Environmental Geochemistry and Health

, Volume 40, Issue 5, pp 2101–2118 | Cite as

Environmental risk assessment of radioactivity and heavy metals in soil of Toplica region, South Serbia

  • Vladica Stevanović
  • Ljiljana Gulan
  • Biljana Milenković
  • Aleksandar Valjarević
  • Tijana Zeremski
  • Ivana Penjišević
Original Paper


Activity levels of natural and artificial radionuclides and content of ten heavy metals (As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn and Hg) were investigated in 41 soil samples collected from Toplica region located in the south part of Serbia. Radioactivity was determined by gamma spectrometry using HPGe detector. The obtained mean activity concentrations ± standard deviations of radionuclides 226Ra, 232Th, 40K and 137Cs were 29.9 ± 9.4, 36.6 ± 11.5, 492 ± 181 and 13.4 ± 18.7 Bq kg−1, respectively. According to Shapiro–Wilk normality test, activity concentrations of 226Ra and 232Th were consistent with normal distribution. External exposure from radioactivity was estimated through dose and radiation risk assessments. Concentrations of heavy metals were measured by using ICP-OES, and their health risks were then determined. Enrichment by heavy metals and pollution level in soils were evaluated using the enrichment factor, the geoaccumulation index (Igeo), pollution index and pollution load index. Based on GIS approach, the spatial distribution maps of radionuclides and heavy metal contents were made. Spearman correlation coefficient was used for correlation analysis between radionuclide activity concentrations and heavy metal contents.


Radionuclides Heavy metals Spatial distribution Environmental risk GIS 



This work was supported by the Ministry of Education, Science and Technology Development of the Republic of Serbia under the Projects III41028, 171021 and III40008.

Supplementary material

10653_2018_85_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1279 kb)


  1. Alijagić, J., & Šajn, R. (2011). Distribution of chemical elements in an old metallurgical area, Zenica (Bosnia and Herzegovina). Geoderma, 162, 71–85.Google Scholar
  2. Barać, N., Škrivanj, S., Bukumirić, Z., Živojinović, D., Manojlović, D., Barać, M., et al. (2016a). Distribution and mobility of heavy elements in floodplain agricultural soils along the Ibar River (Southern Serbia and Northern Kosovo). Chemometric investigation of pollutant sources and ecological risk assessment. Environmental Science and Pollution Research, 23, 9000–9011.Google Scholar
  3. Barać, N., Škrivanj, S., Mutić, J., Manojlović, D., Bukumirić, Z., Živojinović, D., et al. (2016b). Heavy metals fractionation in agricultural soils of Pb/Zn mining region and their transfer to selected vegetables. Water, Air, and Soil pollution, 227, 481–494.Google Scholar
  4. Bertka, J., & Mathew, P. J. (1985). Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Physics, 48, 87–95.Google Scholar
  5. Bikit, I., Slivka, J., L, Conkic, Krmar, M., Veskovic, M., Zikic-Todorovic, N., et al. (2005). Radioactivity of the soil in Vojvodina (Northern province of Serbia and Montenegro). Journal of Environmental Radioactivity, 78, 11–19.Google Scholar
  6. Bíl, M., Bílová, M., & Kubeček, J. (2012). Unified GIS database on cycle tourism infrastructure. Tourism Management, 33, 1554–1561.Google Scholar
  7. Borgna, L., Di Lella, L. A., Nannoni, F., Pisani, A., Pizzetti, E., Protano, G., et al. (2009). The high contents of lead in soils of northern Kosovo. Journal of Geochemical Exploration, 101, 137–146.Google Scholar
  8. Chabukdhara, M., & Nema, A. (2013). Heavy metals assessment in urban soil around industrial clusters in Ghaziabad, India: Probabilistic health risk approach. Ecotoxicology and Environmental Safety, 87, 57–64.Google Scholar
