Bioaccessibility of As, Cu, Pb, and Zn in mine waste, urban soil, and road dust in the historical mining village of Kaňk, Czech Republic

  • Petr Drahota
  • Karel Raus
  • Eva Rychlíková
  • Jan Rohovec
Original Paper
  • 556 Downloads

Abstract

Historical mining activities in the village of Kaňk (in the northern part of the Kutná Hora ore district, Czech Republic) produced large amounts of mine wastes which contain significant amounts of metal(loid) contaminants such as As, Cu, Pb, and Zn. Given the proximity of residential communities to these mining residues, we investigated samples of mine waste (n = 5), urban soil (n = 6), and road dust (n = 5) with a special focus on the solid speciation of As, Cu, Pb, and Zn using a combination of methods (XRD, SEM/EDS, oxalate extractions), as well as on in vitro bioaccessibility in simulated gastric and lung fluids to assess the potential exposure risks for humans. Bulk chemical analyses indicated that As is the most important contaminant in the mine wastes (~1.15 wt%), urban soils (~2900 mg/kg) and road dusts (~440 mg/kg). Bioaccessible fractions of As were quite low (4–13%) in both the simulated gastric and lung fluids, while the bioaccessibility of metals ranged between <0.01% (Pb) and 68% (Zn). The bioaccessibilities of the metal(loid)s were dependent on the mineralogy and different adsorption properties of the metal(loid)s. Based on our results, a potential health risk, especially for children, was recognized from the ingestion of mine waste materials and highly contaminated urban soil. Based on the risk assessment, arsenic was found to be the element posing the greatest risk.

Keywords

Metal(oid)s Bioaccessibility Mineralogy Topsoil Street dust Mine waste 

Supplementary material

10653_2017_9999_MOESM1_ESM.docx (23 kb)
Supplementary material 1 (DOCX 22 kb)

