Temporal and spatial variations of PM2.5 organic and elemental carbon in Central India
- 18 Downloads
Abstract
This study describes spatiotemporal patterns from October 2015 to September 2016 for PM2.5 mass and carbon measurements in rural (Kosmarra), urban (Raipur), and industrial (Bhilai) environments, in Chhattisgarh, Central India. Twenty-four-hour samples were acquired once every other week at the rural and industrial sites. Twelve-hour daytime and nighttime samples were acquired either a once a week or once every other week at the urban site. Each site was equipped with two portable, battery-powered, miniVol air samplers with PM2.5 inlets. Annual average PM2.5 mass concentrations were 71.8 ± 27 µg m−3 at the rural site, 133 ± 51 µg m−3 at the urban site, and 244.5 ± 63.3 µg m−3 at the industrial site, ~ 2–6 times higher than the Indian Annual National Ambient Air Quality Standard of 40 µg m−3. Average monthly nighttime PM2.5 and carbon concentrations at the urban site were consistently higher than those of daytime from November 2015 to April 2016, when temperatures were low. Annual average total carbon (TC = OC + EC) at the urban (46.8 ± 23.8 µg m−3) and industrial (98.0 ± 17.2 µg m−3) sites also exceeded the Indian PM2.5 NAAQS. TC accounted for 30–40% of PM2.5 mass. Annual average OC ranged from 17.8 ± 6.1 µg m−3 at the rural site to 64 ± 9.4 µg m−3 at the industrial site, with EC ranging from 4.51 ± 2.2 to 34.01 ± 7.8 µg m−3. The average OC/EC ratio at the industrial site (1.88) was 18% lower than that at the urban site and 52% lower than that at the rural site. OC was attributed to 43.0% of secondary organic carbon (SOC) at the rural site, twice that estimated for the urban and industrial sites. Mortality burden estimates for PM2.5 EC are 4416 and 6196 excess deaths at the urban and industrial sites, respectively, during 2015–2016.
Keywords
PM2.5 Organic carbon and Elemental carbon Char-EC/soot-EC ratio OC/EC ratioNotes
Acknowledgements
This study was jointly supported by the DST project (EMR/2015/000928), DST-FIST program [SR/FST/CSI-259/2014 (c)], and UGC-SAP-DRS-II program (F-540/7/DRS-II/2016 (SAP-I)). Rakesh Kumar Sahu is grateful to Pt Ravishankar Shukla University for providing library and laboratory facilities. Authors are also grateful to IITM, Pune, for providing instrumentation facilities.
Supplementary material
References
- Agarwal, T. (2009). Concentration level, pattern and toxic potential of PAHs in traffic soil of Delhi, India. Journal of Hazardous Materials, 171(1), 894–900.CrossRefGoogle Scholar
- Ali, K., Panicker, A. S., Beig, G., Srinivas, R., & Acharja, P. (2016). Carbonaceous aerosols over Pune and Hyderabad (India) and influence of meteorological factors. Journal of Atmospheric Chemistry, 73(1), 1–27.CrossRefGoogle Scholar
- Andreae, M. O., & Gelencsér, A. (2006). Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmospheric Chemistry and Physics, 6(3), 3419–3463. https://doi.org/10.5194/acpd-6-3419-2006.Google Scholar
- Balakrishna, G., & Pervez, S. (2009). Source apportionment of atmospheric dust fallout in an urban-industrial environment in India. Aerosol and Air Quality Research, 9(3), 359–367.Google Scholar
- Balakrishna, G., Pervez, S., & Bisht, D. S. (2010). Chemical mass balance estimation of arsenic in atmospheric dust fall out in an urban residential area, Raipur, Central India. Atmospheric Chemistry and Physics Discussion, 10, 26411–26436.CrossRefGoogle Scholar
- Bano, S., Pervez, S., Chow, J. C., Matawle, J. L., Watson, J. G., Sahu, R. K., et al. (2018). Coarse particle (PM10–2.5) source profiles for emissions from domestic cooking and industrial process in Central India. Science of the Total Environment, 627, 1137–1145. https://doi.org/10.1016/j.scitotenv.2018.01.289.CrossRefGoogle Scholar
