Environmental Geochemistry and Health

, Volume 40, Issue 6, pp 2551–2572 | Cite as

Seasonal variability of anthropogenic indices of PAHs in sediment from the Kuala Selangor River, west coast Peninsular Malaysia

  • Najat Masood
  • Normala HalimoonEmail author
  • Ahmad Zaharin Aris
  • Mohamad Pauzi Zakaria
  • Vahab Vaezzadeh
  • Sami M. Magam
  • Shuhaimi Mustafa
  • Masni Mohd Ali
  • Mehrzad Keshavarzifard
  • Sadeq Abdullah Abdo Alkhadher
  • Chui Wei Bong
  • Murad Ali Alsalahi
Original Paper


Rapid increase in industrialization and urbanization in the west coast of Peninsular Malaysia has led to the intense release of petroleum and products of petroleum into the environment. Surface sediment samples were collected from the Selangor River in the west coast of Peninsular Malaysia during four climatic seasons and analyzed for PAHs and biomarkers (hopanes). Sediments were soxhlet extracted and further purified and fractionated through first and second step column chromatography. A gas chromatography–mass spectrometry (GC–MS) was used for analysis of PAHs and hopanes fractions. The average concentrations of total PAHs ranged from 219.7 to 672.3 ng g−1 dw. The highest concentrations of PAHs were detected at 964.7 ng g−1 dw in station S5 in the mouth of the Selangor River during the wet inter-monsoonal season. Both pyrogenic and petrogenic PAHs were detected in the sediments with a predominance of the former. The composition of hopanes was homogeneous showing that petroleum hydrocarbons share an identical source in the study area. Diagnostic ratios of hopanes indicated that some of the sediment samples carry the crankcase oil signature.

Graphical Abstract


Polycyclic aromatic hydrocarbons Biomarkers Riverine sediment Pollution sources Malaysia Oil 



This study was a part of Japan Society for the Promotion of Science (JSPS) Asian Core Project on Straits of Malacca funded by the Ministry of Higher Education of Malaysia, through Universiti Putra Malaysia (Project No. 6379005) and HICoE-MOHE Grant IOES-2014. We would like to thank them for supporting this research financially.

Supplementary material

10653_2018_122_MOESM1_ESM.docx (41 kb)
Supplementary material 1 (DOCX 40 kb)


  1. Abas, M., Rahman, N. A., Omar, N. Y. M., Maah, M. J., Abu Samah, A., Oros, D. R., et al. (2004). Organic composition of aerosol particulate matter during a haze episode in Kuala Lumpur, Malaysia. Atmospheric Environment, 38, 4223–4241.Google Scholar
  2. Abas, M. R. B., Simoneit, B. R. T., Elias, V., Cabral, J. A., & Cardoso, J. N. (1995). Composition of higher molecular weight organic matter in smoke aerosol from biomass combustion in Amazonia. Chemosphere, 30, 995–1015.Google Scholar
  3. Bahry, P. S., Zakaria, M. P., Bin Abdullah, A. M., Abdullah, D. K., Sakari, M., Chandru, K., et al. (2009). Forensic Characterization of Polycyclic Aromatic Hydrocarbons and Hopanes in Aerosols from Peninsular Malaysia. Environmental Forensics, 10, 240–252.Google Scholar
  4. Bakhtiari, A. R., Zakaria, M. P., Yaziz, M. I., Lajis, M. N. H., & Bi, X. (2009). Polycyclic aromatic hydrocarbons and n-alkanes in suspended particulate matter and sediments from the Langat River, Peninsular Malaysia. Environment Asia, 2, 1–10.Google Scholar
  5. Bakhtiari, A. R., Zakaria, M. P., Yaziz, M. I., Lajis, H., Nordin, M., Bi, X., et al. (2010). Distribution of PAHs and n-alkancs in Klang River surface Sediments, Malaysia. Pertanika Journal of Science & Technology, 18, 167–179.Google Scholar
  6. Barrick, R. C., & Prahl, F. G. (1987). Hydrocarbon geochemistry of the Puget Sound region—III. Polycyclic aromatic hydrocarbons in sediments. Estuarine, Coastal and Shelf Science, 25, 175–191.Google Scholar
  7. Baumard, P., Budzinski, H., & Garrigues, P. (1998). Polycyclic aromatic hydrocarbons in sediments and mussels of the western Mediterranean sea. Environmental Toxicology and Chemistry, 17, 765–776.Google Scholar
