Skip to main content

Advertisement

Log in

Distribution of heavy metals and associated human health risk in mine, agricultural and roadside soils at the largest chromite mine of India

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

This study accessed the levels of Cd, Cr, Fe, Mn, Ni, Pb and Zn concentration in soils of different locations (mine, roadside, agricultural and control sites) of Sukinda chromite mine (the India’s largest Chromite mine and listed among the world’s ten most polluted regions). Geo-accumulation (Igeo) index indicates that the mine, agricultural and roadside soils are ‘heavily to extremely contaminated’ due to Cr, Ni, Pb and Cd, hence human residing/working in this region can have health hazards due to contaminated soil via different exposure pathways. The concentration of heavy metals (mg/kg) in mine site vary between 52.35 and 244.8 (Cr6+), 12,030.2 and 31,818.6 (Cr3+), 5460.4 and 8866.0 (Ni), 70.02 and 208.6 (Pb), 0.95 and 5.3 (Cd), 209.1 and 360.4 (Mn), 21,531.8 and 28,847 (Fe) and 221 and 349.3 (Zn). Fe, Cr6+, Cr3+ and Ni concentration in soil follows an order of mine site > road sites > agricultural lands > control forest sites. Principal component analysis and hierarchical cluster analysis indicate Cd, Cr, Fe, Ni and Pb as major pollutants in the region. Cancer Risk is ‘high’ in both adult (5.38E−04) and children (4.45E−04) in mining sites and ‘low’ to ‘very low’ in agricultural and road side soils. The hazard index for all the heavy metals in a mining areas is varied from 2.9 to 5.2 in adult and 2.8–5.1 in children, indicating ‘high’ to ‘very high’ non-cancer risk due to significant contribution of Ni, Pb and Cr6+ concentration (73, 11 and 10%, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ackah, M., Anim, A. K., Gyamfi, E. T., Zakaria, N., Hanson, J., Tulasi, D., et al. (2014). Uptake of heavy metals by some edible vegetables irrigated using wastewater: a preliminary study in Accra, Ghana. Environmental Monitoring and Assessment, 186(1), 621–634.

    Article  CAS  Google Scholar 

  • Alloway, B. J. (2013). Sources of heavy metals and metalloids in soils. In Heavy metals in soils (pp. 11–50). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Beukes, J. P., Du Preez, S. P., Van Zyl, P. G., Paktunc, D., Fabritius, T., Päätalo, M., et al. (2017). Review of Cr(VI) environmental practices in the chromite mining and smelting industry—relevance to development of the Ring of Fire, Canada. Journal of Cleaner Production, 165, 874–889.

    Article  CAS  Google Scholar 

  • Black Smith Institute Report. (2007). The world’s worst polluted places, A project of Blacksmith Institute, 16–17. Retrieved August 2017. www.worstpolluted.org/reports/file/2007%20Report%20updated%202009.pdf.

  • Brief Inroad side soilrial Profile of Jajpur District. MSME - Development Institute, Cuttack. Retrieved November 3, 2017, http://dcmsme.gov.in/dips/DIPS-New%20-Jajpur.pdf.

  • Broadway, A., Cave, M. R., Wragg, J., Fordyce, F. M., Bewley, R. J., Graham, M. C., et al. (2010). Determination of the bioaccessibility of chromium in Glasgow soil and the implications for human health risk assessment. Science of the Total Environment, 409(2), 267–277.

    Article  CAS  Google Scholar 

  • Brooks, R. R. (1987). Serpentine and its vegetation: A multidisciplinary approach. Dioscorides Press.

  • Census. (2011). Sukinda block population, caste, religion data—Jajapur district, Odisha. Retrieved November 3, 2017, https://www.censusindia.co.in/subdistrict/sukinda-block-jajapur-odisha-2969.

  • Chowdhury, S. A., & MacFarlane, D. (2016). Toxicity of chromium tanning. https://doi.org/10.2139/ssrn.2817926.

    Article  Google Scholar 

  • Chowdhury, A., & Maiti, S. K. (2016). Identification of metal tolerant plant species in mangrove ecosystem by using community study and multivariate analysis: A case study from Indian Sunderban. Environmental Earth Sciences, 75(9), 744.