- Behera, S. N., & Sharma, M. (2010). Reconstructing primary and secondary components of PM2.5 composition for an urban atmosphere. Aerosol Science and Technology, 44(11), 983–992. https://doi.org/10.1080/02786826.2010.504245.CrossRefGoogle Scholar
- Bisht, D. S., Dumka, U. C., Kaskaoutis, D. G., Pipal, A. S., Srivastava, A. K., Soni, V. K., et al. (2015). Carbonaceous aerosols and pollutants over Delhi urban environment: Temporal evolution, source apportionment and radiative forcing. Science of the Total Environment, 521–522, 431–445.CrossRefGoogle Scholar
- Bølling, A. K., Pagels, J., Yttri, K. E., Barregard, L., Sallsten, G., Schwarze, P. E., et al. (2009). Health effects of residential wood smoke particles: the importance of combustion conditions and physicochemical particle properties. Particle and fibre toxicology, 6(1), 29.CrossRefGoogle Scholar
- Bond, T. C., & Bergstrom, R. W. (2006). Light absorption by carbonaceous particles: An investigative review. Aerosol Science and Technology, 40(1), 27–67. https://doi.org/10.1080/02786820500421521.CrossRefGoogle Scholar
- Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., et al. (2013). Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres, 118(11), 5380–5552.Google Scholar
- Buseck, P. R., Adachi, K., Gelencsér, A., Tompa, É., & Pósfai, M. (2014). Ns-soot: A material-based term for strongly light-absorbing carbonaceous particles. Aerosol Science and Technology, 48(7), 777–788. https://doi.org/10.1080/02786826.2014.919374.CrossRefGoogle Scholar
- Butera, M., Smith, J. H., Morrison, W. D., Hacker, R. R., Kains, F. A., & Ogilvie, J. R. (1991). Concentration of respirable dust and bioaerosols and identification of certain microbial types in a hog-growing facility. Canadian Journal of Animal Science, 71(2), 271–277.CrossRefGoogle Scholar
- Cao, J. J., Wu, F., Chow, J. C., Lee, S. C., Li, Y., Chen, S. W., et al. (2005). Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi’an, China. Atmospheric Chemistry and Physics, 5(11), 3127–3137.CrossRefGoogle Scholar
- Census. (2011). Census of India 2011: Provisional population totals-India data sheet. Office of the Registrar General Census Commissioner, India. Indian Census Bureau. http://censusindia.gov.in/2011-prov-results/data_files/india/paper_contentsetc.pdf.
- Chakrabarty, R. K., Moosmüller, H., Garro, M. A., Arnott, W. P., Walker, J., Susott, R. A., et al. (2006). Emissions from the laboratory combustion of wildland fuels: Particle morphology and size. Journal of Geophysical Research: Atmospheres, 111(D7), 1–16.CrossRefGoogle Scholar
- Chen, L.-W., Verburg, P., Shackelford, A., Zhu, D., Susfalk, R., Chow, J. C., et al. (2010). Moisture effects on carbon and nitrogen emission from burning of wildland biomass. Atmospheric Chemistry and Physics, 10(14), 6617–6625.CrossRefGoogle Scholar
- Cheng, T., Gu, X., Wu, Y., Chen, H., & Yu, T. (2013). The optical properties of absorbing aerosols with fractal soot aggregates: Implications for aerosol remote sensing. Journal of Quantitative Spectroscopy & Radiative Transfer, 125, 93–104. https://doi.org/10.1016/j.jqsrt.2013.03.012.CrossRefGoogle Scholar
- Chow, J. C., Lowenthal, D. H., Chen, L.-W. A., Wang, X., & Watson, J. G. (2015). Mass reconstruction methods for PM2.5: A review. Air Quality, Atmosphere and Health, 8(3), 243–263.CrossRefGoogle Scholar
- Chow, J. C., Watson, J. G., Chen, L.-W. A., Arnott, W. P., Moosmüller, H., & Fung, K. K. (2004). Equivalence of elemental carbon by thermal/Optical reflectance and transmittance with different temperature protocols. Environmental Science and Technology, 38(16), 4414–4422.CrossRefGoogle Scholar
- Chow, J. C., Watson, J. G., Chen, L.-W. A., Chang, M. C. O., Robinson, N. F., Trimble, D., et al. (2007). The IMPROVE_A temperature protocol for thermal/optical carbon analysis: Maintaining consistency with a long-term database. Journal of the Air and Waste Management Association, 57(9), 1014–1023.CrossRefGoogle Scholar
