrossRefGoogle Scholar
  35. Zauscher, M. D., Wang, Y., Moore, M. J., Gaston, C. J., & Prather, K. A. (2013). Air quality impact and physicochemical aging of biomass burning aerosols during the 2007 San Diego wildfires. Environmental Science and Technology, 47, 7633–7643.CrossRefGoogle Scholar
  36. Zhang, J., Luo, B., Zhang, J., Ouyang, F., Song, H., Liu, P., et al. (2017). Analysis of the characteristics of single atmospheric particles in Chengdu using single particle mass spectrometry. Atmospheric Environment, 157, 91–100.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Keying Wu
    • 1
  • Ming Duan
    • 1
  • Hefan Liu
    • 2
  • Zihang Zhou
    • 2
  • Ye Deng
    • 2
  • Danlin Song
    • 2
  • Qinwen Tan
    • 2
  1. 1.Department of Chemistry and Chemical EngineeringSouthwest Petroleum UniversityChengduPeople’s Republic of China
  2. 2.Chengdu Academy of Environmental SciencesChengduPeople’s Republic of China

Personalised recommendations