References

  1. ATSDR—Agency for Toxic Substances and Disease Registry (2015) Minimal Risk Levels for Hazardous Substances (MRLs)—March 2016. Retrieved October 26, 2016 from https://www.atsdr.cdc.gov/mrls/pdfs/atsdr_mrls.pdf.
  2. Baron, D., & Palmer, C. D. (1996). Solubility of jarosite at 4–35 °C. Geochimica et Cosmochimica Acta, 60(2), 185–195.CrossRefGoogle Scholar
  3. Basta, N. T., & Juhasz, A. (2014). Using in vivo bioavailability and/or in vitro gastrointestinal bioaccessibility testing to adjust human exposure to arsenic from soil ingestion. Reviews in Mineralogy and Geochemistry, 79, 451–472.CrossRefGoogle Scholar
  4. Beak, D. G., Basta, N. T., Sheckel, K. G., & Traina, S. J. (2006). Bioaccessibility of arsenic(V) bound to ferrihydrite using a simulated gastrointestinal system. Environmental Science and Technology, 40(4), 1364–1370.CrossRefGoogle Scholar
  5. Bílek, J., Hoffman, V., & Trdlička, Z. (1965). Kutnohorské odvaly. In Sborník Oblastního muzea v Kutné Hoře, řada geologicko-báňská (Vol. 7, pp. 1–45).Google Scholar
  6. Bradham, D. K., Scheckel, K. G., Nelson, C. M., Seales, P. E., Lee, G. E., Hughes, M. F., et al. (2011). Relative bioavailability and bioaccessibility and speciation of arsenic in contaminated soils. Environmental Health Perspectives, 119(11), 1629–1634.CrossRefGoogle Scholar
  7. Cho, Y. M., Seo, S. C., Choi, S.-H., Lee, S. K., Kim, K. H., Kim, H. J., et al. (2013). Association of arsenic levels in soil and water with urinary arsenic concentration of residents in the vicinity of closed metal mines. International Journal of Hygiene and Environmental Health, 216(3), 255–262.CrossRefGoogle Scholar
  8. Davies, N. M., & Feddah, M. R. (2003). A novel method for assessing dissolution of aerosols inhaler products. International Journal of Pharmaceutics, 255(1–2), 175–187.CrossRefGoogle Scholar
  9. Davis, A., Drexler, J. W., Ruby, M. V., & Nicholson, A. (1993). Micromineralogy of mine waste in relation to lead bioavailability, Butte, Montana. Environmental Science & Technology, 27(7), 1415–1425.CrossRefGoogle Scholar
  10. Davis, A., Ruby, M. V., Bloom, M., Schoof, R., Freeman, G., & Bergstrom, P. D. (1996). Mineralogical constraints on the bioavailability of arsenic in smelter-impacted soils. Environmental Science and Technology, 30(2), 392–399.CrossRefGoogle Scholar
  11. Deshommes, E., Tardif, R., Edwards, M., Sauvé, S., & Prévost, M. (2012). Experimental determination of oral bioavailability and bioaccessibility of lead particles. Chemistry Central Journal, 6, 138.CrossRefGoogle Scholar
  12. Dold, B. (2003). Dissolution kinetics of schwertmannite and ferrihydrite in oxidized mine samples and their detection by differential X-ray diffraction (DXRD). Applied Geochemistry, 18(10), 1531–1540.CrossRefGoogle Scholar
  13. Drahota, P., Grösslová, Z., & Kindlová, H. (2014). Selectivity assessment of an arsenic sequential extraction procedure for evaluating mobility in mine wastes. Analytica Chimica Acta, 839, 34–43.CrossRefGoogle Scholar
  14. Ettler, V., Kříbek, B., Majer, V., Knésl, I., & Mihaljevič, M. (2012). Differences in the bioaccessibility of metals/metalloids in soils from mining and smelting areas (Copperbelt, Zambia). Journal of Geochemical Exploration, 113, 68–75.CrossRefGoogle Scholar
  15. Ettler, V., Vítková, M., Mihalevič, M., Šebek, O., Klementová, M., Veselovský, F., et al. (2014). Dust from Zambian smelters: mineralogy and contaminant bioaccessibility. Environmental Geochemistry and Health, 36(5), 919–933.CrossRefGoogle Scholar
  16. European Council. (1999). Directive 1999/30/EC of the Council of 22 April 1999 relating to sulphur dioxide, nitrogen dioxide and oxides of nitrogen, particulate matter and lead in ambient air. Official Journal of the European Union, L163, 41–60.Google Scholar
  17. European Council. (2005). Directive 2004/107/EC of the European Parliament and of the Council of 15 December 2004 relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air. Official Journal of the European Union, L23, 3–16.Google Scholar
  18. Frau, F., Biddau, R., & Fanfani, L. (2008). Effect of major anions on arsenate desorption from ferrihydrite-bearing natural samples. Applied Geochemistry, 22(6), 1451–1466.CrossRefGoogle Scholar
  19. Gamiño-Guitérrez, S. P., González-Pérez, I., Gonsebatt, M. E., & Monroy-Fernández, M. G. (2013). Arsenic and lead contamination in urban soils of Villa de la Paz (Mexico) affected by historical mine wastes and its effect on children’s health studied by micronucleated exfoliated cells assay. Environmental Geochemistry and Health, 35(1), 37–51.CrossRefGoogle Scholar
  20. Goh, K.-H., & Lim, T.-T. (2005). Arsenic fractionation in a fine soil fraction and influence of various anions on its mobility in the subsurface environment. Applied Geochemistry, 20(2), 229–239.CrossRefGoogle Scholar