- Chow, J. C., Watson, J. G., Chen, L.-W. A., Paredes-Miranda, G., Chang, M.-C. O., Trimble, D. L., et al. (2005). Interactive comment on “Refining temperature measures in thermal/optical carbon analysis”. Atmospheric Chemistry and Physics Discussion, 5, S1–S6.CrossRefGoogle Scholar
- Chow, J. C., Watson, J. G., Crow, D., Lowenthal, D. H., & Merrifield, T. M. (2001). Comparison of IMPROVE and NIOSH carbon measurements. Aerosol Science and Technology, 34(1), 23–34.CrossRefGoogle Scholar
- Chow, J. C., Watson, J. G., Pritchett, L. C., Pierson, W. R., Frazier, C. A., & Purcell, R. G. (1993). The DRI thermal/Optical reflectance carbon analysis system: Description, evaluation and applications in U.S. air quality studies. Atmospheric Environment, 27A(8), 1185–1201.CrossRefGoogle Scholar
- Chow, J. C., Watson, J. G., Robles, J., Wang, X., Chen, L.-W. A., Trimble, D. L., et al. (2011). Quality assurance and quality control for thermal/optical analysis of aerosol samples for organic and elemental carbon. Analytical and Bioanalytical Chemistry, 401(10), 3141–3152.CrossRefGoogle Scholar
- COMEAP. (2012). UK Committee on the Medical Effects of Air Pollutants Statement on Estimating the Mortality Burden of Particulate Air Pollution at the Local Level. Online. http://www.comeap.org.uk/images/stories/Documents/Statements/FINAL_Local_mortality_burden_statement_August_2012.pdf.
- Deshmukh, D. K., Deb, M. K., & Mkoma, S. L. (2013a). Size distribution and seasonal variation of size-segregated particulate matter in the ambient air of Raipur city, India. Air Quality Atmosphere and Health, 6(1), 259–276.CrossRefGoogle Scholar
- Deshmukh, D. K., Deb, M. K., Suzuki, Y., & Kouvarakis, G. N. (2013b). Water-soluble ionic composition of PM2.5–10 and PM2.5 aerosols in the lower troposphere of an industrial city Raipur, the eastern central India. Air Quality, Atmosphere and Health, 6(1), 95–110.CrossRefGoogle Scholar
- Deshmukh, D. K., Tsai, Y. I., Deb, M. K., & Zarmpas, P. (2012). Characteristics and sources of water-soluble ionic species associated with PM10 particles in the ambient air of Central India. Bulletin of Environmental Contamination and Toxicology, 89(5), 1091–1097.CrossRefGoogle Scholar
- Dewangan, S., Pervez, S., Chakrabarty, R., Watson, J. G., Chow, J. C., Pervez, Y., et al. (2016). Study of carbonaceous fractions associated with indoor PM2.5/PM10 during Asian cultural and ritual burning practices. Building and Environment, 106, 229–236.CrossRefGoogle Scholar
- Dewangan, S., Pervez, S., Chakrabarty, R., & Zielinska, B. (2014). Uncharted sources of particle bound polycyclic aromatic hydrocarbons from South Asia: Religious/ritual burning practices. Atmospheric Pollution Research, 5(2), 283–291.CrossRefGoogle Scholar
- Dhaini, H. R., Salameh, T., Waked, A., Sauvage, S., Borbon, A., Formenti, P., et al. (2017). Quantitative cancer risk assessment and local mortality burden for ambient air pollution in an eastern Mediterranean City. Environmental Science and Pollution Research, 24(16), 14151–14162.CrossRefGoogle Scholar
- Duan, F. K., He, K. B., Ma, Y. L., Yang, F. M., Yu, X. C., Cadle, S. H., et al. (2006). Concentration and chemical characteristics of PM2.5 in Beijing, China: 2001–2002. Science of the Total Environment, 355(1–3), 264–275. https://doi.org/10.1016/j.scitotenv.2005.03.001.CrossRefGoogle Scholar
- Dubey, N., & Pervez, S. (2008). Investigation of variation in ambient PM10 levels within an urban-industrial environment. Aerosol and Air Quality Research, 8(1), 54–64.CrossRefGoogle Scholar
- Feng, Y., Chen, Y., Guo, H., Zhi, G., Xiong, S., Li, J., et al. (2009). Characteristics of organic and elemental carbon in PM2.5 samples in Shanghai, China. Atmospheric Research, 92(4), 434–442.CrossRefGoogle Scholar