  9. Chandrasekaran, A., Ravisankar, R., Rajalakshmi, A., Eswaran, P., Vijayagopal, P., & Venkatraman, B. (2015). Assessment of natural radioactivity and function of minerals in soils of Yelagiri hills, Tamilnadu, India by Gamma Ray spectroscopic and Fourier Transform Infrared (FTIR) techniques with statistical approach. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, 1734–1744.Google Scholar
  10. Chen, H., Teng, Y., Lu, S., Wang, Y., & Wang, J. (2015). Contamination features and health risk of soil heavy metals in China. Science of the Total Environment, 512–513, 143–153.Google Scholar
  11. Chen, T. B., Zheng, Y. M., Lei, M., Huang, Z. C., Wu, H. T., Chen, H., et al. (2005). Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere, 60, 542–551.Google Scholar
  12. Crnković, D., Ristić, M., & Antonović, D. (2006). Distribution of heavy metals and arsenic in soils of Belgrade (Serbia and Montenegro). Soil & Sediment Contamination, 15, 581–589.Google Scholar
  13. Ćujić, M., Dragović, S., Đorđević, M., Dragović, R., & Gajić, B. (2017). Reprint of “Environmental assessment of heavy metals around the largest coal fired power plant in Serbia”. CATENA, 148, 26–34.Google Scholar
  14. Dimitrijevic, M., & Karamata, S. (1966). An overview of Kopaonik granodiorite massif. Records of Serbian Geological Society from 1964–1967. Belgrade (in Serbian).Google Scholar
  15. Dimitrova, N., Znaor, A., Agius, D., Eser, S., Sekerija, M., Ryzhov, A., et al. (2017). Breast cancer in South-Eastern European countries since 2000: Rising incidence and decreasing mortality at young and middle ages. European Journal of Cancer, 83, 43–55.Google Scholar
  16. Dragović, R., Gajić, B., Dragović, S., Ðorđević, M., Ðorđević, M., Mihailović, N., et al. (2014). Assessment of the impact of geographical factors on the spatial distribution of heavy metals in soils around the steel production facility in Smederevo (Serbia). Journal of Cleaner Production, 84, 550–562.Google Scholar
  17. Dragović, S., Mihailović, N., & Gajić, B. (2008). Heavy metals in soils: Distribution, relationship with soil characteristics and radionuclides and multivariate assessment of contamination sources. Chemosphere, 72, 491–495.Google Scholar
  18. Dugalic, G., Krstic, D., Jelic, M., Nikezic, D., Milenkovic, B., Pucarevic, M., et al. (2010). Heavy metals, organics and radioactivity in soil of western Serbia. Journal of Hazardous Materials, 177, 697–702.Google Scholar
  19. Duraković, A. (2001). On depleted uranium: Gulf war and Balkan syndrome. Croatian Medical Journal, 42, 130–134.Google Scholar
  20. Esmaeili, A., Moore, F., Keshavarzi, B., Jaafarzadeh, N., & Kermani, M. (2014). A geochemical survey of heavy metals in agricultural and background soils of the Isfahan industrial zone, Iran. Catena, 121, 88–98.Google Scholar
  21. Frechtling, D. C. (1999). The tourism satellite account: foundations, progress and issues. Tourism Management, 20(1), 163–170.Google Scholar
  22. Geological Atlas of Serbia. (2002). Ministry of Environment and Spatial Planning Republic of Serbia.Google Scholar
  23. Gulan, L., Milenkovic, B., Stajic, J. M., Vuckovic, B., Krstic, D., Zeremski, T., et al. (2013). Correlation between radioactivity levels and heavy metal content in the soils of the North Kosovska Mitrovica environment. Environmental Science and Pollution Research, 15, 1735–1742.Google Scholar
  24. Gulan, L., Milenkovic, B., Zeremski, T., Milic, G., & Vuckovic, B. (2017). Persistent organic pollutants, heavy metals and radioactivity in the urban soil of Pristina City, Kosovo and Metohija. Chemosphere, 171, 415–426.Google Scholar
  25. Haribala, Hu, B., Wang, C., Gerilemandahu, Xu, X., Zhang, S., Bao, S., & Li,Y. (2016). Assessment of radioactive materials and heavy metals in the surface soil around uranium mining area of Tongliao, China. Ecotoxicology and Environmental Safety, 130, 185–192.Google Scholar
