Advertisement

Environmental Geochemistry and Health

, Volume 40, Issue 5, pp 1841–1851 | Cite as

On the rubidium and lithium content and availability in the sub-arid south-eastern Mediterranean: potential health implications

  • Fyodor S. Kot
Article
  • 32 Downloads

Abstract

Rubidium and lithium are rather rare elements in environmental research, despite their affiliation with a group of chemically active metals and the abundance of Rb in the environment. A growing body of evidence, although controversial, has indicated that both elements possess unique essential and neurophysiological characteristics in biota and humans. Both elements may concentrate in soil and vegetation of sub-arid environments. We investigated the content and (potential) availability of Rb and Li in the soils and natural waters of Galilee, the Coastal Plain, and the northern Negev of Israel. A newly developed chromatographic technique for the separation of truly dissolved Rb and Li compounds has been applied. High concentrations of Rb, together with high values of the potentially vital Rb-to-K ratio, were found in the soils, the soil solutions, rainwater, throughfall water, and the plant litter leachates, but not in the surface and spring waters. This may indicate a sequestration of Rb in the local soils and a semi-closed Rb turnover in the soil–plant system with a major input from sea aerosols. Low Li bulk and available concentrations were determined in all the natural compartments. Possible implications of such specific environmental features on the local population health were discussed.

Keywords

Rubidium Lithium Sub-arid soils Vegetation Natural waters Availability Health 

Notes

Acknowledgements

I am grateful to Dr. Kunio Fujiwara, Department of Applied Chemistry and Biotechnology, Chiba University, Japan, for methodological help and for supplying us with the IDA-fibre. I am cordially thankful to Prof. Avi Shaviv for his valuable notes and criticism on the manuscript. Dr. Malik Kochva has undertaken many analyses for this work. Both are from the Faculty of Civil and Environmental Engineering, Technion-IIT. Victor Kislovsky from the Faculty of Mechanical Engineering, Technion-IIT assisted me with patience with the fieldwork. I would like to express my sincere gratitude to the anonymous reviewers whose scrupulous work and substantial notes and suggestions brought about improvements to the manuscript. The editing of English was done in Proof-Reading Service, Letchworth, UK. The Technion Research & Development Foundation (Haifa, Israel) and Misrad-haKlita (Jerusalem, Israel) supported the work.

Compliance with ethical standards

Conflict of interest

The author declares no competing financial interest.