    Article  Google Scholar 

  • Chowdhury, A., Naz, A., & Maiti, S. K. (2017). Health risk assessment of ‘tiger prawn seed’ collectors exposed to heavy metal pollution in the conserved mangrove forest of Indian Sundarbans: A socio-environmental perspective. Human and Ecological Risk Assessment: An International Journal, 23(2), 203–224.

    Article  CAS  Google Scholar 

  • Das, S., Ram, S. S., Sahu, H. K., Rao, D. S., Chakraborty, A., Sudarshan, M., et al. (2013). A study on soil physico-chemical, microbial and metal content in Sukinda chromite mine of Odisha, India. Environmental earth sciences, 69(8), 2487–2497.

    Article  CAS  Google Scholar 

  • Das, A. P., & Singh, S. (2011). Occupational health assessment of chromite toxicity among Indian miners. Indian Journal of Occupational and Environmental Medicine, 15(1), 6.

    Article  Google Scholar 

  • Dehghani, S., Moore, F., Keshavarzi, B., & Beverley, A. H. (2017). Health risk implications of potentially toxic metals in street road side soil and surface soil of Tehran, Iran. Ecotoxicology and Environmental Safety, 136, 92–103.

    Article  CAS  Google Scholar 

  • Dubey, C. S., Sahoo, B. K., & Nayak, N. R. (2001). Chromium (VI) in waters in parts of Sukinda chromite valley and health hazards, Orissa, India. Bulletin of Environmental Contamination and Toxicology, 67(4), 541–548.

    Article  CAS  Google Scholar 

  • Fan, Y., Zhu, T., Li, M., He, J., & Huang, R. (2017). Heavy metal contamination in soil and brown rice and human health risk assessment near three mining areas in central China. Journal of Healthcare Engineering, 2017, 4124302. https://doi.org/10.1155/2017/4124302.

    Article  Google Scholar 

  • Giri, S., & Singh, A. K. (2017). Ecological and human health risk assessment of agricultural soils based on heavy metals in mining areas of Singhbhum copper belt India. Human and Ecological Risk Assessment: An International Journal. https://doi.org/10.1080/10807039.2017.1295224.

    Article  Google Scholar 

  • Guertin, J., Jacobs, J. A., & Avakian, C. P. (Eds.). (2016). Chromium (VI) handbook. Boca Raton: CRC Press.

    Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14(8), 975–1001.

    Article  Google Scholar 

  • Horiguchi, H., Oguma, E., Sasaki, S., Okubo, H., Murakami, K., & Miyamoto, K. (2013). Age-relevant renal effects of cadmium exposure through consumption of home-harvested rice in female Japanese farmers. Environment International, 56, 1–9.

    Article  CAS  Google Scholar 

  • IBM (Indian bureau of Mines) Indian Mineral Yearbook 2013.

  • Ihedioha, J. N., Ukoha, P. O., & Ekere, N. R. (2016). Ecological and human health risk assessment of heavy metal contamination in soil of a municipal solid waste dump in Uyo, Nigeria. Environmental Geochemistry and Health, 39(3), 497–515.

    Article  Google Scholar 

  • Ihedioha, J. N., Ukoha, P. O., & Ekere, N. R. (2017). Ecological and human health risk assessment of heavy metal contamination in soil of a municipal solid waste dump in Uyo, Nigeria. Environmental Geochemistry and Health, 39(3), 497–515.

    Article  CAS  Google Scholar 

  • Iqbal, J., Tirmizi, S. A., & Shah, M. H. (2012). Non-carcinogenic health risk assessment and source apportionment of selected metals in source freshwater Khanpur Lake, Pakistan. Bulletin of Environment and Contamination Toxicology, 88, 177–181.

    Article  CAS  Google Scholar 

  • Ji, K., Kim, J., Lee, M., Park, S., Kwon, H. J., Cheong, H. K., et al. (2013). Assessment of exposure to heavy metals and health risks among residents near abandoned metal mines in Goseong, Korea. Environmental Pollution, 178, 322–328.

    Article  CAS  Google Scholar 

  • Jiang, Y., Shi, L., Guang, A. L., Mu, Z., Zhan, H., & Wu, Y. (2017). Contamination levels and human health risk assessment of toxic heavy metals in street road side soil in an inroad side soilrial city in Northwest China. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-017-0028-1.

