Advertisement

Environmental Geochemistry and Health

, Volume 40, Issue 4, pp 1609–1627 | Cite as

Seasonal occurrence, source evaluation and ecological risk assessment of polycyclic aromatic hydrocarbons in industrial and agricultural effluents discharged in Wadi El Bey (Tunisia)

  • Imen Gdara
  • Ines Zrafi
  • Catia Balducci
  • Angelo Cecinato
  • Ahmed Ghrabi
Original Paper
  • 88 Downloads

Abstract

Polycyclic aromatic hydrocarbons are of great concern due to their persistence, bioaccumulation and toxic properties. The occurrence, source and ecological risk assessment of 26 polycyclic aromatic hydrocarbons in industrial and agricultural effluents affecting the Wadi El Bey watershed were investigated by means of gas chromatographic/mass spectrometric analysis (GC/MS). Total PAHs (∑ 26 PAH) ranged from 1.21 to 91.7 µg/L. The 4- and 5-ring compounds were the principal PAHs detected in most of 5 sites examined. Diagnostic concentration ratios and molecular indices were performed to identify the PAH sources. Results show that PAHs could originate from petrogenic, pyrolytic and mixed sources. According to the ecotoxicological assessment, the potential risk associated with PAHs affecting agricultural and industrial effluents ranged from moderate to high for both aquatic ecosystem and human health. The toxic equivalency factor (TEF) approach indicated that benzo[a]pyrene and benz[a]anthracene were the principal responsible for carcinogenic power of samples.

Keywords

Agricultural effluents Industrial effluents Water pollution Polycyclic aromatic hydrocarbons (PAHs) Molecular signatures Carcinogenic risk assessment 

PAH symbols

Ant

Anthracene

BaA

Benz[a]anthracene

BbF

Benzo[b]fluoranthene

BkF

Benzo[k]fluoranthene

BgP

Benzo[ghi]perylene

BeP

Benzo[e]pyrene

BaP

Benzo[a]pyrene

Chry

Chrysene

DBA

Dibenz[a,h]anthracene

Fluo

Fluoranthene

Indeno

İndeno[1,2,3-cd]pyrene

Mphe

Methylphenanthrene

Naph

Naphthalene

Pery

Perylene

Phe

Phenanthrene

Pyr

Pyrene

B(c)phe

Benzo(c)phenanthrene

Notes

Acknowledgements

This work was supported by the Ministry of Higher Education and Scientific Research of Tunisia.

Supplementary material

10653_2018_75_MOESM1_ESM.docx (22 kb)
Supplementary material 1 (DOCX 22 kb)