  21. Goix, S., Uzu, G., Oliva, P., Barraza, F., Calas, A., Castet, S., et al. (2016). Metal concentration and bioaccessibility in different particle sizes of dust and aerosols to refine metal exposure assessment. Journal of Hazardous Materials, 317, 552–562.CrossRefGoogle Scholar
  22. Hindmarsh, J. T., Dekerkhove, K., Grime, G., & Powell, J. (1999). Hair arsenic as an index of toxicity. In E. R. Chappell, C. O. Abernathy, & R. L. Calderon (Eds.), Arsenic exposure and health effects (pp. 41–49). New York: Elsevier.CrossRefGoogle Scholar
  23. Horák, J., & Hejcman, M. (2016). 800 Years of mining and smelting in Kutná Hora region (the Czech Republic)—spatial and multivariate meta-analysis of contamination studies. Journal of Soils and Sediments, 16(5), 1584–1598.CrossRefGoogle Scholar
  24. Huang, M., Chen, X., Zhao, Y., Chan, C. Y., Wang, W., Wang, X., et al. (2014). Arsenic speciation in total contents and bioaccessible fractions in atmospheric particles related to human intakes. Environmental Pollution, 188, 37–44.CrossRefGoogle Scholar
  25. IARC. (2012). A review of human carcinogens: Arsenic, metals, fibres, and dusts. Lyon, France: IARC monographs on the evaluation of carcinogenic risks to humans, vol. 100, World Health Organization.Google Scholar
  26. ICDD. (2003). PDF-2 database, release 2003. Newton Square, PA: International Centre for Diffraction Data.Google Scholar
  27. ISO. (1995). ISO Standard 11466, Soil quality: Extraction of trace elements soluble aqua regia. Geneva: International Organization for Standardization.Google Scholar
  28. JECFA. (1999). Summary and conclusions. 53thd meeting, Rome.Google Scholar
  29. Juhasz, A. L., Herde, P., Herde, C., Boland, J., & Smith, E. (2014a). Validation of the predictive capabilities of the Sbrs-G in vitro assay for estimating arsenic relative bioavailability in contaminated soils. Environmental Science and Technology, 48(21), 12962–12969.CrossRefGoogle Scholar
  30. Juhasz, A. L., Smith, E., Nelson, C., Thomas, D. J., & Bradham, K. (2014b). Variability associated with as in vivo-in vitro correlations when using different bioaccessibility methodologies. Environmental Science and Technology, 48(19), 11646–11653.CrossRefGoogle Scholar
  31. Juhasz, A. L., Smith, E., Weber, J., Rees, M., Rofe, A., Kuchel, T., et al. (2007). In vitro assessment of arsenic bioaccessibility in contaminated (anthropogenic and geogenic) soils. Chemosphere, 69(1), 69–78.CrossRefGoogle Scholar
  32. Karadaş, C., & Kara, D. (2011). In vitro gastro-intestinal method for assessment of heavy metal bioavailability in contaminated soils. Environmental Science and Pollution Research, 18(4), 620–628.CrossRefGoogle Scholar
  33. Kelley, M. E., Brauning, S. E., Schoof, R. A., & Ruby, M. V. (2002). Assessing oral bioavailability of metals in soil. Columbus, OH: Battelle Press.Google Scholar
  34. Kim, E. J., Yoo, J. C., & Baek, K. (2014). Arsenic speciation and bioaccessibility in arsenic-contaminated soils: Sequential extraction and mineralogical investigation. Environmental Pollution, 186, 29–35.CrossRefGoogle Scholar
  35. Kocourková-Víšková, E., Loun, J., Sracek, O., Houzar, S., & Filip, J. (2015). Secondary arsenic minerals and arsenic mobility in a historical waste rock piles at Kaňk near Kutná Hora, Czech Republic. Mineralogy and Petrology, 109(1), 17–33.CrossRefGoogle Scholar
  36. Kořan, J. (1950). Dějiny dolování v rudním okrsku kutnohorském. Praha, CR: Vědecko-technické nakladatelství, Geotechnica, svazek 11.Google Scholar
  37. Liu, Y., Ma, J., Yan, H., Ren, Y., Wang, B., Lin, C., et al. (2016). Bioaccessibility and health risk assessment of arsenic in soil and indoor dust in rural and urban areas of Hubei province, China. Ecotoxicology and Environmental Safety, 126, 14–22.CrossRefGoogle Scholar
  38. Majzlan, J., Drahota, P., Filippi, M., Grevel, K.-D., Kahl, W.-A., Plášil, J., et al. (2012). Thermodynamic properties of scorodite and parascorodite (FeAsO4·2H2O), kaňkite (FeAsO4·3.5H2O), and FeAsO4. Hydrometallurgy, 117–118, 47–56.CrossRefGoogle Scholar
  39. Metodický pokyn MŽP. (1996). Kritéria pro znečištění zemin, podzemní vody a půdního vzduchu. Technical report, Ministerstvo životního prostředí České republiky, Praha.Google Scholar
  40. Meunier, L., Walker, S. R., Wragg, J., Parsons, M. B., Koch, I., Jamieson, H. E., et al. (2010). Effect of soil composition and mineralogy on the bioaccessibility of arsenic from tailings and soil in gold mine district of Nova Scotia. Environmental Science and Technology, 44(7), 2667–2674.CrossRefGoogle Scholar
  41. Mikutta, C., Mandaliev, P. N., Mahler, N., Kotsev, T., & Kretzschmar, R. (2014). Bioaccessibility of arsenic in mining-impacted circumneutral river floodplain soils. Environmental Science and Technology, 48(22), 13468–13477.CrossRefGoogle Scholar
  42. Moss, O. R. (1979). Simulants of lung interstitial fluid. Health Physics, 36(3), 447–448.Google Scholar