- Feng, J., Yu, H., Mi, K., Su, X., Chen, Y., Sun, J. H., & Li, Q. (2017). The pollution characteristics of PM 2.5 and correlation analysis with meteorological parameters in Xinxiang during the Shanghai Cooperation Organization Prime Ministers’ Meeting. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-017-9976-8.Google Scholar
- Ghorani-Azam, A., Riahi-Zanjani, B., & Balali-Mood, M. (2016). Effects of air pollution on human health and practical measures for prevention in Iran. Journal of Research in Medical Sciences: The Official Journal of Isfahan University of Medical Sciences, 21, 21–65.CrossRefGoogle Scholar
- Green, M. C., Chen, L. W. A., DuBois, D. W., & Molenar, J. V. (2012). Fine particulate matter and visibility in the Lake Tahoe Basin: Chemical characterization, trends, and source apportionment. Journal of the Air and Waste Management Association, 62(8), 953–965.CrossRefGoogle Scholar
- Gu, J., Bai, Z., Liu, A., Wu, L., Xie, Y., Li, W., et al. (2010). Characterization of atmospheric organic carbon and element carbon of PM2.5 and PM10 at Tianjin, China. Aerosol and Air Quality Research, 10, 167–176.Google Scholar
- Gustafsson, Ö., Kruså, M., Zencak, Z., Sheesley, R. J., Granat, L., Engström, E., et al. (2009). Brown clouds over South Asia: Biomass or fossil fuel combustion? Science, 323(5913), 495–498.CrossRefGoogle Scholar
- Hadley, O. L., Corrigan, C. E., & Kirchstetter, T. W. (2008). Modified thermal-optical analysis using spectral absorption selectivity to distinguish black carbon from pyrolized organic carbon. Environmental Science and Technology, 42(22), 8459–8464.CrossRefGoogle Scholar
- Han, Y. M., Cao, J. J., Lee, S. C., Ho, K. F., & An, Z. S. (2010). Different characteristics of char and soot in the atmosphere and their ratio as an indicator for source identification in Xi’an, China. Atmospheric Chemistry and Physics, 10(2), 595–607.CrossRefGoogle Scholar
- Han, Y. M., Lee, S. C., Cao, J. J., Ho, K. F., & An, Z. S. (2009). Spatial distribution and seasonal variation of char-EC and soot-EC in the atmosphere over China. Atmospheric Environment, 43(38), 6066–6073.CrossRefGoogle Scholar
- He, Q., Guo, W., Zhang, G., Yan, Y., & Chen, L. (2015). Characteristics and seasonal variations of carbonaceous species in PM2.5 in Taiyuan. China. Atmosphere, 6(6), 850–862.CrossRefGoogle Scholar
- He, X., Pang, Y., Song, X., Chen, B., Feng, Z., & Ma, Y. (2014). Distribution, sources and ecological risk assessment of PAHs in surface sediments from Guan River Estuary, China. Marine pollution bulletin, 80(1), 52–58.CrossRefGoogle Scholar
- Ho, K. F., Lee, S. C., Chan, C. K., Jimmy, C. Y., Chow, J. C., & Yao, X. H. (2003). Characterization of chemical species in PM2.5 and PM10 aerosols in Hong Kong. Atmospheric Environment, 37(1), 31–39.CrossRefGoogle Scholar
- Hoek, G., Krishnan, R. M., Beelen, R., Peters, A., Ostro, B., Brunekreef, B., et al. (2013). Long-term air pollution exposure and cardio-respiratory mortality: a review. Environmental Health, 12(1), 43.CrossRefGoogle Scholar
- Jharia, B., (2014). Waste management: A study on Raipur waste management private limited. Recent Research in Science and Technology, 6(1), 199–202.Google Scholar
- Keeler, G. J., Japar, S. M., Brachaczek, W. W., Gorse, R. A., Norbeck, J. M., & Pierson, W. R. (1990). The sources of aerosol elemental carbon at Allegheny Mountain. Atmospheric Environment. Part A. General Topics, 24(11), 2795–2805.CrossRefGoogle Scholar
- Kim, H.-S., Huh, J.-B., Hopke, P. K., Holsen, T. M., & Yi, S.-M. (2007). Characteristics of the major chemical constituents of PM2.5 and smog events in Seoul, Korea in 2003 and 2004. Atmospheric Environment, 41(32), 6762–6770.CrossRefGoogle Scholar
- Kirchstetter, T. W., Novakov, T., & Hobbs, P. V. (2004). Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. Journal of Geophysical Research: Atmospheres. https://doi.org/10.1029/2004JD004999.