    Article  Google Scholar 

  • Kien, C. N., Noi, N. V., Son, L. T., Ngoc, H. M., Tanaka, S., Nishina, T., et al. (2010). Heavy metal contamination of agricultural soils around a chromite mine in Vietnam. Soil Science & Plant Nutrition, 56(2), 344–356.

    Article  CAS  Google Scholar 

  • Korashy, H. M., Attafi, I. M., Famulski, K. S., Bakheet, S. A., Hafez, M. M., Alsaad, A. M., et al. (2017). Gene expression profiling to identify the toxicities and potentially relevant human disease outcomes associated with environmental heavy metal exposure. Environmental Pollution, 221, 64–74.

    Article  CAS  Google Scholar 

  • Kumar, B., Verma, V. K., Naskar, A. K., Sharma, C. S., & Mukherjee, D. P. (2014). Bioavailability of metals in soil and health risk assessment for populations near an Indian chromite mine area. Human and Ecological Risk Assessment: An International Journal, 20(4), 917–928.

    Article  CAS  Google Scholar 

  • Kumari, P., Chowdhury, A., & Maiti, S. K. (2018). Assessment of Heavy metal in the water, sediment and two edible fish species of Jamshedpur Urban Agglomeration, India with special emphasis on human health risk. Human and Ecological Risk Assessment: An International Journal. https://doi.org/10.1080/10807039.2017.1415131.

    Article  Google Scholar 

  • Lee, S. W., Lee, B. T., Kim, J. Y., Kim, K. W., & Lee, J. S. (2006). Human risk assessment for heavy metals and as contamination in the abandoned metal mine areas, Korea. Environmental monitoring and assessment, 119(1–3), 233–244.

    Article  CAS  Google Scholar 

  • Liu, X., Song, Q., Tang, Y., et al. (2013). Human health risk assessment of heavy metals in soil–vegetable system: A multi-medium analysis. Science of Total Environment, 463, 530–540.

    Article  Google Scholar 

  • Maiti, S. K. (2013). Ecology and ecosystem in mine-degraded land. New York: Springer.

    Book  Google Scholar 

  • Mohanty, M., & Patra, H. K. (2012). Phytoremediation potential of paragrass—An in situ approach for chromium contaminated soil. International Journal of Phytoremediation, 14(8), 796–805.

    Article  CAS  Google Scholar 

  • Mohapatra, S., Bohidar, S., Pradhan, N., Kar, R. N., & Sukla, L. B. (2007). Microbial extraction of nickel from Sukinda chromite overburden by Acidithiobacillus ferrooxidans and Aspergillus strains. Hydrometallurgy, 85(1), 1–8.

    Article  CAS  Google Scholar 

  • Motzer, W. E., & Engineers, T. (2004). Chemistry, geochemistry, and geology of chromium and978 chromium compounds. In J. Guetin, J. A. Jacobs, & C. P. Avakian (Eds.), Chromium(VI) handbook (pp. 23–91). Boca Raton: CRC Press. ISBN 1-56670-608-4.

    Chapter  Google Scholar 

  • Murthy, Y. R., Tripathy, S. K., & Kumar, C. R. (2011). Chrome ore beneficiation challenges & opportunities—A review. Minerals Engineering, 24(5), 375–380.

    Article  CAS  Google Scholar 

  • Navarro, M. C., Pérez-Sirvent, C., Martínez-Sánchez, M. J., Vidal, J., & Marimón, J. (2006). Lead, cadmium and arsenic bioavailability in the abandoned mine site of Cabezo Rajao (Murcia, SE Spain). Chemosphere, 63(3), 484–489.

    Article  CAS  Google Scholar 

  • Nawab, J., Li, G., Khan, S., Sher, H., Aamir, M., Shamshad, I., et al. (2016). Health risk assessment from contaminated foodstuffs: A field study in chromite mining-affected areas northern Pakistan. Environmental Science and Pollution Research, 23(12), 12227–12236.

    Article  Google Scholar 

  • Naz, A., Chowdhury, A., Mishra, B. K., & Gupta, S. K. (2016a). Metal pollution in water environment and the associated human health risk from drinking water: A case study of Sukinda chromite mine, India. Human and Ecological Risk Assessment: An International Journal, 22(7), 1433–1455.

