Advertisement

Environmental Geochemistry and Health

, Volume 40, Issue 5, pp 2205–2222 | Cite as

Temporal and spatial variations of PM2.5 organic and elemental carbon in Central India

  • Rakesh Kumar Sahu
  • Shamsh Pervez
  • Judith C. Chow
  • John G. Watson
  • Suresh Tiwari
  • Abhilash S. Panicker
  • Rajan K. Chakrabarty
  • Yasmeen Fatima Pervez
Original Paper

Abstract

This study describes spatiotemporal patterns from October 2015 to September 2016 for PM2.5 mass and carbon measurements in rural (Kosmarra), urban (Raipur), and industrial (Bhilai) environments, in Chhattisgarh, Central India. Twenty-four-hour samples were acquired once every other week at the rural and industrial sites. Twelve-hour daytime and nighttime samples were acquired either a once a week or once every other week at the urban site. Each site was equipped with two portable, battery-powered, miniVol air samplers with PM2.5 inlets. Annual average PM2.5 mass concentrations were 71.8 ± 27 µg m−3 at the rural site, 133 ± 51 µg m−3 at the urban site, and 244.5 ± 63.3 µg m−3 at the industrial site, ~ 2–6 times higher than the Indian Annual National Ambient Air Quality Standard of 40 µg m−3. Average monthly nighttime PM2.5 and carbon concentrations at the urban site were consistently higher than those of daytime from November 2015 to April 2016, when temperatures were low. Annual average total carbon (TC = OC + EC) at the urban (46.8 ± 23.8 µg m−3) and industrial (98.0 ± 17.2 µg m−3) sites also exceeded the Indian PM2.5 NAAQS. TC accounted for 30–40% of PM2.5 mass. Annual average OC ranged from 17.8 ± 6.1 µg m−3 at the rural site to 64 ± 9.4 µg m−3 at the industrial site, with EC ranging from 4.51 ± 2.2 to 34.01 ± 7.8 µg m−3. The average OC/EC ratio at the industrial site (1.88) was 18% lower than that at the urban site and 52% lower than that at the rural site. OC was attributed to 43.0% of secondary organic carbon (SOC) at the rural site, twice that estimated for the urban and industrial sites. Mortality burden estimates for PM2.5 EC are 4416 and 6196 excess deaths at the urban and industrial sites, respectively, during 2015–2016.

Keywords

PM2.5 Organic carbon and Elemental carbon Char-EC/soot-EC ratio OC/EC ratio 

Notes

Acknowledgements

This study was jointly supported by the DST project (EMR/2015/000928), DST-FIST program [SR/FST/CSI-259/2014 (c)], and UGC-SAP-DRS-II program (F-540/7/DRS-II/2016 (SAP-I)). Rakesh Kumar Sahu is grateful to Pt Ravishankar Shukla University for providing library and laboratory facilities. Authors are also grateful to IITM, Pune, for providing instrumentation facilities.

Supplementary material

10653_2018_93_MOESM1_ESM.docx (60 kb)
Supplementary material 1 (DOCX 59 kb)