  26. Hu, Y., Liu, X., Bai, J., Shih, C., Zeng, E. Y., & Cheng, H. (2013). Assessing heavy metal pollution and soils the surface of a region that had undergone three decades of intense industrialization and urbanization. Environmental Science and Pollution Research, 20, 6150–6159.Google Scholar
  27. Huy, N. Q., & Luyen, T. V. (2006). Study on external doses from terrestrial radioactivity in southern Vietnam. Radiation Protection Dosimetry, 118, 331–336.Google Scholar
  28. IAEA. (2004). Soil sampling for environmental contaminants. Vienna, Austria: IAEA. IAEA-TECDOC-1415.Google Scholar
  29. ICRP. (1990). Recommendation of the International Commission on Radiological Protection. Pergamon: ICRP Publication 60.Google Scholar
  30. ICRP. (2007). The recommendations of the international commission on radiological protection. Pergamon: ICRP Publication.Google Scholar
  31. Janković-Mandić, L., & Dragović, S. (2010). Assessment of terrestrial gamma exposure to the population of Belgrade (Serbia). Radiation Protection Dosimetry, 140(4), 369–377.Google Scholar
  32. Janković-Mandić, L. J., Dragović, R. M., Đorđević, M. M., Đolić, M. B., Onjia, A. E., Dragović, S. D., et al. (2014). Spatial variability of 137Cs in the soil of Belgrade region (Serbia). Hemijska Industrija, 68(4), 449–455 (in Serbian).Google Scholar
  33. Jia, G., Belli, M., Sansone, U., Rosamilia, S., & Gaudino, S. (2005). Concentration and characteristics of depleted uranium in water, air and biological samples collected in Serbia and Montenegro. Applied Radiation and Isotopes, 63, 381–399.Google Scholar
  34. Jovanović, M. (1972). New perspectives on the development of volcanism in the area of Lece and site complexes. Geological records of the Balkan Peninsula, 37-2, Belgrade (in Serbian).Google Scholar
  35. Körblein, A., & Hoffmann, W. (2006). Background radiation and cancer mortality in Bavaria: An ecological analysis. Archives of Environmental & Occupational Health, 61, 109–114.Google Scholar
  36. Kostadinov, S., Dragović, N., Zlatić, M., & Todosijević, M. (2008). Impact of erosion control works on soil erosion intensity in the upper part of the river Toplica drainage basin. Vodoprivreda, 40, 115–126 (in Serbian).Google Scholar
  37. Kuzmanoski, M. M., Todorović, M. N., Aničić Urošević, M. P., & Rajšić, S. F. (2014). Heavy metal content of soil in urban parks of Belgrade. Hemijska Industrija, 68, 643–651 (in Serbian).Google Scholar
  38. Kuzmanović-Cvetković, J. (1998). Prokuplje, the town of St. Procopius. Prokuplje: Regional Museum of Toplica (in Serbian).Google Scholar
  39. Li, X. D., Poon, C. S., & Liu, P. S. (2001). Heavy metal contamination of urban soils and street dusts inHong Kong. Applied Geochemistry, 16, 1361–1368.Google Scholar
  40. Liang, J., Feng, C., Zeng, G., Gao, X., Zhong, M., Li, X., et al. (2017). Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China. Environmental Pollution, 225, 681–690.Google Scholar
  41. Maćejka, M., Rudić, V., Kuzmanović-Cvetković, J., Mladenović, B., Bjelica, P., Jevtić, M., et al. (1999). Toplica landscape: A small encyclopedia of Toplica. Belgrade: Altera (in Serbian).Google Scholar
  42. Mihailović, A., L, Budinski-Petković, Popov, S., Ninkov, J., Vasin, J., Ralević, N. M., et al. (2015). Spatial distribution of metals in urban soil of Novi Sad, Serbia: GIS based approach. Journal of Geochemical Exploration, 150, 104–114.Google Scholar
  43. Mihajlović, J., Pechlivanoglou, P., Miladinov-Mikov, M., Živković, S., & Postma, M. J. (2013). Cancer incidence and mortality in Serbia 1999–2009. BMC Cancer, 13, 18.Google Scholar
  44. Milenković, B., Stajić, J. M., Gulan, L., Zeremski, T., & Nikezić, D. (2015). Radioactivity levels and heavy metals in urban land in central Serbia. Environmental Science and Pollution Research, 22, 16732–16741.Google Scholar