    Article  CAS  Google Scholar 

  • Naz, A., Mishra, B. K., & Gupta, S. K. (2016b). Human health risk assessment of chromium in drinking water: a case study of Sukinda chromite mine, Odisha, India. Exposure and Health, 8(2), 253–264.

    Article  CAS  Google Scholar 

  • Nickens, K. P., Patierno, S. R., & Ceryak, S. (2010). Chromium genotoxicity: A double-edged sword. Chemico Biological Interactions, 188(2), 276–288.

    Article  CAS  Google Scholar 

  • Oze, C., Fendorf, S., Bird, D. K., & Coleman, R. G. (2004). Chromium geochemistry in serpentinized ultramafic rocks and serpentine soils from the Franciscan complex of California. American Journal of Science, 304(1), 67–101.

    Article  CAS  Google Scholar 

  • Panigrahi, D. C., Pandey, J. K., & Udaybhanu, G. (2006). Pattern of hexa-valent chromium in air borne respirable road side soil generated at various workplaces in opencast chromite mines. Environmental Monitoring and Assessment, 114(1), 211–223.

    Article  CAS  Google Scholar 

  • Pattnaik, B. K., & Equeenuddin, S. M. (2016). Potentially toxic metal contamination and enzyme activities in soil around chromite mines at Sukinda Ultramafic Complex, India. Journal of Geochemical Exploration, 168, 127–136.

    Article  CAS  Google Scholar 

  • Paulukat, C., Døssing, L. N., Mondal, S. K., Voegelin, A. R., & Frei, R. (2015). Oxidative release of chromium from Archean ultramafic rocks, its transport and environmental impact—A Cr isotope perspective on the Sukinda valley ore district (Orissa, India). Applied Geochemistry, 59, 125–138.

    Article  CAS  Google Scholar 

  • Pettine, M., & Capri, S. (2005a). Digestion treatments and risks of Cr(III)–Cr(VI) inter-conversions during Cr(VI) determination in soils and sediments. Analytica Chimica Acta, 540, 231–238.

    Article  CAS  Google Scholar 

  • Pettine, M., & Capri, S. (2005b). Removal of humic matter interference in the determination of Cr(VI) in soil extracts by the diphenylcarbazide method. Analytica Chimica Acta, 540, 239–246.

    Article  CAS  Google Scholar 

  • PMKSY-Pradhan Mantri Krishi Sinchayee Yojana. (2016). District irrigation plan of Jajpur. Retrieved November 3, 2017, http://www.dowrorissa.gov.in/DIP/2015-20/jajpur.pdf.

  • RAIS. (2017). Risk based screening table-generic table. https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables-november-2017.

  • Raj, D., Chowdhury, A., & Maiti, S. K. (2017). Ecological risk assessment of mercury and other heavy metals in soils of coal mining area: A case study from Eastern part of Jharia coal field, India. Human and Ecological Risk Assessment: An International Journal, 23(4), 767–7871.

    Article  CAS  Google Scholar 

  • Rao, G. V. (2000). Nickel and cobalt ores: Flotation. Encyclopaedia of Separation Science. New York: Academic Press.

    Google Scholar 

  • Rout, G. R., Samantaray, S., & Das, P. (2000). Effects of chromium and nickel on germination and growth in tolerant and non-tolerant populations of Echinochloa colona (L.) link. Chemosphere, 40(8), 855–859.

    Article  CAS  Google Scholar 

  • Samantaray, S., Rout, G. R., & Das, P. (1999). Studies on the uptake of heavy metals by various plant species on chromite minespoils in sub-tropical regions of India. Environmental Monitoring Assessment, 55(3), 389–399.

    Article  CAS  Google Scholar 

  • Satarug, S., & Moore, M. (2004). Adverse health effect of chronic exposure to low-level cadmium in foodstuffs and cigarette smoke. Environmental Health Perspective, 112, 1099–1103.

    Article  CAS  Google Scholar 

  • Shi, G., Chen, Z., Bi, C., Wang, L., Teng, J., Li, Y., et al. (2011). A comparative study of health risk of potentially toxic metals in urban and suburban road side soil in the most populated city of China. Atmospheric Environment, 45(3), 764–771.