References

  1. Agarwal, T. (2009). Concentration level, pattern and toxic potential of PAHs in traffic soil of Delhi, India. Journal of Hazardous Materials, 171(1), 894–900.Google Scholar
  2. Ali, K., Panicker, A. S., Beig, G., Srinivas, R., & Acharja, P. (2016). Carbonaceous aerosols over Pune and Hyderabad (India) and influence of meteorological factors. Journal of Atmospheric Chemistry, 73(1), 1–27.Google Scholar
  3. Andreae, M. O., & Gelencsér, A. (2006). Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmospheric Chemistry and Physics, 6(3), 3419–3463.  https://doi.org/10.5194/acpd-6-3419-2006.CrossRefGoogle Scholar
  4. Balakrishna, G., & Pervez, S. (2009). Source apportionment of atmospheric dust fallout in an urban-industrial environment in India. Aerosol and Air Quality Research, 9(3), 359–367.Google Scholar
  5. Balakrishna, G., Pervez, S., & Bisht, D. S. (2010). Chemical mass balance estimation of arsenic in atmospheric dust fall out in an urban residential area, Raipur, Central India. Atmospheric Chemistry and Physics Discussion, 10, 26411–26436.Google Scholar
  6. Bano, S., Pervez, S., Chow, J. C., Matawle, J. L., Watson, J. G., Sahu, R. K., et al. (2018). Coarse particle (PM10–2.5) source profiles for emissions from domestic cooking and industrial process in Central India. Science of the Total Environment, 627, 1137–1145.  https://doi.org/10.1016/j.scitotenv.2018.01.289.CrossRefGoogle Scholar
  7. Behera, S. N., & Sharma, M. (2010). Reconstructing primary and secondary components of PM2.5 composition for an urban atmosphere. Aerosol Science and Technology, 44(11), 983–992.  https://doi.org/10.1080/02786826.2010.504245.CrossRefGoogle Scholar
  8. Bisht, D. S., Dumka, U. C., Kaskaoutis, D. G., Pipal, A. S., Srivastava, A. K., Soni, V. K., et al. (2015). Carbonaceous aerosols and pollutants over Delhi urban environment: Temporal evolution, source apportionment and radiative forcing. Science of the Total Environment, 521–522, 431–445.Google Scholar
  9. Bølling, A. K., Pagels, J., Yttri, K. E., Barregard, L., Sallsten, G., Schwarze, P. E., et al. (2009). Health effects of residential wood smoke particles: the importance of combustion conditions and physicochemical particle properties. Particle and fibre toxicology, 6(1), 29.Google Scholar
  10. Bond, T. C., & Bergstrom, R. W. (2006). Light absorption by carbonaceous particles: An investigative review. Aerosol Science and Technology, 40(1), 27–67.  https://doi.org/10.1080/02786820500421521.CrossRefGoogle Scholar
  11. Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., et al. (2013). Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres, 118(11), 5380–5552.Google Scholar
  12. Buseck, P. R., Adachi, K., Gelencsér, A., Tompa, É., & Pósfai, M. (2014). Ns-soot: A material-based term for strongly light-absorbing carbonaceous particles. Aerosol Science and Technology, 48(7), 777–788.  https://doi.org/10.1080/02786826.2014.919374.CrossRefGoogle Scholar
  13. Butera, M., Smith, J. H., Morrison, W. D., Hacker, R. R., Kains, F. A., & Ogilvie, J. R. (1991). Concentration of respirable dust and bioaerosols and identification of certain microbial types in a hog-growing facility. Canadian Journal of Animal Science, 71(2), 271–277.Google Scholar
  14. Cao, J. J., Wu, F., Chow, J. C., Lee, S. C., Li, Y., Chen, S. W., et al. (2005). Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi’an, China. Atmospheric Chemistry and Physics, 5(11), 3127–3137.Google Scholar
  15. Census. (2011). Census of India 2011: Provisional population totals-India data sheet. Office of the Registrar General Census Commissioner, India. Indian Census Bureau. http://censusindia.gov.in/2011-prov-results/data_files/india/paper_contentsetc.pdf.
  16. Chakrabarty, R. K., Moosmüller, H., Garro, M. A., Arnott, W. P., Walker, J., Susott, R. A., et al. (2006). Emissions from the laboratory combustion of wildland fuels: Particle morphology and size. Journal of Geophysical Research: Atmospheres, 111(D7), 1–16.Google Scholar