  45. Mitrović, B., Ajtić, J., Lazić, M., Andrić, V., Krstić, N., Vranješ, B., et al. (2016). Natural and anthropogenic radioactivity in the environment of Kopaonik mountain, Serbia. Environmental Pollution, 215, 273–279.Google Scholar
  46. Mitrović, B., Vitorović, G., Vitorović, D., Pantelić, G., & Adamović, I. (2009). Natural and anthropogenic radioactivity in the environment of mountain region of Serbia. Journal of Environmental Monitoring, 11, 383–388.Google Scholar
  47. Momčilović, M., Kovačević, J., & Dragović, S. (2010). Population doses from terrestrial exposure in the vicinity of abandoned uranium mines in Serbia. Radiation Measurements, 45, 225–230.Google Scholar
  48. Montagne, D., Cornu, S., Bourennane, H., Baize, D., Ratié, C., & King, D. (2007). Effect of agricultural practices on trace-element distribution in soil. Communications in Soil Science and Plant Analysis, 38, 473–491.Google Scholar
  49. Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. Geological Journal, 2, 108–118.Google Scholar
  50. Nenadović, S. S., Nenadović, M. T., Vukanac, I. S., Omerašević, M. O., & Kljajević, L. M. (2011). Radiological hazards of 137Cs in cultivated and undisturbed areas. Nuclear Technology and Radiation Protection, 26, 115–118.Google Scholar
  51. Nikolić, D., Milošević, N., Živković, Ž., Mihajlović, I., Kovačević, R., & Petrović, N. (2011). Multi-criteria analysis of soil pollution by heavy metals in the vicinity of the copper smelting plant in Bor (Serbia). Journal of the Serbian Chemical Society, 76, 625–641.Google Scholar
  52. Ninkov, J., Milić, S., Vasin, J., Kicošev, V., Sekulić, P., Zeremski, T., et al. (2012). Heavy metals in soil and sediments of the planned ecological network of central Banat, Serbia. Ratarstvo i Povrtarstvo, 49, 17–23 (in Serbian).Google Scholar
  53. Nziguheba, G., & Smolders, E. (2007). Inputs of trace elements in agricultural soils via phosphate fertilizers in European countries. Science of the Total Environment, 390, 53–57.Google Scholar
  54. Ogundele, L. T., Owoade, O. K., Hopke, P. K., & Olise, F. S. (2017). Heavy metals in industrially emitted particulate matter in Ile-Ife, Nigeria. Environmental Research, 156, 320–325.Google Scholar
  55. Ordóñez, A., Álvarez, R., DeMiguel, E., & Charlesworth, S. (2015). Spatial and temporal variations of trace element distribution in soils and street dust of an industrial town in NW Spain: 15 years of study. Science of the Total Environment, 524–525, 93–103.Google Scholar
  56. Pandey, B., Agrawal, M., & Singh, S. (2014). Assessment of air pollution around coal mining area: Emphasizing on spatial distributions, seasonal variations and heavy metals, using cluster and principal component analysis. Atmospheric Pollution Research, 5, 79–86.Google Scholar
  57. Papastefanou, C., Stoulos, S., & Manolopculou, M. (2005). The radioactivity of building materials. Journal of Radioanalytical and Nuclear Chemistry, 266, 367–372.Google Scholar
  58. Papić, M., & Vuković, M. (2015). Multivariate analysis of contamination of alluvial soils with heavy metals in Čačak, Serbia. Romanian Journal of Physics, 60, 1151–1162.Google Scholar
  59. Papić, M., Vuković, M., Bikit, I., Mrđa, D., Forkapić, S., Bikit, K., et al. (2014). Multi-criteria analysis of soil radioactivity in Čačak basin, Serbia. Romanian Journal of Physics, 59, 846–861.Google Scholar
  60. Pavlović, P., Kostić, N., Karadžić, B., & Mitrović, M. (2017). Soil classification. In The soils of Serbia. World soils book series. Dordrecht: Springer.Google Scholar
  61. Popovic, D., Todorovic, D., Frontasyeva, M., Ajtic, J., Tasic, M., & Rajsic, S. (2008). Radionuclides and heavy metals in Borovac, Southern Serbia. Environmental Science and Pollution Research, 15, 509–520.Google Scholar
  62. Qing, X., Yutong, Z., & Shenggao, L. (2015). Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China. Ecotoxicology and Environmental Safety, 120, 377–385.Google Scholar