    Article  CAS  Google Scholar 

  • Shi, P., Xiao, J., Wang, Y., & Chen, L. (2014). Assessment of ecological and human health risks of heavy metal contamination in agriculture soils disturbed by pipeline construction. International Journal of Environmental Research and Public Health, 11(3), 2504–2520.

    Article  Google Scholar 

  • Silbergeld, E. K. (2003). Facilitative mechanisms of lead as a carcinogen. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 533(1), 121–133.

    Article  CAS  Google Scholar 

  • Steenland, K., & Boffetta, P. (2000). Lead and cancer in humans: where are we now? American Journal of Inroad side soilrial Medicine, 38, 295–299.

    Article  CAS  Google Scholar 

  • Tiwary, R. K., Dhakate, R., Rao, V. A., & Singh, V. S. (2005). Assessment and prediction of contaminant migration in ground water from chromite waste dump. Environmental Geology, 48(4–5), 420–429.

    Article  CAS  Google Scholar 

  • USEPA. (1998). Toxicological review of hexavalent chromium. In Support of summary information on the Integrated Risk Information System (IRIS). Washington, DC. http://www.epa.gov/iris/toxreviews/0144-tr.pdf.

  • USEPA. (2005). Guidelines for carcinogen risk assessment, EPA/630/P-03/001F. Risk assessment forum, Washington, D.C.

  • USEPA. (2017). Risk based screening table-generic table. Retrieved October 12, 2017, https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables-june-2017.

  • USEPA (U.S. Environmental Protection Agency). (1996). Alkaline digestion for hexavalent chromium, USEPA method 3060A (SW-846, 1996). Washington D.C.: Office of Solid Waste and Emerging Response.

    Google Scholar 

  • Wu, B., Zhao, D. Y., Jia, H. Y., et al. (2009). Preliminary risk assessment of trace metal pollution in surface water from Yangtz River in Nanjing Sectio, China. Bulletin of Environmental Contamination and Toxicology, 82, 405–409.

    Article  CAS  Google Scholar 

  • Xiao, R., Bai, J., Huang, L., Zhang, H., Cui, B., & Liu, X. (2013). Distribution and pollution, toxicity and risk assessment of heavy metals in sediments from urban and rural rivers of the Pearl River delta in southern China. Ecotoxicology, 22(10), 1564–1575.

    Article  CAS  Google Scholar 

  • Xiao, R., Wang, S., Li, R., Wang, J. J., & Zhang, Z. (2017). Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi, China. Ecotoxicology and Environmental Safety, 141, 17–24.

    Article  CAS  Google Scholar 

  • Ying, H., Yong Xia, L., Jian, Y., Min Min, X., Bo, S., Fu Wei, G., et al. (2015). Harmful chemicals in soil and risk assessment of an abandoned open dumpsite in Eastern China. Journal of Chemistry. https://doi.org/10.1155/2015/297686.

    Article  Google Scholar 

  • Zhao, H., Xia, B., Fan, C., Zhao, P., & Shen, S. (2012). Human health risk from soil heavy metal contamination under different land uses near Dabaoshan Mine, Southern China. Science of the Total Environment, 417, 45–54.

    Article  Google Scholar 

Download references

Acknowledgements

The first (Ad no. 2013DR0064) and second author (Ad no. 2013 DR0015) is indebted to the Department of Environmental Sciences and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, India, and ‘Ministry of Human Resource Development’ (MHRD), Government of India, for providing research facilities and fellowship.

Author information

Authors and Affiliations

Authors

Contributions

NA Taken major role in sample collection, analysis, health risk assessment and interpretation of data, as well as drafting of manuscript. CA Experiment and sampling design, taken major role in the design of research objectives, interpretation of results, helped 1st author in sample collection, analysis and aided in drafting of manuscript. MBK Research Guide of first author (NA) and taken a supervisory role in controlling the quality of laboratory analysis, providing laboratory facilities and instrumental in technical improvement in manuscript. KK Responsible for improving English grammar and consistency of the final manuscript.

Corresponding author

Correspondence to Abhiroop Chowdhury.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 56 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naz, A., Chowdhury, A., Mishra, B.K. et al. Distribution of heavy metals and associated human health risk in mine, agricultural and roadside soils at the largest chromite mine of India. Environ Geochem Health 40, 2155–2175 (2018). https://doi.org/10.1007/s10653-018-0090-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-018-0090-3

Keywords

Navigation