  17. Chen, L.-W., Verburg, P., Shackelford, A., Zhu, D., Susfalk, R., Chow, J. C., et al. (2010). Moisture effects on carbon and nitrogen emission from burning of wildland biomass. Atmospheric Chemistry and Physics, 10(14), 6617–6625.Google Scholar
  18. Cheng, T., Gu, X., Wu, Y., Chen, H., & Yu, T. (2013). The optical properties of absorbing aerosols with fractal soot aggregates: Implications for aerosol remote sensing. Journal of Quantitative Spectroscopy & Radiative Transfer, 125, 93–104.  https://doi.org/10.1016/j.jqsrt.2013.03.012.CrossRefGoogle Scholar
  19. Chow, J. C., Lowenthal, D. H., Chen, L.-W. A., Wang, X., & Watson, J. G. (2015). Mass reconstruction methods for PM2.5: A review. Air Quality, Atmosphere and Health, 8(3), 243–263.Google Scholar
  20. Chow, J. C., Watson, J. G., Chen, L.-W. A., Arnott, W. P., Moosmüller, H., & Fung, K. K. (2004). Equivalence of elemental carbon by thermal/Optical reflectance and transmittance with different temperature protocols. Environmental Science and Technology, 38(16), 4414–4422.Google Scholar
  21. Chow, J. C., Watson, J. G., Chen, L.-W. A., Chang, M. C. O., Robinson, N. F., Trimble, D., et al. (2007). The IMPROVE_A temperature protocol for thermal/optical carbon analysis: Maintaining consistency with a long-term database. Journal of the Air and Waste Management Association, 57(9), 1014–1023.Google Scholar
  22. Chow, J. C., Watson, J. G., Chen, L.-W. A., Paredes-Miranda, G., Chang, M.-C. O., Trimble, D. L., et al. (2005). Interactive comment on “Refining temperature measures in thermal/optical carbon analysis”. Atmospheric Chemistry and Physics Discussion, 5, S1–S6.Google Scholar
  23. Chow, J. C., Watson, J. G., Crow, D., Lowenthal, D. H., & Merrifield, T. M. (2001). Comparison of IMPROVE and NIOSH carbon measurements. Aerosol Science and Technology, 34(1), 23–34.Google Scholar
  24. Chow, J. C., Watson, J. G., Pritchett, L. C., Pierson, W. R., Frazier, C. A., & Purcell, R. G. (1993). The DRI thermal/Optical reflectance carbon analysis system: Description, evaluation and applications in U.S. air quality studies. Atmospheric Environment, 27A(8), 1185–1201.Google Scholar
  25. Chow, J. C., Watson, J. G., Robles, J., Wang, X., Chen, L.-W. A., Trimble, D. L., et al. (2011). Quality assurance and quality control for thermal/optical analysis of aerosol samples for organic and elemental carbon. Analytical and Bioanalytical Chemistry, 401(10), 3141–3152.Google Scholar
  26. COMEAP. (2012). UK Committee on the Medical Effects of Air Pollutants Statement on Estimating the Mortality Burden of Particulate Air Pollution at the Local Level. Online. http://www.comeap.org.uk/images/stories/Documents/Statements/FINAL_Local_mortality_burden_statement_August_2012.pdf.
  27. Deshmukh, D. K., Deb, M. K., & Mkoma, S. L. (2013a). Size distribution and seasonal variation of size-segregated particulate matter in the ambient air of Raipur city, India. Air Quality Atmosphere and Health, 6(1), 259–276.Google Scholar
  28. Deshmukh, D. K., Deb, M. K., Suzuki, Y., & Kouvarakis, G. N. (2013b). Water-soluble ionic composition of PM2.5–10 and PM2.5 aerosols in the lower troposphere of an industrial city Raipur, the eastern central India. Air Quality, Atmosphere and Health, 6(1), 95–110.Google Scholar
  29. Deshmukh, D. K., Tsai, Y. I., Deb, M. K., & Zarmpas, P. (2012). Characteristics and sources of water-soluble ionic species associated with PM10 particles in the ambient air of Central India. Bulletin of Environmental Contamination and Toxicology, 89(5), 1091–1097.Google Scholar
  30. Dewangan, S., Pervez, S., Chakrabarty, R., Watson, J. G., Chow, J. C., Pervez, Y., et al. (2016). Study of carbonaceous fractions associated with indoor PM2.5/PM10 during Asian cultural and ritual burning practices. Building and Environment, 106, 229–236.Google Scholar