- Kumar, A., & Attri, A. K. (2016a). Biomass combustion a dominant source of carbonaceous aerosols in the ambient environment of Western Himalayas. Aerosol and Air Quality Research, 16(3), 519–529.CrossRefGoogle Scholar
- Kumar, A., & Attri, A. K. (2016b). Correlating respiratory disease incidences with corresponding trends in ambient particulate matter and relative humidity. Atmospheric Pollution Research, 7(5), 858–864.CrossRefGoogle Scholar
- Lewtas, J., Pang, Y., Booth, D., Reimer, S., Eatough, D. J., & Gundel, L. A. (2001). Comparison of sampling methods for semi-volatile organic carbon associated with PM2.5. Aerosol Science and Technology, 34(1), 9–22.CrossRefGoogle Scholar
- Li, G., Lang, Y., Gao, M., Yang, W., Peng, P., & Wang, X. (2014). Carcinogenic and mutagenic potencies for different PAHs sources in coastal sediments of Shandong Peninsula. Marine Pollution Bulletin, 84(1), 418–423.CrossRefGoogle Scholar
- Lonati, G., Giugliano, M., Butelli, P., Romele, L., & Tardivo, R. (2005). Major chemical components of PM2.5 in Milan (Italy). Atmospheric Environment, 39(10), 1925–1934. https://doi.org/10.1016/j.atmosenv.2004.12.012.CrossRefGoogle Scholar
- Masiello, C. A. (2004). New directions in black carbon organic geochemistry. Marine Chemistry, 92(1), 201–213.CrossRefGoogle Scholar
- Matawle, J. L., Pervez, S., Dewangan, S., Shrivastava, A., Tiwari, S., Pant, P., et al. (2015). Characterization of PM2.5 source profiles for traffic and dust sources in Raipur, India. Aerosol and Air Quality Research, 15(7), 2537–2548.CrossRefGoogle Scholar
- Matawle, J., Pervez, S., Dewangan, S., Tiwari, S., Bisht, D. S., & Pervez, Y. F. (2014). PM2.5 chemical source profiles of emissions resulting from industrial and domestic burning activities in India. Aerosol and Air Quality Research, 14, 2051–2066.Google Scholar
- MCCD. (2013). Report on medical certification of cause of death 2013 office of the registrar general, India Government of India, Ministry of home affairs, Vital statistics division, R. K. Puram, New Delhi. http://www.censusindia.gov.in/2011Documents/mccd_Report1/Mccd_2013.pdf.