References

  1. Aziz, F., Syed, J. H., Malik, R. N., Katsoyiannis, A., Mahmood, A., & Li, J. (2014). Occurrence of polycyclic aromatic hydrocarbons in the Soan River, Pakistan: Insights into distribution, composition, sources and ecological risk assessment. Ecotoxicology and Environmental Safety, 109, 77–80.Google Scholar
  2. Bai, Y., Meng, W., Xu, J., Zhang, J., Guo, C., Lv, J., et al. (2014). Occurrence, distribution, environmental risk assessment and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in water and sediments of the Liaohe River Basin, China. Bulletin of Environment Contamination and Toxicology, 93, 744–747.Google Scholar
  3. Bouloubassi, I., Roussiez, V., & Lorre, A. (2012). Sources, dispersal pathways and mass budget of sedimentary polycyclic aromatic hydrocarbons (PAH) in the NW Mediterranean margin, Gulf of Lions. Marine Chemistry, 142–144, 18–28.Google Scholar
  4. Budzinski, H., Jones, I., Bellocq, J., Piérrad, C., & Garrigues, P. (1997). Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Marine Chemistry, 58, 85–97.Google Scholar
  5. Cao, Z., Liu, J., Luan, Y., Li, Y., Ma, M., Xu, J., et al. (2010). Distribution and ecosystem risk assessment of polycyclic aromatic hydrocarbon in the Luan River, China. Ecotoxicology, 19, 827–837.Google Scholar
  6. Cao, Z. H., Wang, Y. Q., Ma, Y. M., Xu, Z., Shi, J. L., Zhuang, Y. Y., et al. (2005). Occurrence and distribution of polycyclic aromatic hydrocarbons in reclaimed water and surface water of Tianjin, China. Journal of Hazardous Materials, A122, 51–59.Google Scholar
  7. Cecinato, A., Guerriero, E., Balducci, C., & Mutio, V. (2014). Use of the PAH fingerprints for identifying pollution sources. Urban Climate, 10, 630–643.Google Scholar
  8. Cerniglia, C. E. (1992). Biodegradation of polycyclic aromatic hydrocarbons. Bio-degradation, 3, 351–368.Google Scholar
  9. Chen, Y. (2008). The spatial and temporal distribution, source and bioavailability of PAHs in Qiantang River (pp. 15–16). Hangzhou: College of Environmental and Resource Science, Zhejiang University.Google Scholar
  10. Chen, C. W., & Chen, C. F. (2011). Distribution, origin, and potential toxicological significance of polycyclic aromatic hydrocarbons (PAHs) in sediments of Kaohsiung Harbor, Taiwan. Marine Pollution Bulletin, 63, 417–423.Google Scholar
  11. Chen, Y. G., Sheng, G. Y., & Bi, X. H. (2005). Emission factors for carbonaceous particles and polycyclic aromatic hydrocarbons from residential coal combustion in China. Environmental Science and Technology, 39, 1861–1867.Google Scholar
  12. Cheng, W. C., Liu, C. H., & Leung, D. Y. C. (2009). On the correlation of air and pollutant exchange for street Canyons in combined wind-buoyancy driven flow. Atmospheric Environment, 43, 3682–3690.  https://doi.org/10.1016/j.atmosenv.2009.04.054.Google Scholar
  13. Countway, R. E., Dickhut, R. M., & Canuel, E. A. (2003). Polycyclic aromatic hydrocarbon (PAH) distributions and associations with organic matter in surface waters of the York River, VA Estuary. Organic Geochemistry, 34, 209–224.Google Scholar
  14. Crommentuijn, T., Sijm, D., Bruijn, J. D., Vanleeuwen, K., & Vandeplassche, E. (2000). Maximum permissible and negligible concentrations for some organic substances and pesticides. Journal of Environmental Management, 58, 297–312.Google Scholar
  15. Dachs, J., Lohmann, R., Ockenden, W. A., Méjanelle, L., Eisenreich, S. J., & Jones, K. C. (2002). Oceanic biogeochemical controls on global dynamics of persistent organic pollutants. Environmental Science Technology, 36(20), 4229–4237.Google Scholar
  16. Deng, H., Peng, P., Huang, W., & Song, J. (2006). Distribution and loadings of polycyclic aromatic hydrocarbons in the Xijiang River in Guangdong, South China. Chemosphere, 64, 1402–1408.Google Scholar