  31. Dewangan, S., Pervez, S., Chakrabarty, R., & Zielinska, B. (2014). Uncharted sources of particle bound polycyclic aromatic hydrocarbons from South Asia: Religious/ritual burning practices. Atmospheric Pollution Research, 5(2), 283–291.Google Scholar
  32. Dhaini, H. R., Salameh, T., Waked, A., Sauvage, S., Borbon, A., Formenti, P., et al. (2017). Quantitative cancer risk assessment and local mortality burden for ambient air pollution in an eastern Mediterranean City. Environmental Science and Pollution Research, 24(16), 14151–14162.Google Scholar
  33. Duan, F. K., He, K. B., Ma, Y. L., Yang, F. M., Yu, X. C., Cadle, S. H., et al. (2006). Concentration and chemical characteristics of PM2.5 in Beijing, China: 2001–2002. Science of the Total Environment, 355(1–3), 264–275.  https://doi.org/10.1016/j.scitotenv.2005.03.001.CrossRefGoogle Scholar
  34. Dubey, N., & Pervez, S. (2008). Investigation of variation in ambient PM10 levels within an urban-industrial environment. Aerosol and Air Quality Research, 8(1), 54–64.Google Scholar
  35. Feng, Y., Chen, Y., Guo, H., Zhi, G., Xiong, S., Li, J., et al. (2009). Characteristics of organic and elemental carbon in PM2.5 samples in Shanghai, China. Atmospheric Research, 92(4), 434–442.Google Scholar
  36. Feng, J., Yu, H., Mi, K., Su, X., Chen, Y., Sun, J. H., & Li, Q. (2017). The pollution characteristics of PM 2.5 and correlation analysis with meteorological parameters in Xinxiang during the Shanghai Cooperation Organization Prime Ministers’ Meeting. Environmental Geochemistry and Health.  https://doi.org/10.1007/s10653-017-9976-8.CrossRefGoogle Scholar
  37. Ghorani-Azam, A., Riahi-Zanjani, B., & Balali-Mood, M. (2016). Effects of air pollution on human health and practical measures for prevention in Iran. Journal of Research in Medical Sciences: The Official Journal of Isfahan University of Medical Sciences, 21, 21–65.Google Scholar
  38. Green, M. C., Chen, L. W. A., DuBois, D. W., & Molenar, J. V. (2012). Fine particulate matter and visibility in the Lake Tahoe Basin: Chemical characterization, trends, and source apportionment. Journal of the Air and Waste Management Association, 62(8), 953–965.Google Scholar
  39. Gu, J., Bai, Z., Liu, A., Wu, L., Xie, Y., Li, W., et al. (2010). Characterization of atmospheric organic carbon and element carbon of PM2.5 and PM10 at Tianjin, China. Aerosol and Air Quality Research, 10, 167–176.Google Scholar
  40. Gustafsson, Ö., Kruså, M., Zencak, Z., Sheesley, R. J., Granat, L., Engström, E., et al. (2009). Brown clouds over South Asia: Biomass or fossil fuel combustion? Science, 323(5913), 495–498.Google Scholar
  41. Hadley, O. L., Corrigan, C. E., & Kirchstetter, T. W. (2008). Modified thermal-optical analysis using spectral absorption selectivity to distinguish black carbon from pyrolized organic carbon. Environmental Science and Technology, 42(22), 8459–8464.Google Scholar
  42. Han, Y. M., Cao, J. J., Lee, S. C., Ho, K. F., & An, Z. S. (2010). Different characteristics of char and soot in the atmosphere and their ratio as an indicator for source identification in Xi’an, China. Atmospheric Chemistry and Physics, 10(2), 595–607.Google Scholar
  43. Han, Y. M., Lee, S. C., Cao, J. J., Ho, K. F., & An, Z. S. (2009). Spatial distribution and seasonal variation of char-EC and soot-EC in the atmosphere over China. Atmospheric Environment, 43(38), 6066–6073.Google Scholar
  44. He, Q., Guo, W., Zhang, G., Yan, Y., & Chen, L. (2015). Characteristics and seasonal variations of carbonaceous species in PM2.5 in Taiyuan. China. Atmosphere, 6(6), 850–862.Google Scholar
  45. He, X., Pang, Y., Song, X., Chen, B., Feng, Z., & Ma, Y. (2014). Distribution, sources and ecological risk assessment of PAHs in surface sediments from Guan River Estuary, China. Marine pollution bulletin, 80(1), 52–58.Google Scholar
  46. Ho, K. F., Lee, S. C., Chan, C. K., Jimmy, C. Y., Chow, J. C., & Yao, X. H. (2003). Characterization of chemical species in PM2.5 and PM10 aerosols in Hong Kong. Atmospheric Environment, 37(1), 31–39.Google Scholar