  63. Reimann, C., & de Caritat, P. (2005). Distinguishing between natural and anthropogenic sources for elements in the environment: Regional geochemical surveys versus enrichment factors. Science of the Total Environment, 337, 91–107.Google Scholar
  64. Rodríguez, J. A., Nanos, N., Grau, J. M., Gil, L., & López-Arias, M. (2008). Multiscale analysis of heavy metal contents in Spanish agricultural topsoils. Chemosphere, 70, 1085–1096.Google Scholar
  65. Salminen, R., Batista, M. J., Bidovec, M., Demetriades, A., De Vivo, B., De Vos, W., et al. (2005). Geochemical atlas of Europe. Part 1, Background information, methodology and maps.Google Scholar
  66. Serbula, S. M., Ilic, A. A., Kalinovic, J. V., Kalinovic, T. S., & Petrovic, N. B. (2014). Assessment of air pollution originating from copper smelter in Bor (Serbia). Environmental Earth Sciences, 71, 1651–1661.Google Scholar
  67. Serbula, S. M., Milosavljević, J. S., Radojevic, A. A., Kalinovic, J. V., & Kalinovic, T. S. (2017). Extreme air pollution with contaminants originating from the mining-metallurgical processes. Science of the Total Environment, 586, 1066–1075.Google Scholar
  68. Shi, G. T., Chen, Z., Xu, S., Zhang, J., Wang, L., Bi, C., et al. (2008). Potentially toxic metal contamination of urban soils and road side dust in Shanghai, China. Environmental Pollution, 156, 251–260.Google Scholar
  69. Škrbić, B., & Đurišić-Mladenović, N. (2013). Distribution of heavy elements in urban and rural surface soils: The Novi Sad city and the surrounding settlements, Serbia. Environmental Monitoring and Assessment, 185, 457–471.Google Scholar
  70. Slijepcevic, N., Zivaljevic, V., Paunovic, I., Diklic, A., Zivkovic Perisic, S., Miljus, D., et al. (2016). Rising incidence of thyroid cancer in Serbia. Hippokratia, 20, 9–13.Google Scholar
  71. Sohlenius, G., Saetre, P., Nordén, S., Grolander, S., & Sheppard, S. (2013). Inferences about radionuclide mobility in soils based on the solid/liquid partition coefficients and soil properties. Ambio, 42, 414–421.Google Scholar
  72. Stafilov, T., Šajn, R., Pančevski, Z., Boev, B., Frontasyeva, M. V., & Strelkova, L. P. (2010). Heavy metal contamination of topsoils around a lead and zinc smelter in the Republic of Macedonia. Journal of Hazardous Materials, 175, 896–914.Google Scholar
  73. Stevanović, V. (2005). Thermo-mineral springs of Toplica region - present status and possibility of use, Master thesis, University of Belgrade, Serbia (In Serbian).Google Scholar
  74. Sutherland, R. A. (2000). Bed sediment-associated trace metals in an urban stream,Oahu, Hawaii. Environmental Geology, 39, 611–627.Google Scholar
  75. Szolnoki, Z., Farsang, A., & Puskas, I. (2013). Cumulative impact of human activities on urban garden soils: Origin and accumulation of metals. Environmental Pollution, 177, 106–115.Google Scholar
  76. Tanić, M. N., Janković-Mandić, L. J., Gajić, B. A., Daković, M. Z., Dragović, S. D., & Bačić, G. G. (2016). Natural radionuclides in soil profiles surrounding the largest coal-fired power plant in Serbia. Nuclear Technology and Radiation Protection, 31, 247–259.Google Scholar
  77. Tanić, M. N., Momčilović, M. Z., Kovačević, J. R., Dragović, S. D., & Bačić, G. G. (2014). Assessment of radiation exposure around abandoned uranium mining area of Stara planina Mt., Serbia. Nuclear Technology and Radiation Protection, 29, 58–66.Google Scholar
  78. Tasdemir, Y., & Kural, C. (2005). Atmospheric dry deposition fluxes of trace elements measured in Bursa, Turkey. Environmental Pollution, 138, 462–472.Google Scholar
  79. Taskin, H., Karavus, M., Ay, P., Topuzoglu, A., Hidiroglu, S., & Karahan, G. (2009). Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey. Journal of Environmental Radioactivity, 100, 49–53.Google Scholar