  43. Ollson, C. J., Smith, E., Scheckel, K. G., Betts, A. R., & Juhasz, A. L. (2016). Assessment of arsenic speciation and bioaccessibility in mine-impacted materials. Journal of Hazardous Materials, 313, 130–137.CrossRefGoogle Scholar
  44. Paktunc, D., Majzlan, J., Huang, A., Thibault, Y., Johnson, M. B., & White, M. A. (2015). Synthesis, characterization, and thermodynamics of arsenates forming in the Ca–Fe(III)–As(V)–NO3 system: Implications for the stability of Ca–Fe arsenates. American Mineralogist, 100(8–9), 1803–1820.CrossRefGoogle Scholar
  45. Palumbo-Roe, B., Wragg, J., & Cave, M. (2015). Linking selective chemical extraction of iron oxyhydroxides to arsenic bioaccessibility in soil. Environmental Pollution, 207, 256–265.CrossRefGoogle Scholar
  46. Pauliš, P. (1998). Minerály kutnohorského rudního revíru. Kutná Hora, CR: Kuttna Press.Google Scholar
  47. Reis, A. P., Patinha, C., Noack, Y., Robert, S., Dias, A. C., & Ferreira da Silva, E. (2014). Assessing the human health risk for aluminium, zinc, and lead in outdoor dusts collected in recreational sites used by children at an industrial area in the western part of the Bassin Minier de Provence, France. Journal of African Earth Sciences, 99(2), 724–734.CrossRefGoogle Scholar
  48. Ruby, M. V., Schoof, R., Brattin, W., Goldade, M., Post, G., Harnois, M., et al. (1999). Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environmental Science and Technology, 33(21), 3697–3705.CrossRefGoogle Scholar
  49. Rychlíková, E., Šubrt, D., Suchomelová, I., Hrubcová, I., Hrdličková, E., Moravcová, J., et al. (2015). Dílčí hodnocení zdravotního rizika obyvatel locality Kutná Hora—Kaňk. Technical report, Zdravotní ústav se sídlem v Ústí nad Labem, Ústí nad Labem.Google Scholar
  50. Sáňka, M., Čupr, P., Kadlubiec, R., Malec, J., Skybová, M. & Škarek, M. (2003). Riziková analýza a monitorování složek životního prostředí v Kutné Hoře a okolí. Technical report, Ekotoxa Opava, s.r.o., Opava.Google Scholar
  51. Smith, A. M. L., Dubbin, W. E., Wright, K., & Hudson-Edwards, K. A. (2006). Dissolution of lead- and lead-arsenic-jarosites at pH 2 and 8 and 20 °C: Insights from batch experiments. Chemical Geology, 229(4), 344–361.CrossRefGoogle Scholar
  52. Spěváčková, V., Čejchmanová, M., Černá, M., Spěváček, V., Šmíd, J., & Beneš, B. (2002). Population-based biomonitoring in the Czech Republic: Urinary arsenic. Journal of Environmental Monitoring, 4(5), 796–798.CrossRefGoogle Scholar
  53. Twining, J., McGlinn, P., Loi, E., Smith, K., & Gieré, R. (2005). Risk ranking of bioaccessible metals from fly ash dissolved in simulated lung and gut fluids. Environmental Science and Technology, 39(19), 7749–7756.CrossRefGoogle Scholar
  54. US EPA. (2004). Risk assessment guidance for superfund volume I: Human health evaluation manual. Washington, DC: Office of Emergency and Remediation Response. EPA/540/R/99/005.Google Scholar
  55. US EPA. (2011). Exposure factors handbook (EFH). Washington, DC: National Center for Environmental Assessment, US EPA. EPA/600/R-09/052F.Google Scholar
  56. Vyhláška č. 432. (2003). Podmínky pro zařazování prací do kategorií, limitní hodnoty ukazatelů biologických expozičních testů, podmínky odběru biologického materiálu pro provádění biologických expozičních testů a náležitosti hlášení prací s azbestem a biologickými činiteli. Technical report, Ministerstvo životního prostředí České republiky, Praha.Google Scholar
  57. Webster, J. G., Swedlund, P. J., & Webster, K. S. (1998). Trace metal adsorption onto an acid mine drainage iron(III) oxy hydroxy sulfate. Environmental Science and Technology, 32(10), 1361–1368.CrossRefGoogle Scholar
  58. Wenzel, W. W., Kirchbaumer, N., Prohaska, T., Stingeder, G., Lombi, E., & Adriano, D. C. (2001). Arsenic fractionation in soils using an improved sequential extraction procedure. Analytica Chimica Acta, 436(2), 309–323.CrossRefGoogle Scholar
  59. Wiseman, C. L. S. (2015). Analytical methods for assessing metal bioaccessibility in airborne particulate matter: A scoping review. Analytica Chimica Acta, 877, 9–18.CrossRefGoogle Scholar
  60. Wiseman, C. L. S., & Zereini, F. (2014). Characterizing metal(loid) solubility in airborne PM10, PM2.5 and PM1 in Frankfurt, Germany using simulated lung fluids. Atmospheric Environment, 89, 282–289.CrossRefGoogle Scholar
  61. Zheng, N., Liu, J., Wang, Q., & Liang, Z. (2010). Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China. Science of the Total Environment, 408(4), 726–733.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of ScienceCharles UniversityPrague 2Czech Republic
  2. 2.Public Health Institute in Ústí nad LabemÚsti nad LabemCzech Republic
  3. 3.Institute of GeologyAcademy of Science of the Czech RepublicPrague 6-LysolajeCzech Republic

Personalised recommendations