  47. Hoek, G., Krishnan, R. M., Beelen, R., Peters, A., Ostro, B., Brunekreef, B., et al. (2013). Long-term air pollution exposure and cardio-respiratory mortality: a review. Environmental Health, 12(1), 43.Google Scholar
  48. Jharia, B., (2014). Waste management: A study on Raipur waste management private limited. Recent Research in Science and Technology, 6(1), 199–202.Google Scholar
  49. Keeler, G. J., Japar, S. M., Brachaczek, W. W., Gorse, R. A., Norbeck, J. M., & Pierson, W. R. (1990). The sources of aerosol elemental carbon at Allegheny Mountain. Atmospheric Environment. Part A. General Topics, 24(11), 2795–2805.Google Scholar
  50. Kim, H.-S., Huh, J.-B., Hopke, P. K., Holsen, T. M., & Yi, S.-M. (2007). Characteristics of the major chemical constituents of PM2.5 and smog events in Seoul, Korea in 2003 and 2004. Atmospheric Environment, 41(32), 6762–6770.Google Scholar
  51. Kirchstetter, T. W., Novakov, T., & Hobbs, P. V. (2004). Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. Journal of Geophysical Research: Atmospheres.  https://doi.org/10.1029/2004JD004999.Google Scholar
  52. Kumar, A., & Attri, A. K. (2016a). Biomass combustion a dominant source of carbonaceous aerosols in the ambient environment of Western Himalayas. Aerosol and Air Quality Research, 16(3), 519–529.Google Scholar
  53. Kumar, A., & Attri, A. K. (2016b). Correlating respiratory disease incidences with corresponding trends in ambient particulate matter and relative humidity. Atmospheric Pollution Research, 7(5), 858–864.Google Scholar
  54. Lewtas, J., Pang, Y., Booth, D., Reimer, S., Eatough, D. J., & Gundel, L. A. (2001). Comparison of sampling methods for semi-volatile organic carbon associated with PM2.5. Aerosol Science and Technology, 34(1), 9–22.Google Scholar
  55. Li, G., Lang, Y., Gao, M., Yang, W., Peng, P., & Wang, X. (2014). Carcinogenic and mutagenic potencies for different PAHs sources in coastal sediments of Shandong Peninsula. Marine Pollution Bulletin, 84(1), 418–423.Google Scholar
  56. Lonati, G., Giugliano, M., Butelli, P., Romele, L., & Tardivo, R. (2005). Major chemical components of PM2.5 in Milan (Italy). Atmospheric Environment, 39(10), 1925–1934.  https://doi.org/10.1016/j.atmosenv.2004.12.012.CrossRefGoogle Scholar
  57. Masiello, C. A. (2004). New directions in black carbon organic geochemistry. Marine Chemistry, 92(1), 201–213.Google Scholar
  58. Matawle, J. L., Pervez, S., Dewangan, S., Shrivastava, A., Tiwari, S., Pant, P., et al. (2015). Characterization of PM2.5 source profiles for traffic and dust sources in Raipur, India. Aerosol and Air Quality Research, 15(7), 2537–2548.Google Scholar
  59. Matawle, J., Pervez, S., Dewangan, S., Tiwari, S., Bisht, D. S., & Pervez, Y. F. (2014). PM2.5 chemical source profiles of emissions resulting from industrial and domestic burning activities in India. Aerosol and Air Quality Research, 14, 2051–2066.Google Scholar
  60. MCCD. (2013). Report on medical certification of cause of death 2013 office of the registrar general, India Government of India, Ministry of home affairs, Vital statistics division, R. K. Puram, New Delhi. http://www.censusindia.gov.in/2011Documents/mccd_Report1/Mccd_2013.pdf.
  61. McMeeking, G. R., Kreidenweis, S. M., Baker, S., Carrico, C. M., Chow, J. C., Collett, J. L., et al. (2009). Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory. Journal of Geophysical Research: Atmospheres, 114(D19), 1–20.Google Scholar
  62. Meena, R. K., Satsangi, A., Lakhani, A., & Kumari, K. M. (2017). Carbonaceous aerosols at an urban residential site in Agra. Indian Journal of Radio & Space Physics (IJRSP), 43(2), 156–162.Google Scholar
  63. Moosmüller, H., Chakrabarty, R. K., & Arnott, W. P. (2009). Aerosol light absorption and its measurement: A review. Journal of Quantitative Spectroscopy & Radiative Transfer, 110(11), 844–878.Google Scholar