- McMeeking, G. R., Kreidenweis, S. M., Baker, S., Carrico, C. M., Chow, J. C., Collett, J. L., et al. (2009). Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory. Journal of Geophysical Research: Atmospheres, 114(D19), 1–20.CrossRefGoogle Scholar
- Meena, R. K., Satsangi, A., Lakhani, A., & Kumari, K. M. (2017). Carbonaceous aerosols at an urban residential site in Agra. Indian Journal of Radio & Space Physics (IJRSP), 43(2), 156–162.Google Scholar
- Moosmüller, H., Chakrabarty, R. K., & Arnott, W. P. (2009). Aerosol light absorption and its measurement: A review. Journal of Quantitative Spectroscopy & Radiative Transfer, 110(11), 844–878.CrossRefGoogle Scholar
- Murillo, J. H., Marin, J. F. R., Roman, S. R., Guerrero, V. H. B., Arias, D. S., Ramos, A. C., et al. (2013). Temporal and spatial variations in organic and elemental carbon concentrations in PM10/PM2.5 in the metropolitan area of Costa Rica, Central America. Atmospheric. Pollution Research, 4(1), 53–63.Google Scholar
- Na, K., Sawant, A. A., Song, C., & Cocker, D. R., III. (2004). Primary and secondary carbonaceous species in the atmosphere of Western Riverside County, California. Atmospheric Environment, 38(9), 1345–1355.CrossRefGoogle Scholar
- Neusüß, C., Gnauk, T., Plewka, A., Herrmann, H., & Quinn, P. K. (2002). Carbonaceous aerosol over the Indian Ocean: OC/EC fractions and selected specifications from size segregated onboard samples. Journal of Geophysical Research: Atmospheres, 107(D19), 1–13.CrossRefGoogle Scholar
- Nisbet, I. C. T., & LaGoy, P. K. (1992). Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology, 16(3), 290–300.CrossRefGoogle Scholar
- Pachauri, T., Satsangi, A., Singla, V., Lakhani, A., & Maharaj Kumari, K. (2013a). Characteristics and sources of carbonaceous aerosols in PM2.5 during wintertime in Agra, India. Aerosol and Air Quality Research. https://doi.org/10.4209/aaqr.2012.10.0263.Google Scholar
- Pachauri, T., Singla, V., Satsangi, A., Lakhani, A., & Kumari, K. M. (2013b). Characterization of carbonaceous aerosols with special reference to episodic events at Agra, India. Atmospheric Research, 128, 98–110.CrossRefGoogle Scholar
- Pagels, J., Boman, C., Rissler, J., Massling, A., Löndahl, J., Wierzbicka, A., & Swietlicki, E. (2006). Residential biomass combustion aerosols-influence of combustion conditions on physical and chemical particle characteristics. In 7th International Aerosol Conference (IAC) 2006. St. Paul, Minnesota, September 10–15, 2006240 (Vol. 241).Google Scholar
- Panda, S., Sharma, S. K., Mahapatra, P. S., Panda, U., Rath, S., Mahapatra, M., et al. (2016). Organic and elemental carbon variation in PM2.5 over megacity Delhi and Bhubaneswar, a semi-urban coastal site in India. Natural Hazards, 80(3), 1709–1728.CrossRefGoogle Scholar
- Pant, P., & Harrison, R. M. (2013). Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: A review. Atmospheric Environment, 77, 78–97.CrossRefGoogle Scholar
- Park, S. S., & Son, S.-C. (2017). Relationship between carbonaceous components and aerosol light absorption during winter at an urban site of Gwangju, Korea. Atmospheric Research, 185, 73–83.CrossRefGoogle Scholar
- Pervez, S., Chakrabarty, R. K., Dewangan, S., Watson, J. G., Chow, J. C., & Matawle, J. L. (2016). Chemical speciation of aerosols and air quality degradation during the festival of lights (Diwali). Atmospheric Pollution Research, 7(1), 92–99. https://doi.org/10.1016/j.apr.2015.09.002.CrossRefGoogle Scholar
- Pipal, A. S., Tiwari, S., & Satsangi, P. G. (2016). Seasonal chemical characteristics of atmospheric aerosol particles and its light extinction coefficients over Pune, India. Aerosol and Air Quality Research, 16(8), 1805–1819.CrossRefGoogle Scholar
- Pöschl, U. (2005). Atmospheric aerosols: Composition, transformation, climate and health effects. Angewandte Chemie International Edition, 44(46), 7520–7540.CrossRefGoogle Scholar
- Rajput, P., Sarin, M., & Kundu, S. S. (2013). Atmospheric particulate matter (PM2.5), EC, OC, WSOC and PAHs from NE–Himalaya: abundances and chemical characteristics. Atmospheric Pollution Research, 4(2), 214–221.CrossRefGoogle Scholar
- Ram, K., & Sarin, M. M. (2010). Spatio-temporal variability in atmospheric abundances of EC, OC and WSOC over Northern India. Journal of Aerosol Science, 41(1), 88–98.CrossRefGoogle Scholar
- Ram, K., Sarin, M. M., & Hegde, P. (2008). Atmospheric abundances of primary and secondary carbonaceous species at two high-altitude sites in India: Sources and temporal variability. Atmospheric Environment, 42(28), 6785–6796.CrossRefGoogle Scholar
- Rathnayake, C. M. (2016). Bioaerosols in the Midwestern United States: Spatio-temporal variations, meteorological impacts and contributions to particulate matter. PhD (Doctor of Philosophy) Thesis, University of Iowa. http://ir.uiowa.edu/etd/2134.