  17. Dickhut, R. M., Canuel, E. A., Gustafson, K. E., Liu, K., Arzayus, K. M., Walker, S. E., et al. (2000). Automotive sources of carcinogenic polycyclic aromatic hydrocarbons associated with particulate matter in the Chesapeake Bay region. Environmental Science and Technology, 34, 4635–4640.Google Scholar
  18. Fernandes, M. B., Sicre, M. A., Boireau, A., & Tronszynski, J. (1997). Polyaromatic hydrocarbon (PAH) distributions in the Seine River and its estuary. Marine Pollution Bulletin, 34, 857–867.Google Scholar
  19. Fingas, M. F. (1995). A literature review of the physics and predictive modelling of oil spill evaporation. Journal of Hazardous Materials, 42, 157–175.Google Scholar
  20. Fourati, R., Tedetti, M., Guigue, C., Goutx, M., Garcia, N., Zaghden, H., et al. (2017). Sources and spatial distribution of dissolved aliphatic and polycyclic aromatic hydrocarbons in surface coastal waters of the Gulf of Gabès (Tunisia, Southern Mediterranean Sea). Progress in Oceanography.  https://doi.org/10.1016/j.pocean.2017.02.001.Google Scholar
  21. Gao, S., Sun, C., & Zhang, A. (2007). Pollution of polycyclic aromatic hydrocarbons in China. Developments in Environmental Science, 7, 237–287.Google Scholar
  22. Garrigues, P., Budzinski, H., Manitz, M. P., & Wise, W. A. (1995). Pyrolytic and petrogenic inputs in recent sediments: a definitive signature through phenanthrene and chrysene compound distribution. Polycyclic Aromatic Compounds, 7, 275–284.Google Scholar
  23. Götz, R., Bauer, O. H., Frissel, P., & Rock, K. (1998). Organic trace compounds in water of the river Elbe near Hamburg. Chemosphere, 36, 2103–2118.Google Scholar
  24. Guigue, C., Tedetti, M., Ferretto, N., Garcia, N., Méjanelle, L., & Goutx, M. (2014). Spatial and seasonal variabilities of dissolved hydrocarbons in surface waters from the Northwestern Mediterranean Sea: Results from 1 year intensive sampling. Science of the Total Environment, 466–467, 650–662.Google Scholar
  25. Guigue, C., Tedetti, M., Giorgi, S., & Goutx, M. (2011). Occurrence and distribution of hydrocarbons in the surface microlayer and subsurface water from the urban coastal marine area off Marseilles, northwestern Mediterranean Sea. Marine Pollution Bulletin, 62, 2741–2752.Google Scholar
  26. Guo, W., He, H., Yang, Z., Lin, C., Quan, X., & Wang, H. (2007). Distribution of polycyclic aromatic hydrocarbons in water, suspended particulate matter and sediment from Daliao River watershed, China. Chemosphere, 68(1), 93–104.Google Scholar
  27. Guo, W., He, M. C., Yang, Z. F., Lin, C. H., & Quan, X. C. (2011). Aliphatic and polycyclic aromatic hydrocarbons in the Xihe River, an urban river in China’s Shengyang City: Distribution and risk assessment. Journal of Hazardous Materials, 186, 1193–1199.Google Scholar
  28. Guo, H., Lee, S. C., Ho, K. F., Wang, X. M., & Zou, S. C. (2003). Particle-associated polycyclic aromatic hydrocarbons in urban air of Hong Kong. Atmospheric Environment, 37, 5307–5317.Google Scholar
  29. Haddaoui, I., Mahjoub, O., Mahjoub, B., Boujelben, A., & Di Bella, B. (2016). Occurrence and distribution of PAHs, PCBs, and chlorinated pesticides in Tunisian soil irrigated with treated wastewater. Chemosphere, 146, 195–205.Google Scholar
  30. Hamid, A., Yaqub, G., Riaz, A., & Sadiq, Z. (2016). Physico-chemical characterization and quantification of selected persistent trace organic pollutants containing wastewater samples. Asian Journal of Chemistry, 28(3), 683–6860.Google Scholar
  31. Harrison, R. M., Smith, D. J. T., & Luhana, L. (1996). Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, UK. Environmental Science and Technology, 30, 825–832.Google Scholar
  32. Hu, N. J., Huang, P., Liu, J. H., Ma, D. A., Shi, X. F., Mao, J., et al. (2014). Characterization and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in sediments in the Yellow River Estuary, China. Environmental Earth Sciences, 71, 873–883.Google Scholar