References

  1. Anke, M. K., & Angelov, L. (2004). Rubidium. In E. Merian, M. Anke, M. Ihnat, & M. Stoeppler (Eds.), Elements and their compounds in the environment: Occurrence, analysis and biological relevance (2nd ed., pp. 547–563). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.CrossRefGoogle Scholar
  2. Bowen, H. J. M. (1966). Trace elements in biochemistry. New York: Academic Press.Google Scholar
  3. Bradford, G. R. (1963). Lithium survey of California’s water resources. Soil Science, 96(2), 77–81.CrossRefGoogle Scholar
  4. Brown, J. S., Jr. (1994). Role of selenium and other trace elements in the geography of schizophrenia. Schizophrenia Bulletin, 20(2), 387–398.CrossRefGoogle Scholar
  5. Carroll, B. J., & Sharp, P. T. (1971). Rubidium and lithium: Opposite effects on amine-mediated excitement. Science, 172(3990), 1355–1357.CrossRefGoogle Scholar
  6. Chaudhuri, S., & Clauer, N. (1993). Strontium isotopic compositions and potassium and rubidium contents of formation waters in sedimentary basins: Clues to the origin of the solutes. Geochimica et Cosmochimica Acta, 57(2), 429–437.CrossRefGoogle Scholar
  7. Corsini, G. U. (Ed.) (2012). Current trends in lithium and rubidium therapy. In Proceedings of International Symposium on Lithium and rubidium therapy, Venice, 29 September1st October 1983. Springer.Google Scholar
  8. Dan, J., Yaalon, D. H., Koyumdjisky, H., & Raz, Z. (1976). The soils of Israel: (With Map 1: 500,000). Tel Aviv: Volcani Center, Division of Scientific Publications.Google Scholar
  9. Davey, B. G., & Wheeler, R. C. (1980). Some aspects of the chemistry of lithium in soils. Plant and Soil, 57(1), 49–60.CrossRefGoogle Scholar
  10. De Vos, W., Tarvainen, T., Salminen, R., Reeder, S., De Vivo, B., Demetriades, A., et al. (2006). Geochemical atlas of Europe. Part 2. Espoo: Geological Survey of Finland.Google Scholar
  11. Durfor, C. N., & Becker, E. (1964). Public water supplies of the 100 largest cities in the United States, 1962 (No. 1812). US Government Printing Office.Google Scholar
  12. Fieve, R. R., Meltzer, H., Dunner, D. L., Levitt, M., Mendlewicz, J., & Thomas, A. (1973). Rubidium: Biochemical, behavioral, and metabolic studies in humans. American Journal of Psychiatry, 130(1), 55–61.CrossRefGoogle Scholar
  13. Gal, M., Amiel, A. J., & Ravikovitch, J. (1974). Clay mineral distribution and origin in the soil types of Israel. Journal of Soil Science, 25, 79–89.CrossRefGoogle Scholar
  14. Giotakos, O., Nisianakis, P., Tsouvelas, G., & Giakalou, V. V. (2013). Lithium in the public water supply and suicide mortality in Greece. Biological Trace Element Research, 156(1–3), 376–379.CrossRefGoogle Scholar
  15. Heier, K. S., & Billings, G. K. (1970). Rubidium. Handbook of geochemistry (Vol. 2, p. 2). Berlin: Springer.Google Scholar
  16. Herczeg, A. L., & Edmunds, W. M. (2000). Inorganic ions as tracers. In: Environmental tracers in subsurface hydrology (pp. 31–77). Springer: Boston.CrossRefGoogle Scholar
  17. Horstman, E. L. (1957). The distribution of lithium, rubidium, and caesium in igneous and sedimentary rocks. Geochimica et Cosmochimica Acta, 12, 1–28.CrossRefGoogle Scholar
  18. Kabata-Pendias, A., & Pendias, H. (1984). Trace elements in soil and plants. Boca Raton, FL: CRC Press.Google Scholar
  19. König, D., Baumgartner, J., Blüml, V., Heerlein, A., Téllez, C., Baus, N., et al. (2017). Einfluss von natürlichen Lithiumsalzvorkommen auf die Suizidmortalität in Chile 2000–2009: Eine geographische Analyse. Neuropsychiatrie: Klinik, Diagnostik, Therapie und Rehabilitation, 31, 70–76.CrossRefGoogle Scholar
  20. Kot, F. S., Farran, R., Fujiwara, K., Kharitonova, G. V., Kochva, M., Shaviv, A., et al. (2016). On boron turnover in plant–litter–soil system. Geoderma, 268, 139–146.CrossRefGoogle Scholar
  21. Kot, F. S., Farran, R., Kochva, M., & Shaviv, A. (2012). Boron in humus and inorganic components of Hamra and Grumosol soils irrigated with reclaimed wastewater. Soil Research, 50(1), 30–43.CrossRefGoogle Scholar
  22. Kot, F. S., Fujiwara, K., & Kochva, M. (2017). A simple in situ preconcentration method for the simultaneous determination of major and minor alkali and alkaline-earth metals in natural waters using iminodiacetate-grafted fiber. Analytical and Bioanalytical Chemistry, 409, 3917–3922.CrossRefGoogle Scholar
  23. Krulík, R., Farská, I., & Prokeš, J. (1977). Effect of rubidium, lithium and cesium on brain ATPase and protein kinases. Neuropsychobiology, 3(2–3), 129–134.CrossRefGoogle Scholar
  24. Liaugaudaite, V., Mickuviene, N., Raskauskiene, N., Naginiene, R., & Sher, L. (2017). Lithium levels in the public drinking water supply and risk of suicide: A pilot study. Journal of Trace Elements in Medicine and Biology, 43, 197–201.CrossRefGoogle Scholar
  25. Lieberman, K. W., & Meltzer, H. L. (1970). Recognition of rubidium by the central nervous system. Brain Research, 23(1), 124–127.CrossRefGoogle Scholar
  26. Navrot, J., & Singer, A. (1976). Geochemical changes accompanying basic igneous rocks-clay transition in a humid Mediterranean climate. Soil Science, 121(6), 337–345.CrossRefGoogle Scholar
  27. Nielsen, F. H. (1998). Knowledge and speculation. The Journal of Trace Elements in Experimental Medicine, 11, 251–274.CrossRefGoogle Scholar