  64. Murillo, J. H., Marin, J. F. R., Roman, S. R., Guerrero, V. H. B., Arias, D. S., Ramos, A. C., et al. (2013). Temporal and spatial variations in organic and elemental carbon concentrations in PM10/PM2.5 in the metropolitan area of Costa Rica, Central America. Atmospheric. Pollution Research, 4(1), 53–63.Google Scholar
  65. Na, K., Sawant, A. A., Song, C., & Cocker, D. R., III. (2004). Primary and secondary carbonaceous species in the atmosphere of Western Riverside County, California. Atmospheric Environment, 38(9), 1345–1355.Google Scholar
  66. Neusüß, C., Gnauk, T., Plewka, A., Herrmann, H., & Quinn, P. K. (2002). Carbonaceous aerosol over the Indian Ocean: OC/EC fractions and selected specifications from size segregated onboard samples. Journal of Geophysical Research: Atmospheres, 107(D19), 1–13.Google Scholar
  67. Nisbet, I. C. T., & LaGoy, P. K. (1992). Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology, 16(3), 290–300.Google Scholar
  68. Pachauri, T., Satsangi, A., Singla, V., Lakhani, A., & Maharaj Kumari, K. (2013a). Characteristics and sources of carbonaceous aerosols in PM2.5 during wintertime in Agra, India. Aerosol and Air Quality Research.  https://doi.org/10.4209/aaqr.2012.10.0263.CrossRefGoogle Scholar
  69. Pachauri, T., Singla, V., Satsangi, A., Lakhani, A., & Kumari, K. M. (2013b). Characterization of carbonaceous aerosols with special reference to episodic events at Agra, India. Atmospheric Research, 128, 98–110.Google Scholar
  70. Pagels, J., Boman, C., Rissler, J., Massling, A., Löndahl, J., Wierzbicka, A., & Swietlicki, E. (2006). Residential biomass combustion aerosols-influence of combustion conditions on physical and chemical particle characteristics. In 7th International Aerosol Conference (IAC) 2006. St. Paul, Minnesota, September 1015, 2006240 (Vol. 241).Google Scholar
  71. Panda, S., Sharma, S. K., Mahapatra, P. S., Panda, U., Rath, S., Mahapatra, M., et al. (2016). Organic and elemental carbon variation in PM2.5 over megacity Delhi and Bhubaneswar, a semi-urban coastal site in India. Natural Hazards, 80(3), 1709–1728.Google Scholar
  72. Pant, P., & Harrison, R. M. (2013). Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: A review. Atmospheric Environment, 77, 78–97.Google Scholar
  73. Park, S. S., & Son, S.-C. (2017). Relationship between carbonaceous components and aerosol light absorption during winter at an urban site of Gwangju, Korea. Atmospheric Research, 185, 73–83.Google Scholar
  74. Pervez, S., Chakrabarty, R. K., Dewangan, S., Watson, J. G., Chow, J. C., & Matawle, J. L. (2016). Chemical speciation of aerosols and air quality degradation during the festival of lights (Diwali). Atmospheric Pollution Research, 7(1), 92–99.  https://doi.org/10.1016/j.apr.2015.09.002.CrossRefGoogle Scholar
  75. Pipal, A. S., Tiwari, S., & Satsangi, P. G. (2016). Seasonal chemical characteristics of atmospheric aerosol particles and its light extinction coefficients over Pune, India. Aerosol and Air Quality Research, 16(8), 1805–1819.Google Scholar
  76. Pöschl, U. (2005). Atmospheric aerosols: Composition, transformation, climate and health effects. Angewandte Chemie International Edition, 44(46), 7520–7540.Google Scholar
  77. Rajput, P., Sarin, M., & Kundu, S. S. (2013). Atmospheric particulate matter (PM2.5), EC, OC, WSOC and PAHs from NE–Himalaya: abundances and chemical characteristics. Atmospheric Pollution Research, 4(2), 214–221.Google Scholar
  78. Ram, K., & Sarin, M. M. (2010). Spatio-temporal variability in atmospheric abundances of EC, OC and WSOC over Northern India. Journal of Aerosol Science, 41(1), 88–98.Google Scholar
  79. Ram, K., Sarin, M. M., & Hegde, P. (2008). Atmospheric abundances of primary and secondary carbonaceous species at two high-altitude sites in India: Sources and temporal variability. Atmospheric Environment, 42(28), 6785–6796.Google Scholar