  33. Hwang, H. M., & Foster, G. D. (2016). Characterization of polycyclic aromatic hydrocarbons in urban storm water runoff flowing into the tidal Anacostia River, Washington, DC, USA. Environmental Pollution, 140, 416–426.Google Scholar
  34. IARC. (1987). Monographs on the Evaluation of Carcinogenic Risks to Humans. Lyon France, 92. http://monographs.iarc.fr/ENG/Monographs/vol92/index.php
  35. Jiacheng, L., Yuchuan, S., Xiao, S., & Daoxian, Y. (2015). Polycyclic aromatic hydrocarbon contamination in a highly vulnerable underground river system in Chongqing, Southwest China. Journal of Geochemical Exploration.  https://doi.org/10.1016/j.gexplo.2016.05.013.Google Scholar
  36. Kalf, D. F., Crommentuijn, T., & van de Plassche, E. J. (1997). Environmental quality objectives for 10 polycyclic aromatic hydrocarbons (PAHs). Ecotoxicology and Environmental Safety, 36(1), 89–97.Google Scholar
  37. Keshavarzifard, M., Zakaria, M. P., Hwai, Yusuff F. M., & Mustafa, S. (2015). Distributions and source apportionment of sediment-associated polycyclic aromatic hydrocarbons (PAHs) and hopanes in rivers and estuaries of Peninsular Malaysia. Environmental Science and Pollution Research.  https://doi.org/10.1007/s11356-015-4093-7.Google Scholar
  38. Keshavarzifard, M., Zakaria, M. P., Hwai, T. S., Mustafa, S., Vaezzadeh, V., Magam, S. M., et al. (2014). Baseline distributions and sources of polycyclic aromatic hydrocarbons (PAHs) in the surface sediments from the Prai and Malacca Rivers, Peninsular Malaysia. Marine Pollution Bulletin, 88, 366–372.Google Scholar
  39. Khalili, N. R., Scheff, P. A., & Holsen, T. M. (1995). PAH source fingerprints for coke ovens, diesel and gasoline engines, highway tunnels, and wood combustion emissions. Atmospheric Environment, 29, 533–542.Google Scholar
  40. Lee, J., Gigliotti, C. L., Offenberg, J. H, Eisenreich, J. S., & Turpin, B. J. (2004). Sources of polycyclic aromatic hydrocarbons to the Hudson River Airshed. Atmospheric Environment, 38, 5971–5981.Google Scholar
  41. Li, C. K., & Kamens, R. M. (1993). The use of polycyclic aromatic hydrocarbons as source signatures in receptor modeling. Atmospheric Environment. Part A. General Topics, 27, 523–532.Google Scholar
  42. Lima, A. L. C., Farrington, J. W., & Reddy, C. M. (2005). Combustion-derived polycyclic aromatic hydrocarbons in the environment. Environmental Forensics, 6(2), 109–131.Google Scholar
  43. Literathy, P., Haider, S., Samban, O., & Morel, G. (1989). Experimental studies on biological and chemical oxidation of dispersed oil in seawater. Water Science Technology, 24, 845–856.Google Scholar
  44. Liu, Y., Beckingham, B., Ruegner, H., Li, Z., Ma, L., Schwientek, M., et al. (2013). Comparison of sedimentary PAHs in the rivers of Ammer (Germany) and Liangtan (China): differences between early- and newly industrialized countries. Environmental Science and Technology, 47, 701–709.Google Scholar
  45. Liu, Y., Ling, C. N., Zhao, J. F., Huang, Q. H., Zhu, Z. I., & Gao, H. W. (2008). Distribution and sources of polycyclic aromatic hydrocarbons in surface sediments of rivers and an estuary in Shanghai, China. Environmental Pollution, 154, 298–305.Google Scholar
  46. Louati, A., Elleuch, B., Kallel, M., Oudot, J., Saliot, A., & Dagaut, J. (2001). Hydrocarbon contamination of coastal sediments from the Sfax area (Tunisia), Mediterranean Sea. Marine Pollution Bulletin, 42, 445–452.Google Scholar
  47. Lu, Y., Song, S., Wang, R., Liu, Z., Meng, J., Sweetman, A. J., et al. (2014). Impacts of soil and water pollution on food safety and health risks in China. Environment International, 77, 5–15.Google Scholar
