Advertisement

Environmental Geochemistry and Health

, Volume 40, Issue 6, pp 2587–2601 | Cite as

Polybrominated diphenyl ethers (PBDEs) in core sediments from creek ecosystem: occurrence, geochronology, and source contribution

  • Mahesh Tiwari
  • Sanjay Kumar Sahu
  • Rahul C. Bhangare
  • P. Y. Ajmal
  • Gauri Girish Pandit
Original Paper
  • 51 Downloads

Abstract

The levels of 15 polybrominated diphenyl ether (PBDE) congeners in grab sediment and sediment cores from the Thane creek were monitored for their spatial and temporal distribution. Total PBDE (ΣPBDE) concentrations in grab sediments were ranging from 15.98 to 132.72 ng g−1 dry weight. BDE-209 was the most abundant congener with percentage contribution in the range of 19–35% to total PBDEs. Total PBDE show multimode concentration with depth in sediment, among which mode at a depth of 10 cm is predominant. Results of sediment core also indicates PBDEs were enormously used in last two decades in surrounding area. Sedimentation rate at the creek was also evaluated using Pb210 dating technique. Average percentage contribution of commercial penta-BDE (fP), octa-BDE (fO), and deca-BDE (fD) to the profile found in sediments collected across Thane creek were 24 ± 5, 5 ± 1 and 69 ± 7% (p < 0.001) respectively. Levels of all measured PBDEs in sediment met with guideline values except for the penta-BDE (total, BDE-99 and BDE-100) at few locations.

Keywords

Flame retardant Estuarine contamination Persistent organic pollutant (POPs) Sedimentation rate Environmental distribution 

Notes

Acknowledgements

This work is funded by Government of India under XII plan project at Bhabha Atomic Research Centre. It is hereby declared that, there is no financial and personnel conflict of interest associated with this study.