  8. Boonyatumanond, R., Wattayakorn, G., Togo, A., & Takada, H. (2006). Distribution and origins of polycyclic aromatic hydrocarbons (PAHs) in riverine, estuarine, and marine sediments in Thailand. Marine Pollution Bulletin, 52, 942–956.Google Scholar
  9. Bouloubassi, I., Roussiez, V., Azzoug, M., & Lorre, A. (2012). Sources, dispersal pathways and mass budget of sedimentary polycyclic aromatic hydrocarbons (PAH) in the NW Mediterranean margin, Gulf of Lions. Marine Chemistry, 142, 18–28.Google Scholar
  10. Budzinski, H., Jones, I., Bellocq, J., Pierard, C., & Garriques, P. (1997). Evaluation of sediment contaminant by polycyclic aromatic hydrocarbons in the Gironde estuary. Marine Chemistry, 58, 85–97.Google Scholar
  11. Burton, G. A., Jr. (2002). Sediment quality criteria in use around the world. Limnology, 3, 65–76.Google Scholar
  12. Cailleaud, K., Forget-Leray, J., Peluhet, L., LeMenach, K., Souissi, S., & Budzinski, H. (2009). Tidal influence on the distribution of hydrophobic organic contaminants in the Seine Estuary and biomarker responses on the copepod Eurytemora affinis. Environmental Pollution, 157, 64–71.Google Scholar
  13. Cao, B., Nagarajan, K., & Loh, K. C. (2009). Biodegradation of aromatic compounds: Current status and opportunities for biomolecular approaches. Applied Microbiology and Biotechnology, 85, 207–228.Google Scholar
  14. Chalov, S. R., Jarsjö, J., Kasimov, N. S., Romanchenko, A. O., Pietroń, J., Thorslund, J., et al. (2015). Spatio-temporal variation of sediment transport in the Selenga River Basin, Mongolia and Russia. Environmental Earth Sciences, 73, 663–680.Google Scholar
  15. Chandru, K., Zakaria, M. P., Anita, S., Shahbazi, A., Sakari, M., Bahry, P. S., et al. (2008). Characterization of alkanes, hopanes, and polycyclic aromatic hydrocarbons (PAHs) in tar-balls collected from the East Coast of Peninsular Malaysia. Marine Pollution Bulletin, 56, 950–962.Google Scholar
  16. Chen, C. W., & Chen, C. F. (2011). Distribution, origin, and potential toxicological significance of polycyclic aromatic hydrocarbons (PAHs) in sediments of Kaohsiung Harbor, Taiwan. Marine Pollution Bulletin, 63, 417–423.Google Scholar
  17. Commendatore, M. G., Esteves, J. L., & Colombo, J. C. (2000). Hydrocarbons in coastal sediments of Patagonia, Argentina: Levels and probable sources. Marine Pollution Bulletin, 40, 989–998.Google Scholar
  18. Daka, E. R., & Ugbomeh, A. P. (2013). Polycyclic aromatic hydrocarbons in sediment and tissues of the Crab Callinectes pallidus from the Azuabie Creek of the Upper Bonny Estuary in the Niger Delta. Research Journal of Applied Sciences, Engineering and Technology, 6, 2594–2600.Google Scholar
  19. Dobbins, R. A., Fletcher, R. A., Benner, B. A., & Hoeft, S. (2006). Polycyclic aromatic hydrocarbons in flames, in diesel fuels, and in diesel emissions. Combustion and Flame, 144, 773–781.Google Scholar
  20. El Nemr, A., El-Sadaawy, M. M., Khaled, A., & El-Sikaily, A. (2013). Distribution patterns and risks posed of polycyclic aromatic hydrocarbons contaminated in the surface sediment of the Red Sea coast (Egypt). Desalination and Water Treatment, 52, 7964–7982.Google Scholar
  21. Fang, M., Zheng, M., Wang, F., To, K. L., Jaafar, A. B., & Tong, S. L. (1999). The solventextractable organic compounds in the Indonesia biomass burning aerosols–characterization studies. Atmospheric Environment, 33, 783–795.Google Scholar
  22. Feng, C., Xia, X., Shen, Z., & Zhou, Z. (2007). Distribution and sources of polycyclic aromatic hydrocarbons in Wuhan section of the Yangtze River, China. Environmental Monitoring and Assessment, 133, 447–458.Google Scholar
  23. Gallon, C., Tessier, A., Gobeil, C., & Beaudin, L. (2005). Sources and chronology of atmospheric lead deposition to a Canadian Shield lake: Inferences from Pb isotopes and PAH profiles. Geochimica et Cosmochimica Acta, 69, 3199–3210. Scholar
  24. Garrigues, P., Budzinski, H., Manitz, M., & Wise, S. (1995). Pyrolytic and petrogenic inputs in recent sediments: A definitive signature through phenanthrene and chrysene compound distribution. Polycyclic Aromatic Compounds, 7, 275–284.Google Scholar