  48. Luo, X. J., Chen, S. J., Mai, B. X., Sheng, G. Y., Fu, J. M., & Zeng, E. Y. (2008a). Distribution, source apportionment, and transport of PAHs in sediments from the Pearl River Delta and the northern South China Sea. Archives of Environmental Contamination and Toxicology, 55(1), 11–20.Google Scholar
  49. Luo, X., Chen, S., Yu, M., Mai, B., Sheng, G., & Fu, J. (2008b). Distribution and partition of polycyclic aromatic hydrocarbons in surface water from the Pearl River Estuary. Environmental Science, 29(9), 2385–2391.Google Scholar
  50. Macias-Zamora, J. V., Mendoza-Vega, E., & Villaescusa-Celaya, J. A. (2002). PAHs composition of surface marine sediments: A comparison to potential local sources in Todos Santos Bay, B.C., Mexico. Chemosphere, 46, 459–468.Google Scholar
  51. Malik, A., Verma, P., Singh, P., & Singh, A. K. (2011). Distribution of polycyclic aromatic hydrocarbons in water and bed sediments. Environmental Monitoring and Assessment, 172, 529–545.Google Scholar
  52. Manadori, L., Gambaro, A., Piazza, R., Ferrari, S., Stortini, A. M., & Capotaglio, G. (2006). PCBs and PAHs in a sea-surface microlayer and sub-surface water samples of the Venice Lagoon (Italy). Marine Pollution Bulletin, 52, 184–192.Google Scholar
  53. Mili, S. (2016). Instant Cities on the Wet coastal zones- Tunisia. Procedia Environmental Sciences, 34, 525–538.Google Scholar
  54. Morillo, E., Romero, A. S., Maqueda, C., Madrid, L., Ajmone-Marsan, F., Grcman, H., et al. (2008). Soil pollution by PAHs in urban soils: A comparison of three European cities. Journal of Environmental Monitoring, 9, 1001–1008.Google Scholar
  55. Moses, E. A., Etuk, B. A., & Udosen, E. D. (2015). Levels, distribution and sources of polycyclic aromatic hydrocarbons in surface water in the lower reach of Qua Iboe River Estuary, Nigeria. American Journal of Environmental Protection, 4(6), 334–343.  https://doi.org/10.11648/j.ajep.20150406.20.Google Scholar
  56. Mudhaf, H. F., Alsharifi, F. A., & Abu-Shady, A. S. I. (2009). A survey of organic contaminants in household and bottled drinking waters in Kuwait. Science of the Total Environment, 407, 1658–1668.Google Scholar
  57. Mzoughi, N., & Chouba, L. (2011). Distribution and partitioning of aliphatic hydrocarbons and polycyclic aromatic hydrocarbons between water, suspended particulate matter, and sediment in harbours of the West coastal of the Gulf of Tunis (Tunisia). Journal of Environmental Monitoring, 13, 689–698.Google Scholar
  58. Nadal, N., Schuhmacher, M., & Domingo, J. (2004). Levels of PAHs in soil and vegetation samples from Tarragona County, Spain. Environmental Pollution, 132, 1–11.Google Scholar
  59. Neff, M. (1979). Polycyclic aromatic hydrocarbons in the aquatic environment: Sources, fates and biological effects (p. 1979). London: Applied Science Publishers.Google Scholar
  60. Nekhavhambe, T. J., van Ree, T., & Fatoki, O. S. (2014). Determination and distribution of polycyclic aromatic hydrocarbons in rivers, surface runoff, and sediments in and around Thohoyandou, Limpopo Province, South Africa. Water SA, 40, 415–424.Google Scholar
  61. Obayori, O. S., & Salam, L. B. (2010). Degradation of polycyclic aromatic hydrocarbons: Role of plasmids. Scientific Research and Essay, 5(25), 4093–4106.Google Scholar
  62. Palm, A., Cousins, I., Gustafsson, O., Axelman, J., Grunder, K., Broman, D., et al. (2004). Evaluation of sequentially-coupled POP fluxes estimated from simultaneous measurements in multiple compartments of an air-water-sediment system. Environmental Pollution, 128(1–2), 85–97.Google Scholar
  63. Parinos, C., Gogou, A., Bouloubassi, I., Stavrakakis, S., Plakidi, E., & Hatzianestis, I. (2013). Sources and downward fluxes of polycyclic aromatic hydrocarbons in the open southwestern Black Sea. Organic Geochemistry, 57, 65–75.Google Scholar