References

  1. Abbasi, G., Buser, A. M., Soehl, A., Murray, M. W., & Diamond, M. L. (2015). Stocks and Flows of PBDEs in Products from Use to Waste in the US and Canada from 1970 to 2020. Environmental Science and Technology, 49(3), 1521–1528.CrossRefGoogle Scholar
  2. Alcock, R., Johnston, A. E., McGrath, S. P., Berrow, M. L., & Jones, K. C. (1993). Long-term changes in the polychlorinated biphenyl content of United Kingdom soils. Environmental Science and Technology, 27, 1918–1923.  https://doi.org/10.1021/es00046a022.CrossRefGoogle Scholar
  3. Binelli, A., Sarkar, S. K., Chatterjee, M., Riva, C., Parolini, M., deb Bhattacharya, B., et al. (2007). Concentration of polybrominated diphenyl ethers (PBDEs) in sediment cores of Sundarban mangrove wetland, northeastern part of Bay of Bengal (India). Marine Pollution Bulletin, 54(8), 1220–1229.CrossRefGoogle Scholar
  4. Birnbaum, L. S., & Hubal, E. A. C. (2006). Polybrominated diphenyl ethers: a case study for using biomonitoring data to address risk assessment questions. Environmental Health Perspectives, 114(11), 1770–1775.CrossRefGoogle Scholar
  5. Bünz, V., Patricia, V. B., & Schmidt, S. (1997). The microbial degradation of halogenateddiaryl ether. Biotechnology Advances, 15, 621–632.CrossRefGoogle Scholar
  6. Darnerud, P. O., Eriksen, G. S., Johannesson, T., Larsen, P. B., & Viluksela, M. (2001). Polybrominated diphenyl ethers: Occurrence, dietary exposure, and toxicology. Environmental Health Perspectives, 109, 49–68.Google Scholar
  7. de Boer, J., Wester, P. G., Klamer, H. J. C., Lewis, W. E., & Boonm, J. P. (1998). Do flame retardantsthreaten ocean life? Nature, 394, 28–29.CrossRefGoogle Scholar
  8. De Wit, C. Y. (2002). An overview of brominated flame retardants in the environment. Chemosphere, 46, 583–624.CrossRefGoogle Scholar
  9. Deng, D., Guo, J., Sun, G., Chen, X., Qiu, M., & Xu, M. (2011). Aerobic debromination of deca-BDE: Isolation and characterization of an indigenous isolate from a PBDE contaminated sediment. International Bio-deterioration & Biodegradation, 65, 465–469.CrossRefGoogle Scholar
  10. Dong, H., Li, Z., Man, X., Zhou, J., Lu, H., & Wang, S. (2010). Identification of the metabolites of polybrominateddiphenyl ether 99 and its related cytochrome P450s. Journal of Biomedical Research, 24(3), 223–232.CrossRefGoogle Scholar
  11. Eakins, J. D., & Morrison, R. T. (1978). A new procedure for the determination of lead-210 in lake and marine sediments. The International Journal of Applied Radiation and Isotopes, 29, 531–536.CrossRefGoogle Scholar
  12. Eljarrat, E., De La Cal, A., Larrazabal, D., Fabrellas, B., Fernandez-Alba, A. R., Borrull, F., et al. (2005). Occurrence of polybrominated diphenylethers, polychlorinated dibenzo-p-dioxins, dibenzofurans and biphenyls in coastal sediments from Spain. Environmental Pollution, 136(3), 493–501.CrossRefGoogle Scholar
  13. Environment Canada, (2013). Federal Environmental Quality Guidelines for Polybrominated Diphenyl Ethers (PBDEs). February 2013.Google Scholar
  14. Fernliir, G., Gadhasson, I., Piidra, K., Darnerud, P. O., & Thuvander, A. (1997). Lack of effects of some individual polybrominated diphenyl ether (PBDE) and polychlorinated biphenyl (PCB) congeners on human lymphocyte functions in vitro. Toxicology Letters, 90, 189–197.CrossRefGoogle Scholar
  15. Geissen, V., Mol, H., Klumpp, E., Umlauf, G., Nadal, M., van der Ploeg, M., et al. (2015). Emerging pollutants in the environment: A challenge for water resource management. International Soil and Water Conservation Research, 3(1), 57–65.CrossRefGoogle Scholar
  16. Gevao, B., Boyle, E. A., Ab, A. A., Carrasco, G. G., Ghadban, A. N., Al-Shamroukh, D., et al. (2014). Polybrominated diphenyl ether concentrations in sediments from the Northern Arabian Gulf: Spatial and temporal trends. Science of the Total Environment, 491–492, 148–153.CrossRefGoogle Scholar
  17. Hale, R. C., La Guardia, M. J., Harvey, E., Gaylor, M. O., & Mainor, T. M. (2006). Brominated flame retardant concentrations and trends in abiotic media. Chemosphere, 64, 181–186.CrossRefGoogle Scholar
  18. Hale, R. C., La Guardia, M. J., Harvey, E. P., Gaylor, M. O., Mainor, T. M., & Duff, W. H. (2001). Flame retardants persistent pollutants in land-applied sludges. Nature, 412, 140–141.  https://doi.org/10.1038/35084130.CrossRefGoogle Scholar
  19. Hites, R. A. (2004). Polybrominated diphenyl ethers in the environment and in people: A meta-analysis of concentrations. Environmental Science and Technology, 38(4), 945–956.CrossRefGoogle Scholar
  20. Hosetti, B. B. (2006). Prospects and perspective of solid waste management. New Age International, ISBN 978-81-224-1777-7.Google Scholar