  25. González, J., Viñas, L., Franco, M., Fumega, J., Soriano, J., Grueiro, G., et al. (2006). Spatial and temporal distribution of dissolved/dispersed aromatic hydrocarbons in seawater in the area affected by the Prestige oil spill. Marine Pollution Bulletin, 53, 250–259.Google Scholar
  26. Guo, Z., Lin, T., Zhang, G., Yang, Z., & Fang, M. (2006). High-resolution depositional records of polycyclic aromatic hydrocarbons in the central continental shelf mud of the East China Sea. Environmental Science and Technology, 40, 5304–5311.Google Scholar
  27. Harji, R. R., Yvenat, A., & Bhosle, N. B. (2008). Sources of hydrocarbons in sediments of the Mandovi estuary and the Marmugoa harbour, west coast of India. Environment International, 34, 959–965.Google Scholar
  28. Hartmann, P. C., Quinn, J., King, J. W., Tsutsumi, S., & Takada, H. (2000). Intercalibration of LABs in marine sediment SRM1941a and their application as a molecular marker in Narragansett Bay sediments. Environmental Science and Technology, 34, 900–906.Google Scholar
  29. He, J., Zielinska, B., & Balasubramanian, R. (2010). Composition of semi-volatile organic compounds in the urban atmosphere of Singapore: influence of biomass burning. Atmospheric Chemistry and Physics, 10, 11401–11413.Google Scholar
  30. Hu, L., Guo, Z., Feng, J., Yang, Z., & Fang, M. (2009). Distributions and sources of bulk OM and aliphatic hydrocarbons in the surface sediments of the Bohai Sea, China. Marine Chemistry, 113, 197–211.Google Scholar
  31. Iqbal, J., Overton, E. B., & Gisclair, D. (2008). Polycyclic aromatic hydrocarbons in Louisiana Rivers and coastal environments: source fingerprinting and forensic analysis. Environmental Forensics, 9, 63–74.Google Scholar
  32. Irwin, R. (1997). National Park Service. Environmental Contaminants Encyclopedia, PAHs Entry. Colorado: National Park Service.Google Scholar
  33. Jiang, J. J., Lee, C. L., Fang, M. D., & Liu, J. T. (2009). Polycyclic aromatic hydrocarbons in coastal sediments of Southwest Taiwan: An appraisal of diagnostic ratios in source recognition. Marine Pollution Bulletin, 58, 752–760.Google Scholar
  34. Karacik, B., Okay, O., Henkelmann, B., Bernhöft, S., & Schramm, K. W. (2009). Polycyclic aromatic hydrocarbons and effects on marine organisms in the Istanbul Strait. Environment International, 35, 599–606.Google Scholar
  35. Karami, A., Christianus, A., Ishak, Z., Shamsuddin, Z. H., Masoumian, M., & Courtenay, S. C. (2012). Use of intestinal Pseudomonas aeruginosa in fish to detect the environmental pollutant benzo [a] pyrene. Journal of Hazardous Materials, 215–216, 108–114. Scholar
  36. Karyab, H., Nasseri, S., Ahmadkhaniha, R., Rastkari, N., Mahvi, A. H., Nabizadeh, R., et al. (2014). Determination and source identification of polycyclic aromatics hydrocarbons in Karaj River, Iran. Bulletin of Environmental Contamination and Toxicology, 92, 50–56.Google Scholar
  37. Katsoyiannis, A., Terzi, E., & Cai, Q. Y. (2007). On the use of PAH molecular diagnostic ratios in sewage sludge for the understanding of the PAH sources. Chemosphere, 69, 1337–1339.Google Scholar
  38. Keshavarzifard, M., Zakaria, M. P., & Hwai, T. S. (2017). Bioavailability of polycyclic aromatic hydrocarbons (PAHs) to short-neck clam (Paphia undulata) from sediment matrices in mudflat areas of West coast of Peninsular Malaysia. Environmental Geochemistry and Health. Scholar
  39. Keshavarzifard, M., Zakaria, M. P., Hwai, T. S., Mustafa, S., Vaezzadeh, V., Magam, S. M., et al. (2014). Baseline distributions and sources of Polycyclic Aromatic Hydrocarbons (PAHs) in the surface sediments from the Prai and Malacca Rivers, Peninsular Malaysia. Marine Pollution Bulletin, 88, 366–372.Google Scholar
  40. Keshavarzifard, M., Zakaria, M. P., Hwai, T. S., Yusuff, F. M., & Mustafa, S. (2015). Distributions and source apportionment of sediment-associated polycyclic aromatic hydrocarbons (PAHs) and hopanes in rivers and estuaries of Peninsular Malaysia. Environmental Science and Pollution Research. Scholar