  64. Qiao, M., Wang, C. X., Huang, S. B., Wang, D. H., & Wang, Z. J. (2006). Composition, sources, and potential toxicological significance of PAHs in the surface sediments of Meiliang Bay, Taihu Lake, China. Environment International, 32, 28–33.Google Scholar
  65. Qin, N., He, W., Kong, X. Z., Liu, W. X., He, Q. S., Yang, B., et al. (2013a). Ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the water from a large Chinese lake based on multiple indicators. Ecological Indicators, 24, 599–608.Google Scholar
  66. Qin, N., He, W., Kong, X. Z., Liu, W. X., He, Q. S., Yang, B., et al. (2014). Distribution, partitioning and sources of polycyclic aromatic hydrocarbons in the water–SPM–sediment system of Lake Chaohu, China. Science of the Total Environment, 496, 414–419.Google Scholar
  67. Qin, N., He, W., & Wang, Y. (2013b). Residues and health risk of polycyclic aromatic hydrocarbons in the water and aquatic products from Lake Chaohu. Acta Scientiae Circumstantiae, 33(1), 230–239.Google Scholar
  68. Saliot, A. (1989). Natural hydrocarbons in sea water. In E. K. Duursma & R. Dawson (Eds.), Marine organic chemistry (pp. 327–374). Amsterdam: Elsevier.Google Scholar
  69. Sany, B. T., Salleh, A., Sulaiman, A. H., & Tehrani, G. M. (2012). Ecological risk assessment of poly aromatic hydrocarbons in the North Port, Malaysia. World Academy of Science, Engineering and Technology, 69, 43–46.Google Scholar
  70. Savinov, V. M., Savinova, G. G., Matishova, S., Dahle, K., & Næs, K. (2003). Polycyclic aromatic hydrocarbons (PAHs) and organochlorines (OCs) in bottom sediments of the Guba Pechenga, Barents Sea, Russia. Science of the Total Environment, 306(9–56), 69.Google Scholar
  71. Sereshk, Z. H., & Bakhtiari, A. R. (2014). Distribution patterns of PAHs in different tissues of annulated sea snake (Hydrophis cyanocinctus) and short sea snake (Lapemiscurtus) from the Hara Protected Areaon the North Coast of the Persian Gulf, Iran. Ecotoxicology and Environmental Safety, 109, 117–120.Google Scholar
  72. Simpson, C. D., Mosi, A. A., Cullen, W. R., & Reimer, K. J. (1996). Composition and distribution of polycyclic aromatic hydrocarbons in surficial marine sediments from Kitimat Harbour, Canada. Science of the Total Environment, 181, 265–278.Google Scholar
  73. Soclo, H. H., Garrigues, P. H., & Ewald, M. (2000). Origin of polycyclic aromatic hydrocarbons (PAHs) in coastal marine sediments: Case studies in Cotonou (Benin) and Aquitaine (France) areas. Marine Pollution Bulletin, 40, 387–396.Google Scholar
  74. Solomon, K., Giesy, J., & Jones, P. (2000). Probabilistic risk assessment of agrochemicals in the environment. Crop Protection, 19, 649–655.Google Scholar
  75. Stout, S. A., Leather, J. M., & Corl, W. (2003). A user’s guide for determining the sources of contaminants in sediments. Technical report 1907. San Diego, CA: Spawar Systems Center, pp. 1–85.Google Scholar
  76. Sun, C., Zhang, J., Ma, Q., Chen, Y., & Ju, H. (2016). Polycyclic aromatic hydrocarbons (PAHs) in water and sediment from a river basin: Sediment–water partitioning, source identification and environmental health risk assessment. Environmental Geochemistry and Health.  https://doi.org/10.1007/s10653-016-9807.Google Scholar
  77. Tobiszewski, M., & Namiesnik, J. (2012). PAH diagnostic ratios for the identification of pollution emission sources. Environmental Pollution, 162, 110–119.Google Scholar
  78. Trabelsi, S., & Driss, M. R. (2005). Polycyclic aromatic hydrocarbons in superficial coastal sediments from Bizerte Lagoon, Tunisia. Marine Pollution Bulletin, 50, 344–359.Google Scholar
  79. Tsapakis, M., Apostolaki, M., Eisenreich, S., & Stephanou, E. G. (2006). Atmospheric deposition and marine sedimentation fluxes of polycyclic aromatic hydrocarbons in the eastern Mediterranean basin. Environmental Science and Technology, 40(16), 4922–4927.Google Scholar