  80. Rathnayake, C. M. (2016). Bioaerosols in the Midwestern United States: Spatio-temporal variations, meteorological impacts and contributions to particulate matter. PhD (Doctor of Philosophy) Thesis, University of Iowa. http://ir.uiowa.edu/etd/2134.
  81. Reid, J. S., Koppmann, R., Eck, T. F., & Eleuterio, D. P. (2004). A review of biomass burning emissions, part II: Intensive physical properties of biomass burning particles. Atmospheric Chemistry and Physics Discussions, 4(5), 5135–5200.Google Scholar
  82. Rengarajan, R., Sarin, M. M., & Sudheer, A. K. (2007). Carbonaceous and inorganic species in atmospheric aerosols during wintertime over urban and high altitude sites in North India. Journal of Geophysical Research: Atmospheres, 112(D21), 1–16.Google Scholar
  83. Rodrigo Seguel, A., Raúl, G. E., Morales, S., Manuel, A., & Leiva, G. (2009). Estimations of primary and secondary organic carbon formation in PM2.5 aerosols of Santiago City. Chile. Atmospheric Environment, 43, 2125–2131.Google Scholar
  84. Röösli, M., Braun-Fährlander, C., Künzli, N., Oglesby, L., Theis, G., Camenzind, M., et al. (2000). Spatial variability of different fractions of particulate matter within an urban environment and between urban and rural sites. Journal of the Air and Waste Management Association, 50(7), 1115–1124.Google Scholar
  85. Röösli, M., Theis, G., Künzli, N., Staehelin, J., Mathys, P., Oglesby, L., et al. (2001). Temporal and spatial variation of the chemical composition of PM10 at urban and rural sites in the Basel area, Switzerland. Atmospheric Environment, 35(21), 3701–3713.Google Scholar
  86. Sandradewi, J., Prévôt, A. S. H., Szidat, S., Perron, N., Alfarra, M. R., Lanz, V. A., et al. (2008). Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter. Environmental Science and Technology, 42(9), 3316–3323.Google Scholar
  87. Shi, J., Ding, X., Zhou, Y., You, R., Huang, L., Hao, J., et al. (2016a). Characteristics of chemical components in PM2.5. Frontiers of Environmental Science & Engineering, 10(5), 1–9.Google Scholar
  88. Shi, G., Peng, X., Liu, J., Tian, Y., Song, D., Yu, H., et al. (2016b). Quantification of long-term primary and secondary source contributions to carbonaceous aerosols. Environmental Pollution, 219, 897–905.Google Scholar
  89. Simoneit, B. R. T. (2002). Biomass burning—A review of organic tracers for smoke from incomplete combustion. Applied Geochemistry, 17(3), 129–162.Google Scholar
  90. Singh, R., Kulshrestha, M. J., Kumar, B., & Chandra, S. (2016). Impact of anthropogenic emissions and open biomass burning on carbonaceous aerosols in urban and rural environments of Indo-Gangetic Plain. Air Quality, Atmosphere and Health, 9(7), 809–822.Google Scholar
  91. Srivastava, A. K., Bisht, D. S., Ram, K., Tiwari, S., & Srivastava, M. K. (2014). Characterization of carbonaceous aerosols over Delhi in Ganga basin: Seasonal variability and possible sources. Environmental Science and Pollution Research, 21(14), 8610–8619.Google Scholar
  92. Stone, E., Schauer, J., Quraishi, T. A., & Mahmood, A. (2010). Chemical characterization and source apportionment of fine and coarse particulate matter in Lahore, Pakistan. Atmospheric Environment, 44(8), 1062–1070.Google Scholar
  93. Szidat, S., Jenk, T. M., Gäggeler, H. W., Synal, H.-A., Fisseha, R., Baltensperger, U., et al. (2004). Radiocarbon (14C)-deduced biogenic and anthropogenic contributions to organic carbon (OC) of urban aerosols from Zürich, Switzerland. Atmospheric Environment, 38(24), 4035–4044.Google Scholar
  94. Tagaris, E., Liao, K.-J., DeLucia, A. J., Deck, L., Amar, P., & Russell, A. G. (2009). Potential impact of climate change on air pollution-related human health effects. Environmental Science and Technology, 43(13), 4979–4988.  https://doi.org/10.1021/es803650w.CrossRefGoogle Scholar