  41. Keshavarzifard, M., Zakaria, M. P., & Keshavarzifard, S. (2016). Evaluation of polycyclic aromatic hydrocarbons contamination in the sediments of the Johor Strait, Peninsular Malaysia. Polycyclic Aromatic Compounds. Scholar
  42. Khalili, N. R., Scheff, P. A., & Holsen, T. M. (1995). PAH source fingerprints for coke ovens, diesel and gasoline engines, highway tunnels, and wood combustion emissions. Atmospheric Environment, 29, 533–542.Google Scholar
  43. Larsen, R. K., III, & Baker, J. E. (2003). Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: A comparison of three methods. Environmental Science and Technology, 37, 1873–1881.Google Scholar
  44. Liang, Y., Tse, M., Young, L., & Wong, M. (2007). Distribution patterns of polycyclic aromatic hydrocarbons (PAHs) in the sediments and fish at Mai Po Marshes Nature Reserve, Hong Kong. Water Research, 41, 1303–1311.Google Scholar
  45. Liu, Y., Chen, L., Jianfu, Z., Qinghui, H., Zhiliang, Z., & Hongwen, G. (2008). Distribution and sources of polycyclic aromatic hydrocarbons in surface sediments of rivers and an estuary in Shanghai, China. Environmental Pollution, 154, 298–305.Google Scholar
  46. Liu, A., Egodawatta, P., Guan, Y., & Goonetilleke, A. (2013). Influence of rainfall and catchment characteristics on urban stormwater quality. Science of the Total Environment, 444, 255–262.Google Scholar
  47. Long, E., Macdonald, D., Smith, S., & Calder, F. (1995). Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management, 19, 81–97.Google Scholar
  48. Luellen, D. R., & Shea, D. (2003). Semipermeable membrane devices accumulate conserved ratios of sterane and hopane petroleum biomarkers. Chemosphere, 53, 705–713.Google Scholar
  49. Luo, X. J., Chen, S. J., Ni, H. G., Yu, M., & Mai, B. X. (2008). Tracing sewage pollution in the Pearl River Delta and its adjacent coastal area of South China Sea using linear alkylbenzenes (LABs). Marine Pollution Bulletin, 56, 158–162.Google Scholar
  50. Ma, X., Ran, Y., Gong, J., & Zou, M. (2007). Concentrations and inventories of polycyclic aromatic hydrocarbons and organochlorine pesticides in watershed soil in the Pearl River Delta, China. Environmental Monitoring and Assessment, 145, 453–464.Google Scholar
  51. Macdonald, D. D., Carr, R. S., Calder, F. D., Long, E. R., & Ingersoll, C. G. (1996). Development and evaluation of Sediment quality guidelines for Florida coastal waters. Ecotoxicology, 5, 253–278.Google Scholar
  52. Magi, E., Bianco, R., Ianni, C., & Di Carro, M. (2002). Distribution of polycyclic aromatic hydrocarbons in the sediments of the Adriatic Sea. Environmental Pollution, 119, 91–98.Google Scholar
  53. Mai, B. X., Fu, J. M., Sheng, G. Y., Kang, Y. H., Lin, Z., Zhang, G., et al. (2002). Chlorinated and polycyclic aromatic hydrocarbons in riverine and esturine sediments from Pearl River Delta China. Environmental Pollution, 117, 457–474.Google Scholar
  54. Maioli, O. L. G., Rodrigues, K. C., Knoppers, B. A., & Azevedo, D. A. (2010). Polycyclic aromatic and aliphatic hydrocarbons in Mytella charruana, a bivalve mollusk from Mundaú Lagoon, Brazil. Microchemical Journal, 96, 172–179.Google Scholar
  55. Mandalakis, M., Gustafsson, O., Reddy, C. M., & Xu, L. (2004). Radiocarbon apportionment of fossil versus biofuel combustion sources of polycyclic aromatic hydrocarbons in the Stockholm metropolitan area. Environmental Science and Technology, 38, 5344–5349.Google Scholar
  56. Masiol, M., Hofer, A., Squizzato, S., Piazza, R., Rampazzo, G., & Pavoni, B. (2012). Carcinogenic and mutagenic risk associated to airborne particle-phase polycyclic aromatic hydrocarbons: A source apportionment. Atmospheric Environment, 60, 375–382.Google Scholar
  57. Masood, N., Zakaria, M. P., Ali, M. M., Magam, S. M., Alkhadher, S. A., Keshavarzifard, M., et al. (2014). Distribution of petroleum hydrocarbons in surface sediments from selected locations in Kuala Selangor River, Malaysia. In A. Z. Aris, et al. (Eds.), From sources to solution (pp. 351–356). Singapore: Springer. Scholar