  80. Tuncel, S. G., & Topal, T. (2015). Polycyclic aromatic hydrocarbons (PAHs) in sea sediments of the Turkish Mediterranean coast, composition and sources. Environmental Science and Pollution Research International, 22(6), 4213–4221.Google Scholar
  81. Ünlü, S., & Alpar, B. (2009). Evolution of potential ecological impacts of the bottom sediment from the gulf of Gemlik; Marmara Sea, Turkey. Bulletin of Environment Contamination and Toxicology, 83, 903–906.Google Scholar
  82. US EPA. (2001). Risk assessment guidance for superfund, human health evaluation manual (Part E, supplemental guidance for dermal risk assessment). EPA/540/R/99/005. US Environmental Protection Agency. USA.Google Scholar
  83. US EPA. (2010). Integrated Science Assessment (ISA) for Particulate Matter (Final Report, Dec 2010). EPA/600/R-08/139F, 2009. US Environmental Protection Agency, Washington.Google Scholar
  84. Walker, S. E., & Dickhut, R. M. (2001). Sources of PAHs to sediments of the Elizabeth River, VA. Soil and Sediment Contamination, 10, 611–632.Google Scholar
  85. Wang, J., Li, Q., Qi, R., et al. (2014). Sludge bulking impact on relevant bacterial populations in a full-scale municipal wastewater treatment plant. Process Biochemistry, 49, 2258–2265.  https://doi.org/10.1016/j.procbio.2014.08.005. [Cross Ref].Google Scholar
  86. Wang, X. C., Sun, S., Ma, H. Q., & Liu, Y. (2006). Sources and distribution of aliphatic and polyaromatic hydrocarbons in sediments of Jiaozhou Bay, Qingdao (China). Marine Pollution Bulletin, 52, 129–138.Google Scholar
  87. Watkinson, R. J., & Griffiths, D. (1987). Biodegradation and photooxidation of crude oils in a tropical marine environment. In J. Kuiper & W. J. Van Den Brink (Eds.), Marine ecosystems (pp. 67–77). Dordrecht: Ž. Nartinus Nifjoff Publisher.Google Scholar
  88. Weast, R. C. (1968). Handbook of chemistry and physics, 1968–1969 (49th ed., p. 1968). Cleveland, OH: The Chemical Rubber Company.Google Scholar
  89. WHO. (2005). Draft Guidelines for Safe Recreation-water Environments: Coastal and Fresh Waters. WHO (EOS/Draft/98.14), Genebra.Google Scholar
  90. Wu, B., Zhang, R., Chen, S. P., Timothy, F., Aimin, L., & Xuxiang, Z. (2011). Risk assessment of polycyclic aromatic hydrocarbons in aquatic ecosystems. Ecotoxicology.  https://doi.org/10.1007/s10646-011-0653-x.Google Scholar
  91. Xu, J., Yu, Y., Wang, P., Gu, W. F., Dai, S. G., & Sun, H. G. (2007). Polycyclic aromatic hydrocarbons in the surface sediments from the Yellow River China. Chemosphere, 67, 1408–1414.Google Scholar
  92. Yamada, M., Takada, H., Toyoda, K., Yoshida, A., Shibata, A., Nomura, A., et al. (2003). Study on the fate of petroleum derived polycyclic aromatic hydrocarbons (PAHs) and the effect of chemical dispersant using an enclosed ecosystem, mesocosm. Marine Pollution Bulletin, 47(1), 105–113.Google Scholar
  93. Yanker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, R. H., Goyette, D., & Sylvestre, D. (2002). PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, 33(4), 489–515.Google Scholar
  94. Yuan, D. X., Yang, D. N., Yang, L. W., & Qian, Y. R. (2001). Status of persistent organic pollutants in the sediment from several estuaries in China. Environmental Pollution, 114, 101–111. Google Scholar.Google Scholar
  95. Yuhu, L., Ping, L., Wandong, M., Song, Q., Zhou, H., Han, H., et al. (2015). Spatial and temporal distribution and risk assessment of polycyclic aromatic hydrocarbons in surface seawater from the Haikou Bay, China. Marine Pollution Bulletin, 92, 244–251.Google Scholar
  96. Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchel, R. H., Goyette, D., & Sylvestre, S. (2002). PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, 33, 489–515.Google Scholar