  80. Tepanosyan, G., Sahakyan, L., Belyaeva, O., Maghakyan, N., & Saghatelyan, A. (2017). Human health risk assessment and riskiest heavy metal origin identification in urban soils of Yerevan, Armenia. Chemosphere, 184, 1230–1240.Google Scholar
  81. Todorovic, D. J., Jankovic, M. M., Nikolic, J. D., & Kosutic, D. D. (2012). Radioactivity of mining sites of lead, zinc and phosphate ores in Serbia. Journal of Environmental Science and Health Part A Toxic/Hazardous Substances and Environmental Engineering, 47, 812–817.Google Scholar
  82. UNSCEAR. (1988). Report to general assembly, with scientific annexes. Sources, effects and risks of ionizing radiation. United Nations, New York.Google Scholar
  83. UNSCEAR. (2008). Report to general assembly, with scientific annexes. Exposure of the public and workers from various sources of radiation. United Nations, New York.Google Scholar
  84. USEPA. (2001). Supplemental guidance for developing soil screening levels for superfund sites. Washington, DC: U.S. Environmental Protection Agency.Google Scholar
  85. Valjarević, A., Srećković, D. B., Živković, D., & Perić, D. (2015). GIS analysis of dissipation time of landscape in the Devil’s city (Serbia). Acta Montanistica Slovaca, 20, 148–155.Google Scholar
  86. Valjarević, A., Živković, D., Valjarević, D., Stevanović, V., & Golijanin, J. (2014). GIS analysis of land cover changes on the territory of the Prokuplje municipality. The Scientific World Journal, 12, 1–8.Google Scholar
  87. Van der Stricht, E., & Kirchmann, R. (2001). Radioecology, radioactivity and ecosystems. Oupeye.Google Scholar
  88. Vranješ, B., Mitrović, B., Andrić, V., & Grdović, S. (2016). Radioactivity in environment on Stara Planina Mountain, in area of summer school for mount in animal breeading. In RAD4 conference proceedings (pp. 75–78).Google Scholar
  89. Wei, X., Gao, B., Wang, P., Zhou, H. D., & Lu, J. (2015). Pollution characteristics and health risk assessment of heavy metals in street dusts from different functional areas in Beijing, China. Ecotoxicology and Environmental Safety, 112, 186–192.Google Scholar
  90. Wei, B. G., & Yang, L. S. (2010). A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical Journal, 94, 99–107.Google Scholar
  91. Wilcke, W., Kretzschmar, S., Bundt, M., Saborío, G., & Zech, W. (1998). Aluminum and heavy metal partitioning in A horizons of soils in Costa Rican coffee plantations. Soil Science, 163, 463–471.Google Scholar
  92. Wu, S. T., & Chen, Y. S. (2016). Examining eco-environmental changes at major recreational sites in Kenting National Park in Taiwan by integrating SPOT satellite images and NDVI. Tourism Management, 57, 23–36.Google Scholar
  93. Yaylalı-Abanuz, G. (2011). Heavy metal contamination of surface soil around Gebze industrial area, Turkey. Microchemical Journal, 99, 82–92.Google Scholar
  94. Zhang, J., & Liu, C. L. (2002). Riverine composition and estuarine geochemistry of particulate metals in China—Weathering features, anthropogenic impact and chemical fluxes. Estuarine, Coastal and Shelf Science, 54, 1051–1070.Google Scholar
  95. Zhiyanski, M., Bech, J., Sokolovska, M., Lucot, E., Bech, J., & Badot, P. M. (2008). Cs-137 distribution in forest floor and surface soil layers from two mountainous regions in Bulgaria. Journal of Geochemical Exploration, 96, 256–266.Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Vladica Stevanović
    • 1
  • Ljiljana Gulan
    • 1
  • Biljana Milenković
    • 2
  • Aleksandar Valjarević
    • 1
  • Tijana Zeremski
    • 3
  • Ivana Penjišević
    • 1
  1. 1.Faculty of Natural Science and MathematicsUniversity of PrištinaKosovska MitrovicaSerbia
  2. 2.Faculty of ScienceUniversity of KragujevacKragujevacSerbia
  3. 3.Institute of Field and Vegetable CropsNovi SadSerbia

Personalised recommendations