  58. Masood, N., Zakaria, M. P., Halimoon, N., Aris, A. Z., Magam, S. M., Kannan, N., et al. (2016). Anthropogenic waste indicators (AWI) particularly PAHs and LABs in Malaysian sediments: Application of aquatic environment for identifying anthropogenic pollution. Marine Pollution Bulletin, 102, 160–175.Google Scholar
  59. Mirsadeghi, S. A., Zakaria, M. P., Yap, C. K., & Gobas, F. (2013). Evaluation of the potential bioaccumulation ability of the blood cockle (Anadara granosa) for assessment of environmental matrices of mudflats. Science of the Total Environment, 454, 584–597.Google Scholar
  60. Mirsadeghi, S. A., Zakaria, M. P., Yap, C. K., & Shahbazi, A. (2011). Risk assessment for the daily intake of polycyclic aromatic hydrocarbons from the ingestion of cockle (Anadara granosa) and exposure to contaminated water and sediments along the west coast of Peninsular Malaysia. Journal of Environmental Sciences, 23, 336–345.Google Scholar
  61. Mitchell, P. K. K., Mills, G., Fisher-Niwa, G., Eason-Landcare, C., (1998). Technical paper No. 37 Toxic.Google Scholar
  62. Nozar, S. L. M., Ismail, W. R., & Zakaria, M. P. (2014). Distribution, sources identification, and ecological risk of PAHs and PCBs in coastal surface sediments from the Northern Persian Gulf. Human and Ecological Risk Assessment: An International Journal, 20, 1507–1520.Google Scholar
  63. Okuda, T., Kumata, H., Zakaria, M. P., Naraoka, H., Ishiwatari, R., & Takada, H. (2002). Source identification of Malaysian atmospheric polycyclic aromatic hydrocarbons nearby forest fires using molecular and isotopic compositions. Atmospheric Environment, 36, 611–618.Google Scholar
  64. Omar, N.-Y.-M.-J., Abas, M.-R.-B., Ketuly, K.-A., & Tahir, N-Md. (2002). Concentrations of PAHs in atmospheric particles (PM-10) and road side soil particles collected in Kuala Lumpur, Malaysia. Atmospheric Environment, 36, 247–254.Google Scholar
  65. Omar, N.-Y.-M.-J., Mon, T.-C., Rahman, N.-A., & Abas, M.-R.-B. (2006). Distributions and health risks of polycyclic aromatic hydrocarbons (PAHs) in atmospheric aerosols of Kuala Lumpur, Malaysia. Science of the Total Environment, 369, 76–81.Google Scholar
  66. Ouyang, Y., Zhang, J. E., & Ou, L. T. (2006). Temporal and spatial distributions of sediment total organic carbon in an estuary river. Journal of Environmental Quality, 35, 93–100.Google Scholar
  67. Pereira, W. E., Hostettler, F. D., Luoma, S. N., Van Geen, A., Fuller, C. C., & Anima, R. J. (1999). Sedimentary record of anthropogenic and biogenic polycyclic aromatic hydrocarbons in San Francisco Bay, California. Marine Chemistry, 64, 99–113.Google Scholar
  68. Peters, K. E., & Moldowan, J. M. (1993). The Biomarker Guide: Interpreting molecular fossils in petroleum and ancient sediments. Englewood Cliffs, New Jersey: Prentice Hall.Google Scholar
  69. Phelps, H. L. (2000). DC AES contaminated Anacostia Estuary sediments: A biomonitoring approach. Report, DC Water Resources Research Center, Washington, DC.Google Scholar
  70. Prahl, F. G., Crecelius, E., & Carpenter, R. (1984). Polycyclic aromatic hydrocarbons in Washington coastal sediments: An evaluation of atmospheric and riverine routes of introduction. Environmental Science and Technology, 18, 687–693.Google Scholar
  71. Prince, R. C., Elmendorf, D. L., Lute, J. R., Hsu, C. S., Halth, C. E., Senlus, J. D., et al. (1994). 17a(H),21a(H)-Hopane as a conservative internal marker for estimating the biodegradation of crude oil. Environmental Science and Technology, 28, 142–145.Google Scholar
  72. Qiao, M., Wang, C., Huang, S., Wang, D., & Wang, Z. (2006). Composition, sources, and potential toxicological significance of PAHs in the surface sediments of the Meiliang Bay, Taihu Lake, China. Environment International, 32, 28–33.Google Scholar
  73. Ramdahl, T. (1983). Retene—A molecular marker of wood combustion in ambient air. Nature, 306, 580–582.Google Scholar