- Reid, J. S., Koppmann, R., Eck, T. F., & Eleuterio, D. P. (2004). A review of biomass burning emissions, part II: Intensive physical properties of biomass burning particles. Atmospheric Chemistry and Physics Discussions, 4(5), 5135–5200.CrossRefGoogle Scholar
- Rengarajan, R., Sarin, M. M., & Sudheer, A. K. (2007). Carbonaceous and inorganic species in atmospheric aerosols during wintertime over urban and high altitude sites in North India. Journal of Geophysical Research: Atmospheres, 112(D21), 1–16.CrossRefGoogle Scholar
- Rodrigo Seguel, A., Raúl, G. E., Morales, S., Manuel, A., & Leiva, G. (2009). Estimations of primary and secondary organic carbon formation in PM2.5 aerosols of Santiago City. Chile. Atmospheric Environment, 43, 2125–2131.CrossRefGoogle Scholar
- Röösli, M., Braun-Fährlander, C., Künzli, N., Oglesby, L., Theis, G., Camenzind, M., et al. (2000). Spatial variability of different fractions of particulate matter within an urban environment and between urban and rural sites. Journal of the Air and Waste Management Association, 50(7), 1115–1124.CrossRefGoogle Scholar
- Röösli, M., Theis, G., Künzli, N., Staehelin, J., Mathys, P., Oglesby, L., et al. (2001). Temporal and spatial variation of the chemical composition of PM10 at urban and rural sites in the Basel area, Switzerland. Atmospheric Environment, 35(21), 3701–3713.CrossRefGoogle Scholar
- Sandradewi, J., Prévôt, A. S. H., Szidat, S., Perron, N., Alfarra, M. R., Lanz, V. A., et al. (2008). Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter. Environmental Science and Technology, 42(9), 3316–3323.CrossRefGoogle Scholar
- Shi, J., Ding, X., Zhou, Y., You, R., Huang, L., Hao, J., et al. (2016a). Characteristics of chemical components in PM2.5. Frontiers of Environmental Science & Engineering, 10(5), 1–9.CrossRefGoogle Scholar
- Shi, G., Peng, X., Liu, J., Tian, Y., Song, D., Yu, H., et al. (2016b). Quantification of long-term primary and secondary source contributions to carbonaceous aerosols. Environmental Pollution, 219, 897–905.CrossRefGoogle Scholar
- Simoneit, B. R. T. (2002). Biomass burning—A review of organic tracers for smoke from incomplete combustion. Applied Geochemistry, 17(3), 129–162.CrossRefGoogle Scholar
- Singh, R., Kulshrestha, M. J., Kumar, B., & Chandra, S. (2016). Impact of anthropogenic emissions and open biomass burning on carbonaceous aerosols in urban and rural environments of Indo-Gangetic Plain. Air Quality, Atmosphere and Health, 9(7), 809–822.CrossRefGoogle Scholar
- Srivastava, A. K., Bisht, D. S., Ram, K., Tiwari, S., & Srivastava, M. K. (2014). Characterization of carbonaceous aerosols over Delhi in Ganga basin: Seasonal variability and possible sources. Environmental Science and Pollution Research, 21(14), 8610–8619.CrossRefGoogle Scholar
- Stone, E., Schauer, J., Quraishi, T. A., & Mahmood, A. (2010). Chemical characterization and source apportionment of fine and coarse particulate matter in Lahore, Pakistan. Atmospheric Environment, 44(8), 1062–1070.CrossRefGoogle Scholar
- Szidat, S., Jenk, T. M., Gäggeler, H. W., Synal, H.-A., Fisseha, R., Baltensperger, U., et al. (2004). Radiocarbon (14C)-deduced biogenic and anthropogenic contributions to organic carbon (OC) of urban aerosols from Zürich, Switzerland. Atmospheric Environment, 38(24), 4035–4044.CrossRefGoogle Scholar