  21. Hyötyläinen, T., & Hartonen, K. (2002). Determination of brominated flame retardants. Environmental Trends in Analytical Chemistry, 21, 13–29.CrossRefGoogle Scholar
  22. Klosterhaus, S. L., Stapleton, H. M., Guardia, M. J. L., & Greig, D. J. (2012). Brominated and chlorinated flame retardants in San Francisco Bay sediments and wildlife. Environment International, 47, 56–65.CrossRefGoogle Scholar
  23. Kuiper, R. V., Murk, A. J., Leonards, P. E. G., Grinwis, G. C. M., van den Berg, M., & Vos, J. G. (2006). In vivo and in vitro Ah-receptor activation by commercial and fractionated pentabromo diphenylether using zebra fish (Daniorerio) and the DR-CALUX assay. Aquatic Toxicology, 79, 366–375.CrossRefGoogle Scholar
  24. La Guardia, M. J., Hale, R. C., & Harvey, E. (2006). Detailed polybrominated diphenyl ether (PBDE) congener composition of the widely used penta-, octa-, and deca-PBDE technical flame-retardant mixtures. Environmental Science and Technology, 40(20), 6247–6254.CrossRefGoogle Scholar
  25. Labunska, I., Brigden, K., Santillo, D., Kiselev, A. & Johnston, P. (2010). Russian Refuse #2: an update on PBDEs and other contaminants detected in St-Petersburg area, Russia. Greenpeace Research Laboratories Technical Note 04/2010.Google Scholar
  26. Li, W. L., Ma, W. L., Jia, H. L., Hong, W. J., Moon, H. B., Nakata, H., et al. (2016). Polybrominated diphenyl ethers (PBDEs) in surface soils across five Asian countries: Levels, spatial distribution, and source contribution. Environmental Science and Technology, 50, 12779–12788.CrossRefGoogle Scholar
  27. Li, A., Mills, B., & Rockne, K. J. (2001) Chronology of PBDE Air Deposition in the Great Lakes from Sedimentary Records, EPA Great Lakes Air Deposition FY2001.Google Scholar
  28. Macías-Zamora, J. V., Ramírez-Álvarez, N., & Sánchez-Osorio, J. L. (2014). A decadal trend study (1998–2008) of POPs in marine sediments at the south of the Southern California Bight. Science of the Total Environment, 491–492, 205–211.CrossRefGoogle Scholar
  29. Mai, B., Chen, S., Chen, S., Luo, X., Chen, L., Chen, L., et al. (2005). Distribution of polybrominated diphenyl ethers in sediments of the Pearl River Delta and adjacent South China Sea. Environmental Science and Technology, 39(10), 3521–3527.CrossRefGoogle Scholar
  30. Moon, H. B., Kannan, K., Choi, M., & Choi, H. G. (2007). Polybrominated diphenyl ethers (PBDEs) in marine sediments from industrialized bays of Korea. Marine Pollution Bulletin, 54(9), 1402–1412.CrossRefGoogle Scholar
  31. Nylund, K., Asplund, L., Jansson, B., Jonsson, P., Litzen, K., & Sellstrom, U. (1992). Analysis of some polyhalogenated organic pollutants in sediment and sewage sludge. Chemosphere, 24, 1721–1730.CrossRefGoogle Scholar
  32. Pandit, G. G., Sahu, S. K., Ajmal, P. Y., Tiwari, M., & Bhangare, R. C. (2014). Application of 210Po isotope dating for chronological assessment of organochlorine pesticides in estuarine sediment. Journal of Radiation Research and Applied, Sciences, 7(2), 214–221.CrossRefGoogle Scholar
  33. Pennington, W., Tutin, T. C., Cambray, R. S., Eakins, J. D., & Harkness, D. D. (1976). Radionuclide dating of recent sediments of Blelham Tarn. Freshwater Biology, 6, 317–331.CrossRefGoogle Scholar
  34. Qiu, X., Marvin, C., & Hites, A. (2007). Dechlorane plus and other flame retardants in a sediment core from Lake Ontario. Environmental Science and Technology, 41, 6014–6019.CrossRefGoogle Scholar
  35. Rahman, F., Langford, K. H., Scrimshaw, M. D., & Lester, J. N. (2001). Polybrominateddiphenyl ether (PBDE) flame retardants. The Science of the Total Environment, 275, 1–17.CrossRefGoogle Scholar
  36. Sahu, S. K., Ajmal, P. Y., Pandit, G. G., & Puranik, V. D. (2009). Vertical distribution of polychlorinated biphenyl congeners in sediment core from Thane Creek area of Mumbai, India. Journal of Hazardous Materials, 164, 1573–1579.CrossRefGoogle Scholar
  37. Sahu, S. K., Bhangare, R. C., Tiwari, M., Ajmal, P. Y., & Pandit, G. G. (2014). Depth profiles of lithogenic and anthropogenic mercury in the sediments from Thane Creek, Mumbai, India. International Journal of Sediment Research, 29, 431–439.CrossRefGoogle Scholar
  38. Sellstrom, U., Jansson, B., Kierkegaard, A., & de Wit, C. (1993). Polybrominateddiphenylethers (PBDE) in biological samples from the Swedish environment. Chemosphere, 26, 1703–1718.CrossRefGoogle Scholar
  39. Shaw, S. D., & Kannan, K. (2009). Polybrominated diphenyl ethers in marine ecosystems of the American continents: foresight from current knowledge. Reviews on Environmental Health, 24, 157–229.CrossRefGoogle Scholar
  40. Shen, L., Wania, F., Lei, Y. D., Teixera, C., Muir, D. C. G., & Xiao, H. (2006). Polychlorinated biphenyls and polybrominated diphenyl ethers in the North American atmosphere. Environmental Pollution, 144(2), 434–444.CrossRefGoogle Scholar