  74. Raza, M., Zakaria, M. P., Hashim, N. R., Yim, U. H., Kannan, N., & Ha, S. Y. (2013). Composition and source identification of polycyclic aromatic hydrocarbons in mangrove sediments of Peninsular Malaysia: Indication of anthropogenic input. Environmental Earth Sciences, 70, 2425–2436.Google Scholar
  75. Retnam, A., Zakaria, M. P., Juahir, H., Aris, A. Z., Zali, M. A., & Kasim, M. F. (2013). Chemometric techniques in distribution, characterisation and source apportionment of polycyclic aromatic hydrocarbons (PAHS) in aquaculture sediments in Malaysia. Marine Pollution Bulletin, 69, 55–66.Google Scholar
  76. Saha, M., Togo, A., Mizukawa, K., Murakami, M., Takada, H., Zakaria, M. P., et al. (2009). Sources of sedimentary PAHs in tropical Asian waters: Differentiation between pyrogenic and petrogenic sources by alkyl homolog abundance. Marine Pollution Bulletin, 58, 189–200.Google Scholar
  77. Sakari, M., & Zakaria, M. P. (2013). Distribution, characterization and origins of polycyclic aromatic hydrocarbons (PAHs) in surficial sediment of Penang, Malaysia: The presence of fresh and toxic substances. World Applied Sciences Journal, 23, 1481–1488.Google Scholar
  78. Sakari, M., Zakaria, M. P., Junos, M. B. M., Annuar, N. A., Yun, H. Y., Heng, Y. S., et al. (2008a). Spatial distribution of petroleum hydrocarbon in sediments of major rivers from east coast of peninsular Malaysia. Estuarine and Coastal Marine Science, 31, 9–18.Google Scholar
  79. Sakari, M., Zakaria, M. P., Lajis, N. H., Mohamed, C. A. R., Bahry, P. S., & Anita, S. (2008b). Characterization, distribution, sources and origins of aliphatic hydrocarbons from surface sediment of Prai Strait, Penang, Malaysia: A widespread anthropogenic input. Environment Asia, 2, 1–14.Google Scholar
  80. Sakari, M., Zakaria, M. P., Mohamed, C. A. R., Lajis, N. H., Chandru, K., Bahry, P. S., et al. (2010). Urban vs. Marine based oil pollution in the strait of Johor, Malaysia: A century record. Soil and Sediment Contamination, 19, 644–666.Google Scholar
  81. Sanger, D. M., Holland, A. F., & Scott, G. I. (1999). Tidal creek and salt marsh sediments in South Carolina coastal estuaries: II. Distribution of organic contaminants. Archives of Environmental Contamination and Toxicology, 37, 458–471.Google Scholar
  82. Schumacher, B. A. (2002). Methods for the determination of total organic carbon (TOC). Soils and Sediments. Washington DC: U.S. Environmental Protection Agency.Google Scholar
  83. Sicre, M., Marty, J., Saliot, A., Aparicio, X., Grimalt, J., & Albaiges, J. (1987). Aliphatic and aromatic hydrocarbons in different sized aerosols over the Mediterranean Sea: Occurrence and origin. Atmospheric Environment, 21, 2247–2259.Google Scholar
  84. Simoneit, B. R. T. (2002). Biomass burning—A review of organic tracers for smoke from incomplete combustion. Applied Geochemistry, 17, 129–162.Google Scholar
  85. Soclo, H. H., Garrigues, P., & Ewald, M. (2000). Origin of polycyclic aromatic hydrocarbons (PAHs) in coastal marine sediments: Case Studies in Cotonou (Benin) and Aquitaine (France) areas. Marine Pollution Bulletin, 40, 387–396.Google Scholar
  86. Stout, S. A., Uhler, A. D., & Emsbo-Mattingly, S. D. (2004). Comparative evaluation of background anthropogenic hydrocarbons in surficial sediments from nine urban waterway. Environmental Science and Technology, 38, 2987–2994.Google Scholar
  87. Suneel, V., Vethamony, P., Naik, B. G., Vinod Kumar, K., Sreenu, L., Samiksha, S. V., et al. (2014). Source investigation of the Tar Balls deposited along the Gujarat Coast, India, using chemical fingerprinting and transport modeling techniques. Environmental Science and Technology, 48, 11343–11351.Google Scholar
  88. Tahir, N. M., Fadzil, M. F., Ariffin, J., Maarop, H., & Wood, A. K. H. J. (2011). Sources of polycylic aromatic hydrocarbons in mangrove sediments of pulau cik wan dagang, kemaman. Journal of Sustainability and Science Management, 6, 98–106.Google Scholar