- Tagaris, E., Liao, K.-J., DeLucia, A. J., Deck, L., Amar, P., & Russell, A. G. (2009). Potential impact of climate change on air pollution-related human health effects. Environmental Science and Technology, 43(13), 4979–4988. https://doi.org/10.1021/es803650w.CrossRefGoogle Scholar
- Tiwari, S., Srivastava, A. K., Bisht, D. S., Safai, P. D., & Parmita, P. (2013). Assessment of carbonaceous aerosol over Delhi in the Indo-Gangetic Basin: Characterization, sources and temporal variability. Natural Hazards, 65(3), 1745–1764.CrossRefGoogle Scholar
- Turpin, B. J., & Huntzicker, J. J. (1995). Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS. Atmospheric Environment, 29(23), 3527–3544.CrossRefGoogle Scholar
- Verma, N., Satsangi, A., Lakhani, A., & Kumari, K. M. (2017). Low molecular weight monocarboxylic acids in PM2.5 and PM10: Quantification, seasonal variation and source apportionment. Aerosol and Air Quality Research, 17(2), 485–498.CrossRefGoogle Scholar
- Viana, M., Maenhaut, W., Ten Brink, H. M., Chi, X., Weijers, E., Querol, X., et al. (2007). Comparative analysis of organic and elemental carbon concentrations in carbonaceous aerosols in three European cities. Atmospheric Environment, 41(28), 5972–5983.CrossRefGoogle Scholar
- Volkovic, V. (1983). Trace elements in coal (Vol. II). Florida: CRC Press.Google Scholar
- Watson, J. G., Tropp, R. J., Kohl, S. D., Wang, X., & Chow, J. C. (2017). Filter processing and gravimetric analysis for suspended particulate matter samples. Aerosol Science and Engineering, 1(2), 93–105.CrossRefGoogle Scholar
- WHO. (2006). WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide-Global update 2005-Summary of risk assessment, 2006. Geneva: WHO.Google Scholar
- Yang, M., Howell, S. G., Zhuang, J., & Huebert, B. J. (2009). Attribution of aerosol light absorption to black carbon, brown carbon, and dust in China—interpretations of atmospheric measurements during EAST-AIRE. Atmospheric Chemistry and Physics, 9(6), 2035–2050.CrossRefGoogle Scholar
- Zhang, L., Huang, Y., Liu, Y., Yang, F., Lan, G., Fu, C., et al. (2015). Characteristics of Carbonaceous Species in PM2.5 in Wanzhou in the Hinterland of the Three Gorges Reservior of Northeast Chongqing. China. Atmosphere, 6(4), 534–546.CrossRefGoogle Scholar
- Zhang, Y. H., Wang, D. F., Zhao, Q. B., Cui, H. X., Li, J., Duan, Y. S., et al. (2014). Characteristics and sources of organic carbon and elemental carbon in PM2.5 in Shanghai urban area. Huan jing ke xue = Huanjing Kexue, 35(9), 3263–3270.Google Scholar
- Zhang, F., Zhao, J., Chen, J., Xu, Y., & Xu, L. (2011). Pollution characteristics of organic and elemental carbon in PM2.5 in Xiamen, China. Journal of Environmental Sciences, 23(8), 1342–1349.CrossRefGoogle Scholar
- Zhou, X., Cao, Z., Ma, Y., Wang, L., Wu, R., & Wang, W. (2016). Concentrations, correlations and chemical species of PM2.5/PM10 based on published data in China: Potential implications for the revised particulate standard.Google Scholar
- Zhou, Shengzhen, Wang, Zhe, Gao, Rui, Xue, Likun, Yuan, Chao, Wang, Tao, et al. (2012a). Formation of secondary organic carbon and long-range transport of carbonaceous aerosols at Mount Heng in South China. Atmospheric Environment, 63, 203–212.CrossRefGoogle Scholar
- Zhou, J., Zhang, R., Cao, J., Chow, J. C., & Watson, J. G. (2012b). Carbonaceous and ionic components of atmospheric fine particles in Beijing and their impact on atmospheric visibility. Aerosol and Air Quality Research, 12, 492–502.Google Scholar