  95. Tiwari, S., Srivastava, A. K., Bisht, D. S., Safai, P. D., & Parmita, P. (2013). Assessment of carbonaceous aerosol over Delhi in the Indo-Gangetic Basin: Characterization, sources and temporal variability. Natural Hazards, 65(3), 1745–1764.Google Scholar
  96. Turpin, B. J., & Huntzicker, J. J. (1995). Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS. Atmospheric Environment, 29(23), 3527–3544.Google Scholar
  97. Verma, N., Satsangi, A., Lakhani, A., & Kumari, K. M. (2017). Low molecular weight monocarboxylic acids in PM2.5 and PM10: Quantification, seasonal variation and source apportionment. Aerosol and Air Quality Research, 17(2), 485–498.Google Scholar
  98. Viana, M., Maenhaut, W., Ten Brink, H. M., Chi, X., Weijers, E., Querol, X., et al. (2007). Comparative analysis of organic and elemental carbon concentrations in carbonaceous aerosols in three European cities. Atmospheric Environment, 41(28), 5972–5983.Google Scholar
  99. Volkovic, V. (1983). Trace elements in coal (Vol. II). Florida: CRC Press.Google Scholar
  100. Watson, J. G., Tropp, R. J., Kohl, S. D., Wang, X., & Chow, J. C. (2017). Filter processing and gravimetric analysis for suspended particulate matter samples. Aerosol Science and Engineering, 1(2), 93–105.Google Scholar
  101. WHO. (2006). WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide-Global update 2005-Summary of risk assessment, 2006. Geneva: WHO.Google Scholar
  102. Yang, M., Howell, S. G., Zhuang, J., & Huebert, B. J. (2009). Attribution of aerosol light absorption to black carbon, brown carbon, and dust in China—interpretations of atmospheric measurements during EAST-AIRE. Atmospheric Chemistry and Physics, 9(6), 2035–2050.Google Scholar
  103. Zhang, L., Huang, Y., Liu, Y., Yang, F., Lan, G., Fu, C., et al. (2015). Characteristics of Carbonaceous Species in PM2.5 in Wanzhou in the Hinterland of the Three Gorges Reservior of Northeast Chongqing. China. Atmosphere, 6(4), 534–546.Google Scholar
  104. Zhang, Y. H., Wang, D. F., Zhao, Q. B., Cui, H. X., Li, J., Duan, Y. S., et al. (2014). Characteristics and sources of organic carbon and elemental carbon in PM2.5 in Shanghai urban area. Huan jing ke xue = Huanjing Kexue, 35(9), 3263–3270.Google Scholar
  105. Zhang, F., Zhao, J., Chen, J., Xu, Y., & Xu, L. (2011). Pollution characteristics of organic and elemental carbon in PM2.5 in Xiamen, China. Journal of Environmental Sciences, 23(8), 1342–1349.Google Scholar
  106. Zhou, X., Cao, Z., Ma, Y., Wang, L., Wu, R., & Wang, W. (2016). Concentrations, correlations and chemical species of PM2.5/PM10 based on published data in China: Potential implications for the revised particulate standard.Google Scholar
  107. Zhou, Shengzhen, Wang, Zhe, Gao, Rui, Xue, Likun, Yuan, Chao, Wang, Tao, et al. (2012a). Formation of secondary organic carbon and long-range transport of carbonaceous aerosols at Mount Heng in South China. Atmospheric Environment, 63, 203–212.Google Scholar
  108. Zhou, J., Zhang, R., Cao, J., Chow, J. C., & Watson, J. G. (2012b). Carbonaceous and ionic components of atmospheric fine particles in Beijing and their impact on atmospheric visibility. Aerosol and Air Quality Research, 12, 492–502.Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Rakesh Kumar Sahu
    • 1
  • Shamsh Pervez
    • 1
  • Judith C. Chow
    • 2
    • 3
  • John G. Watson
    • 2
    • 3
  • Suresh Tiwari
    • 4
  • Abhilash S. Panicker
    • 4
  • Rajan K. Chakrabarty
    • 5
  • Yasmeen Fatima Pervez
    • 6
  1. 1.School of Studies in ChemistryPt. Ravishankar Shukla UniversityRaipurIndia
  2. 2.Division of Atmospheric SciencesDesert Research InstituteRenoUSA
  3. 3.Institute of Earth EnvironmentChinese Academy of SciencesXi’anChina
  4. 4.Indian Institute of Tropical Meteorology PuneNew DelhiIndia
  5. 5.Center for Aerosol Science and Engineering (CASE), Department of Energy, Environmental and Chemical EngineeringWashington University in St. LouisSt. LouisUSA
  6. 6.Department of Engineering ChemistryCSITKolihapuri, DurgIndia

Personalised recommendations