  89. Takada, H., Onda, T., Harada, M., & Ogura, N. (1991). Distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in street dust from the Tokyo Metropolitan area. Science of the Total Environment, 107, 45–69.Google Scholar
  90. Tee, L. T., & Mohamed, C. A. R. (2005). Activities of 210Po and 210Pb in the water column at Kuala Selangor, Malaysia. Journal of Environmental Radioactivity, 80, 273–286.Google Scholar
  91. Tsymbalyuk, K. K., Den’ga, Y. M., Berlinsky, N. A., & Antonovich, V. P. (2011). Determination of 16 priority polycyclic aromatic hydrocarbons in bottom sediments of the Danube estuarine coast by GC/MS. Geo-Eco-Marina, 17, 67–72.Google Scholar
  92. Vaezzadeh, V., Zakaria, M. P., & Bong, C. W. (2017a). Aliphatic hydrocarbons and triterpane biomarkers in mangrove oyster (Crassostrea belcheri) from the west coast of Peninsular Malaysia. Marine Pollution Bulletin. Scholar
  93. Vaezzadeh, V., Zakaria, M. P., Bong, C. W., Masood, N., Mohsen Magam, S., & Alkhadher, S. (2017b). Mangrove oyster (Crassostrea belcheri) as a biomonitor species for bioavailability of polycyclic aromatic hydrocarbons (PAHs) from sediment of the West Coast of Peninsular Malaysia. Polycyclic Aromatic Compounds. Scholar
  94. Vaezzadeh, V., Zakaria, M. P., Mustafa, S., Ibrahim, Z. Z., Shau-Hwai, A. T., Keshavarzifard, M., et al. (2015a). Source type evaluation of polycyclic aromatic hydrocarbons (PAHs) in surface sediments from the Muar River and Pulau Merambong, Peninsular Malaysia. Environmental Forensic, 16, 135–142.Google Scholar
  95. Vaezzadeh, V., Zakaria, M. P., Mustafa, S., Ibrahim, Z. Z., Shau-Hwai, A. T., Keshavarzifard, M., et al. (2014). Distribution of polycyclic aromatic hydrocarbons (PAHs) in sediment from Muar River and Pulau Merambong, Peninsular Malaysia. In A. Z. Aris, et al. (Eds.), From sources to solution (pp. 451–455). Singapore: Springer.Google Scholar
  96. Vaezzadeh, V., Zakaria, M. P., Shau-Hwai, A. T., Ibrahim, Z. Z., Mustafa, S., Jahromi, F. A., et al. (2015b). Forensic investigation of aliphatic hydrocarbons in the sediments from selected mangrove ecosystems in the west coast of Peninsular Malaysia. Marine Pollution Bulletin, 100, 311–320.Google Scholar
  97. Volkman, J. K. (1986). A review of sterol markers for marine and terrigenous OM. Organic Geochemistry, 9, 83–99.Google Scholar
  98. Volkman, J. K., Revill, A. T., & Murray, A. P. (1997). Applications of biomarkers for identifying sources of natural and pollutant hydrocarbons in aquatic environments. ACS Symposium Series (pp. 110–132). Washington DC: American Chemical Society.Google Scholar
  99. Wang, Z., Fingas, M., & Sergy, G. (1994). Study of 22-year-old Arrow oil samples using biomarker compounds by GC/MS. Environmental Science and Technology, 28, 1733–1746.Google Scholar
  100. Wang, H. S., Liang, P., Kang, Y., Shao, D. D., Zheng, G. J., Wu, S. C., et al. (2010). Enrichment of polycyclic aromatic hydrocarbons (PAHs) in mariculture sediments of Hong Kong. Environmental Pollution, 158, 3298–3308.Google Scholar
  101. Wang, Z., Stout, S. A., & Fingas, M. (2006). Forensic fingerprinting of biomarkers for oil spill characterization and source identification. Environmental Forensics, 7, 105–146.Google Scholar
  102. Wang, Z., Yang, C., Fingas, M., Hollebone, B., Yim, U. H., & Oh, J. R. (2007). Petroleum biomarker fingerprinting for oil spill characterization and source identification. In Z. Wang & S. A. Stout (Eds.), Oil spill environmental forensics: Fingerprinting and source identification (p. 73). London: Academic Press.Google Scholar
  103. Witt, G., & Trost, E. (1999). Polycyclic aromatic hydrocarbons (PAHs) in sediments of the Baltic Sea and of the German coastal waters. Chemosphere, 38, 1603–1614.Google Scholar
  104. Yang, H.-H., & Chen, C. M. (2004). Emission inventory and sources of polycyclic aromatic hydrocarbons in the atmosphere at a suburban area in Taiwan. Chemosphere, 56, 879–887.Google Scholar
  105. Yang, H. H., Chien, S. M., Lo, M. Y., Lan, J. C. W., Lu, W. C., & Ku, Y. Y. (2007). Effects of biodiesel on emissions of regulated air pollutants and polycyclic aromatic hydrocarbons under engine durability testing. Atmospheric Environment, 41, 7232–7240.Google Scholar