  41. Shotbolt, L. A., Thomas, A. D., & Hutchinson, S. M. (2005). The use of reservoir sediments as environmental archives of catchment inputs and atmospheric pollution. Progress in Physical Geography, 29(3), 337–361.CrossRefGoogle Scholar
  42. Siddiqi, M. A., Laessig, R. H., & Reed, K. D. (2003). Polybrominated Diphenyl Ethers (PBDEs): New Pollutants-Old Diseases. Clinical Medicine & Research, 1(4), 281–290.CrossRefGoogle Scholar
  43. Stapleton, H. M. (2006). Instrumental methods and challenges in quantifying polybrominated diphenyl ethers in environmental extracts: A review. Analytical and Bioanalytical Chemistry, 386(4), 807–817.CrossRefGoogle Scholar
  44. Talsness, C. E. (2008). Overview of toxicological aspects of polybrominated diphenyl ethers: A flame-retardant additive in several consumer products. Environmental Research, 108, 158–167.CrossRefGoogle Scholar
  45. Tiwari, M., Sahu, S. K., Bhangare, R. C., & Pandit, G. G. (2016a). Polonium in size fractionated mainstream cigarette smoke, predicted deposition and associated internal radiation dose. Journal of Environmental Radioactivity, 162–163, 251–257.CrossRefGoogle Scholar
  46. Tiwari, M., Sahu, S. K., & Pandit, G. G. (2016b). Distribution and ecotoxicological concerns of persistent organic pollutants in sediment from creek ecosystem. Journal of Environmental Science and Health, Part B, 51(9), 616–621.CrossRefGoogle Scholar
  47. Tiwari, M., Sahu, S. K., & Pandit, G. G. (2017). Distribution of PAHs in different compartment of creek ecosystem: Ecotoxicological concern and human health risk. Environmental Toxicology and Pharmacology, 50, 58–66.CrossRefGoogle Scholar
  48. UNEP (2010). Stockholm Convention. The nine new POPs under the Stockholm Convention.Google Scholar
  49. Vane, C. H., Harrison, I., & Kim, A. W. (2007). Assessment of polyaromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in surface sediments of the inner Clyde estuary, UK. Marine Pollution Bulletin, 54, 1301–1306.CrossRefGoogle Scholar
  50. Vane, C. H., Ma, Y. J., Chen, S. J., & Mai, B. X. (2010). Increasing polybrominated diphenyl ether (PBDE) contamination in sediment cores from the inner Clyde Estuary, UK. Environmental Geochemistry and Health, 32, 13–21.CrossRefGoogle Scholar
  51. Wang, Y. W., Jiang, G. B., Lam, P. K. S., & Li, A. (2007). Polybrominated diphenyl ether in the East Asian environment: a critical review. Environment International, 33, 963–973.CrossRefGoogle Scholar
  52. Watanabe, I., Kashimoto, T., & Tatsukawa, R. (1987). Polybrominated diphenyl ethers in marine fish, shellfish and river and marine sediment in Japan. Chemosphere, 16, 2389–2396.CrossRefGoogle Scholar
  53. Wu, M. H., Xu, B. T., Xu, G., Wang, M. N., Ma, J., Pan, C. Y., et al. (2016). Occurrence and profiles of polybrominated diphenyl ethers (PBDEs) in riverine sediments of Shanghai: a combinative study with human serum from the locals. Environmental Geochemistry and Health.  https://doi.org/10.1007/s10653-016-9843-z.CrossRefGoogle Scholar
  54. Wurl, O., & Obbard, J. P. (2005). Organochlorine pesticides, polychlorinated biphenyls and polybrominated diphenyl ethers in Singapore’s coastal marine sediments. Chemosphere, 58(7), 925–933.CrossRefGoogle Scholar
  55. Yen, J. H., Liao, W. C., Chen, W. C., & Wang, Y. S. (2009). Interaction of polybrominated diphenyl ethers (PBDEs) with anaerobic mixed bacterial cultures isolated from river sediment. Journal of Hazardous Materials, 165, 518–524.CrossRefGoogle Scholar
  56. Zhang, X. L., Luo, X. J., Chen, S. J., Wu, J. P., & Mai, B. X. (2009). Spatial distribution and vertical profile of polybrominated diphenyl ethers, tetrabromobisphenol A, and decabromodiphenylethane in river sediment from an industrialized region of South China. Environmental Pollution, 157, 1917–1923.CrossRefGoogle Scholar
  57. Zhang, Y., Wang, W., Song, J., Ren, Z., Yuan, H., Yan, H., et al. (2016). Environmental characteristics of polybrominated diphenyl ethers in marine system, with emphasis on marine organisms and sediments. BioMed Research International.  https://doi.org/10.1155/2016/1317232.CrossRefGoogle Scholar
  58. Zhu, L. Y., & Hites, R. A. (2006). Brominated flame retardants in tree bark from North America. Environmental Science and Technology, 40(12), 3711–3716.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Mahesh Tiwari
    • 1
    • 2
  • Sanjay Kumar Sahu
    • 1
    • 2
  • Rahul C. Bhangare
    • 1
  • P. Y. Ajmal
    • 1
  • Gauri Girish Pandit
    • 1
    • 2
  1. 1.Environmental Monitoring and Assessment Section, Health Safety and Environment GroupBhabha Atomic Research CentreMumbaiIndia
  2. 2.Homi Bhabha National InstituteMumbaiIndia

Personalised recommendations