  28. Nielsen, F. H. (2012). Other elements: Sb, Ba, B, Br, Cs, Ge, Rb, Ag, Sr, Sn, Ti, Zr, Be, Bi, Ga, Au, In, Nb, Sc, Te, Tl, W. In W. Mertz (Ed.), Trace elements in human and animal nutrition (Vol. 2, pp. 415–463). San Diego: Academic Press.Google Scholar
  29. Paschalis, C., Jenner, F. A., & Lee, C. R. (1978). Effects of rubidium chloride on the course of manic-depressive illness. Journal of the Royal Society of Medicine, 71(5), 343.CrossRefGoogle Scholar
  30. Persinger, M. A. (1987). Geopsychology and geopsychopathology: mental processes and disorders associated with geochemical and geophysical factors. Cellular and Molecular Life Sciences, 43(1), 92–104.CrossRefGoogle Scholar
  31. Petrini, M., & Azzarà, A. (2012). Lithium in the treatment of neutropenia. Current Opinion in Hematology, 19(1), 52–57.CrossRefGoogle Scholar
  32. Ponomareva, V. V., & Plotnikova, T. A. (1980). Humus and soil formation. Leningrad: Nauka. (in Russian).Google Scholar
  33. Preston, C. M., Hempfling, R., Schulten, H.-R., Schnitzer, M., Trofymow, J. A., & Axelson, D. E. (1994). Characterization of organic matter in a forest soil of coastal British Columbia by NMR and pyrolysis-field ionization mass spectrometry. Plant and Soil, 158(1), 69–82.CrossRefGoogle Scholar
  34. Ravikovitch, S., Pines, F., & Ben-Yair, M. (1960). Composition of colloids in the soils of Israel. Journal of Soil Science, 11, 82–91.CrossRefGoogle Scholar
  35. Relman, A. S. (1956). The physiological behavior of rubidium and cesium in relation to that of potassium. The Yale Journal of Biology and Medicine, 29(3), 248–262.Google Scholar
  36. Ringer, S. (1883). An investigation regarding the action of rubidium and cesium salts compared with the action of potassium salts on the ventricle of the frog’s heart. Journal of Physiology, 4, 370–378.CrossRefGoogle Scholar
  37. Sawhney, B. L. (1964). Sorption and fixation of microquantities of cesium by clay minerals: Effect of saturating cations. Soil Science Society of America Journal, 28(2), 183–186.CrossRefGoogle Scholar
  38. Schoenfeld, I., & Held, S. (1969). A spectrochemical method for determining rubidium in sea and spring waters. Israel Journal of Chemistry, 7(6), 831–833.CrossRefGoogle Scholar
  39. Schrauzer, G. N., & Shrestha, K. P. (1990). Lithium in drinking water and the incidences of crimes, suicides, and arrests related to drug addictions. Biological Trace Element Research, 25(2), 105–113.CrossRefGoogle Scholar
  40. Selinus, O., Alloway, B. J., Centeno, J. A., Finkelman, R. B., Fuge, R., Lindh, U., et al. (Eds.). (2013). Essentials of medical geology. New York: Springer.Google Scholar
  41. Shacklette, H. T., & Boerngen, J. G. (1984). Element concentrations in soils and other surficial materials of the conterminous United States. U.S. Geological Survey Professional Paper 1270.Google Scholar
  42. Simonsson, M., Bergholm, J., Lemarchand, D., & Hillier, S. (2016). Mineralogy and biogeochemistry of potassium in the Skogaby experimental forest, southwest Sweden: pools, fluxes and K/Rb ratios in soil and biomass. Biogeochemistry, 131(1–2), 77–102.CrossRefGoogle Scholar
  43. Singer, A. (1971). Clay minerals in the soils of the southern Golan Heights. Israel Journal of Earth Sciences, 20, 105–112.Google Scholar
  44. Singer, A. (2007). The soils of Israel. Berlin: Springer.Google Scholar
  45. Souty, N., Guennelon, R., & Rode, C. (1975). Quelques observations sur l’absorption du potassium, du rubidium-86 et du césium-137 par des plantes cultivées sur solutions nutritives. Annales Agronomique, 26, 41–58.Google Scholar
  46. Tessier, A., Campbell, P. G., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–851.CrossRefGoogle Scholar
  47. Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the earth’s crust. Geological Society of America Bulletin, 72(2), 175–192.CrossRefGoogle Scholar
  48. Tyler, G., & Olsson, T. (2001). Concentrations of 60 elements in the soil solution as related to the soil acidity. European Journal of Soil Science, 52(1), 151–165.CrossRefGoogle Scholar
  49. Üstün, T. B., Ayuso-Mateos, J. L., Chatterji, S., Mathers, C., & Murray, C. J. (2004). Global burden of depressive disorders in the year 2000. British Journal of Psychiatry, 184(5), 386–392.CrossRefGoogle Scholar
  50. Vinichuk, M., Taylor, A. F. S., Rosén, K., & Johanson, K. J. (2010). Accumulation of potassium, rubidium and caesium (133 Cs and 137 Cs) in various fractions of soil and fungi in a Swedish forest. Science of the Total Environment, 408(12), 2543–2548.CrossRefGoogle Scholar
  51. WHO. (1996). Trace elements in human nutrition and health. Geneva: World Health Organization.Google Scholar
  52. Yaalon, D. H. (1997). Soils in the Mediterranean region: What makes them different? CATENA, 28, 157–169.CrossRefGoogle Scholar
  53. Yechieli, Y., Ronen, D., & Vengosh, A. (1997). Isotopic measurements and groundwater dating at the fresh-saline water interface region of the Mediterranean coastal plain aquifer of Israel. Jerusalem: Ministry of National Infrastructures, Geological Survey of Israel.Google Scholar
  54. Zohary, T., Nishri, A., & Sukenik, A. (2012). Present–absent: A chronicle of the dinoflagellate Peridinium gatunense from Lake Kinneret. Hydrobiologia, 698(1), 161–174.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Faculty of Civil and Environmental EngineeringTechnion–Israel Institute of TechnologyHaifaIsrael

Personalised recommendations