  106. Yang, Y., & Hofmann, T. (2009). Aqueous accelerated solvent extraction of native polycyclic aromatic hydrocarbons (PAHs) from carbonaceous river floodplain soils. Environmental Pollution, 157, 2604–2609.Google Scholar
  107. Yang, H.-H., Jung, R.-C., Wang, Y.-F., & Hsieh, L.-T. (2005). Polycyclic aromatic hydrocarbons emission from joss paper furnaces. Atmospheric Environment, 39, 3305–3312.Google Scholar
  108. Ye, B., Zhang, Z., & Mao, T. (2006). Pollution sources identification of polycyclic aromatic hydrocarbons of soils in Tianjin area, China. Chemosphere, 64, 525–534.Google Scholar
  109. Youngblood, W. W., & Blumer, M. (1975). Polycyclic aromatic hydrocarbons in the environment: Homologous series in soils and recent marine sediments. Geochimica et Cosmochimica Acta, 39, 1303–1314.Google Scholar
  110. Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, R. H., Goyette, D., & Sylvestre, S. (2002). PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, 33, 489–515.Google Scholar
  111. Zaghden, H., Kallel, M., Louati, A., Elleuch, B., Oudot, J., & Saliot, A. (2005). Hydrocarbons in surface sediments from the Sfax coastal zone (Tunisia), Mediterranean Sea. Marine Pollution Bulletin, 50, 1287–1294.Google Scholar
  112. Zakaria, M. P., Horinouchi, A. I., Tsutsumi, S., Takada, H., Tanabe, S., & Ismail, A. (2000). Oil pollution in the Straits of Malacca, Malaysia: Application of molecular markers for source identification. Environmental Science and Technology, 34, 1189–1196.Google Scholar
  113. Zakaria, M. P., & Mahat, A. A. (2006). Distribution of polycyclic aromatic hydrocarbon (PAHs) in sediments in the Langat Estuary. Coastal Marine Science, 30, 387–395.Google Scholar
  114. Zakaria, M. P., Okuda, T., & Takada, H. (2001). Polycyclic aromatic hydrocarbon (PAHs) and hopanes in stranded tar-balls on the coasts of Peninsular Malaysia: Applications of biomarkers for identifying sources of oil pollution. Marine Pollution Bulletin, 42, 1357–1366.Google Scholar
  115. Zakaria, M. P., Takada, H., Tsutsumi, S., Ohno, K., Yamada, J., Kouno, E., et al. (2002). Distribution of polycyclic aromatic hydrocarbons (PAHs) in rivers and estuaries in Malaysia: A widespread input of petrogenic PAHs. Environmental Science and Technology, 36, 1907–1918.Google Scholar
  116. Zemo, D. A. (2009). Use of parent polycyclic aromatic hydrocarbon (PAH) proportions to attribute PAH sources in sediments: A case study from the Pacific Northwest. Environment Forensics, 10, 229–239.Google Scholar
  117. Zhao, X., Ding, J., & You, H. (2014). Spatial distribution and temporal trends of polycyclic aromatic hydrocarbons (PAHs) in water and sediment from Songhua River, China. Environmental Geochemistry and Health, 36, 131–143.Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Najat Masood
    • 1
  • Normala Halimoon
    • 1
    Email author
  • Ahmad Zaharin Aris
    • 1
  • Mohamad Pauzi Zakaria
    • 2
  • Vahab Vaezzadeh
    • 2
  • Sami M. Magam
    • 1
  • Shuhaimi Mustafa
    • 3
  • Masni Mohd Ali
    • 4
  • Mehrzad Keshavarzifard
    • 5
  • Sadeq Abdullah Abdo Alkhadher
    • 1
  • Chui Wei Bong
    • 2
    • 6
  • Murad Ali Alsalahi
    • 7
  1. 1.Environmental Forensics Laboratory, Faculty of Environmental StudiesUniversiti Putra MalaysiaSerdangMalaysia
  2. 2.Institute of Ocean and Earth Sciences (IOES)University of MalayaKuala LumpurMalaysia
  3. 3.Halal Products Research InstituteUniversiti Putra MalaysiaSerdangMalaysia
  4. 4.School of Environmental and Natural Resource Sciences, Faculty of Science and TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia
  5. 5.Department of Earth SciencesShiraz UniversityShirazIran
  6. 6.Laboratory of Microbial Ecology, Institute of Biological SciencesUniversity of MalayaKuala LumpurMalaysia
  7. 7.Department of Marine Chemistry and Pollution, Faculty of Marine Science and EnvironmentHodeidah UniversityHodeidahYemen

Personalised recommendations