  97. Zaghden, H., Kallel, M., Elleuch, B., Oudot, J., & Saliot, A. (2005a). Sources and distribution of aliphatic and polyaromatic hydrocarbons in sediments of Sfax, Tunisia, Mediterranean Sea. Marine Chemistry, 105, 70–89.Google Scholar
  98. Zaghden, H., Kallel, M., Louati, A., Elleuch, B., Oudot, J., & Saliot, A. (2005b). Hydrocarbons in surface sediments from the Sfax coastal zone, (Tunisia) Mediterranean Sea. Marine Pollution Bulletin, 50, 1287–1294.Google Scholar
  99. Zakaria, M. P., Takada, H., Tsutsumi, S., Ohno, K., Yamada, J., Kouno, E., et al. (2002). Distribution of polycyclic aromatic hydrocarbons (PAHs) in rivers and estuaries in Malaysia: A widespread input of petrogenic PAHs. Environmental Science and Technology, 36, 1907–1918.Google Scholar
  100. Zhang, L., Dong, L., Ren, L., Shi, S., Zhou, L., Zhang, T., et al. (2012a). Concentration and source identification of polycyclic aromatic hydrocarbons and phthalic acid esters in the surface water of the Yangtze River Delta, China. Journal of Environmental Sciences, 24(2), 335–342.Google Scholar
  101. Zhang, Y., Guo, C. S., Xu, J., Tian, J. Z., Shi, G. L., & Feng, Y. C. (2012b). Potential source contributions and risk assessment of PAHs in sediments from Taihu Lake, China: Comparison of three receptor models. Water Research, 46, 3065–3073.Google Scholar
  102. Zhang, L., Qiu, L., Wu, X., Liu, X., You, L., Pei, D., et al. (2012c). Expression profiles of seven glutathione S-transferase (GST) genes from Venerupis philippinarum exposed to heavy metals and benzo [a] pyrene. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 155(3), 517–527.Google Scholar
  103. Zhang, G. J., Zang, X. H., Li, Z., Wang, C., & Wang, Z. (2014). Polydimethylsiloxane/metal-organic frameworks coated fiber for solid-phase microextraction of polycyclic aromatic hydrocarbons in river and lake water samples. Talanta, 129, 600–605.Google Scholar
  104. Zhiguo, C., Jingling, L., Luan, Y., Yongli, L., Muyuan, M., Xu, J., et al. (2010). Distribution and ecosystem risk assessment of polycyclic aromatic hydrocarbons in the Luan River, China. Ecotoxicology, 19, 827–837.Google Scholar
  105. Zrafi, I., Bakhrouf, A., Rouabhia, M., & Saidane-Mosbahi, D. (2013). Aliphatic and aromatic biomarkers for petroleum hydrocarbon monitoring in Khniss Tunisian-Coast, (Mediterranean Sea). Procedia Environmental Sciences, 18, 211–220.Google Scholar
  106. Zrafi-Nouira, I., Khedir-Ghenim, Z., Bahri, R., Cheraeif, I., Rouabhia, M., & Saidane-Mosbahi, D. (2009). Hydrocarbon in seawater and interstitial water of Jarzouna-Bizerte Coastal of Tunisia (Mediterranean Sea): Petroleum origin investigation around refinery rejection place. Water, Air, and Soil pollution, 202(1), 19–31.Google Scholar
  107. Zrafi‐Nouira, I., Khedir‐Ghenim, Z., Zrafi, F., Bahri, R., Cheraief. I., Rouabhia, M., Saidane Mosbahi, D. (2008). Hydrocarbon pollution in the sediment from the Jarzouna‐Bizerte coastal area of Tunisia (Mediterranean Sea). Bulletin of Environmental Contamination and Toxicology, 80: 566–572.Google Scholar
  108. Zrafi-Nouira, I., Nimer, M. D., Bahri, R., Mzoughi, N., Aissi, A., Ben Abdenebii, H., et al. (2010). Distribution and sources of polycyclic aromatic hydrocarbon around a petroleum refinery rejection area in Jarzouna-Bizerte (Coastal Tunisia). Soil and Sediment Contamination, 19(3), 292–306.Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Imen Gdara
    • 1
    • 2
  • Ines Zrafi
    • 1
  • Catia Balducci
    • 3
  • Angelo Cecinato
    • 3
  • Ahmed Ghrabi
    • 1
  1. 1.Water Researches and Technologies Center Borj-Cedria TechnoparkSolimanTunisia
  2. 2.Faculty of Science of BizerteZarzouna, BizerteTunisia
  3. 3.National Research Council of Italy, Institute of Atmospheric Pollution Research (CNR-IIA)Monterotondo, RomeItaly

Personalised recommendations