Environmental Geochemistry and Health

, Volume 39, Issue 6, pp 1351–1364 | Cite as

Effect of biosolid hydrochar on toxicity to earthworms and brine shrimp

  • Tatiane Medeiros MeloEmail author
  • Michael Bottlinger
  • Elke Schulz
  • Wilson Mozena Leandro
  • Adelmo Menezes de Aguiar Filho
  • Yong Sik Ok
  • Jörg Rinklebe
Original Paper


The hydrothermal carbonization of sewage sludge has been studied as an alternative technique for the conversion of sewage sludge into value-added products, such as soil amendments. We tested the toxicity of biosolid hydrochar (Sewchar) to earthworms. Additionally, the toxicity of Sewchar process water filtrate with and without pH adjustment was assessed, using brine shrimps as a model organism. For a Sewchar application of 40 Mg ha−1, the earthworms significantly preferred the side of the vessel with the reference soil (control) over side of the vessel with the Sewchar treatments. There was no acute toxicity of Sewchar to earthworms within the studied concentration range (up to 80 Mg ha−1). Regarding the Sewchar process water filtrate, the median lethal concentration (LC50) to the shrimps was 8.1% for the treatments in which the pH was not adjusted and 54.8% for the treatments in which the pH was adjusted to 8.5. The lethality to the shrimps significantly increased as the amount of Sewchar process water filtrate increased. In the future, specific toxic substances in Sewchar and its process water filtrate, as well as their interactions with soil properties and their impacts on organisms, should be elucidated. Additionally, it should be identified whether the amount of the toxic compounds satisfies the corresponding legal requirements for the safe application of Sewchar and its process water filtrate.


Sewage sludge Hydrothermal carbonization Ecotoxicology 



The authors cordially thank the Goiás State Water Utility “Saneamento de Goiás S. A.” (SANEAGO) for providing the biosolid sample and the Federal Institution of Education, Science and Technology of Goiás (IFG) for granting the reactor for Sewchar production. The authors are also grateful to Robert Strahl for his valuable help in the production of Sewchar; to Lorena C. T. Oliveria, Jan Becker and Anna Lempges for their valuable assistance in the earthworm lethality test; and to Carolina Brom Oliveira and Ana Maria Bezerra for performing the laboratory analysis. We gratefully acknowledge the funding from Friedrich–Ebert–Stiftung (Ph.D. scholarship) and the Seventh Framework Programme (FP7/2007-2013) (FP7/2007 – 2011) under grant agreement n. PIRSES-GA-2012-317714.


  1. Ahmad, M., Lee, S. S., Dou, X., Mohan, D., Sung, J.-K., Yang, J. E., et al. (2012). Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresource Technology, 118, 536–544.CrossRefGoogle Scholar
  2. Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., et al. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99, 19–33.CrossRefGoogle Scholar
  3. Aickin, M., & Gensler, H. (1996). Adjusting for multiple testing when reporting research results: the Bonferroni vs Holm methods. American Journal of Public Health, 86, 726–728.CrossRefGoogle Scholar
  4. Apedaile, E. (2001). A perspective on biosolids management. The Canadian Journal of Infectious Diseases and Medical Microbiology, 12(4), 202–204.CrossRefGoogle Scholar
  5. Artuso, N., Kennedy, T. F., Connery, J., Grant, J., & Schmidt, O. (2011). Effects of biosolids at varying rates on earthworms (Eisenia fetida) and springtails (Folsomia candida). Applied and Environmental Soil Science, 2011, 1–10.CrossRefGoogle Scholar
  6. Bargmann, I., Rillig, M. C., Buss, W., Kruse, A., & Kuecke, M. (2013). Hydrochar and biochar effects on germination of spring barley. Journal of Agronomy and Crop Science, 199(5), 360–373.CrossRefGoogle Scholar
  7. Bargmann, I., Rillig, M. C., Kruse, A., Greef, J.-M., & Kuche, M. (2014). Effects of hydrochar application on the dynamics of soluble nitrogen in soils and on plant availability. Journal of Plant Nutrition and Soil Science, 177(1), 48–58.CrossRefGoogle Scholar
  8. Barley, K. P. (1961). The abundance of earthworms in agricultural land and their possible significance in agriculture. Advances in Agronomy, 13, 249–268.CrossRefGoogle Scholar
  9. Bridle, T. R., Hammerton, I., & Hertle, C. K. (1990). Control of heavy-metals and organochlorines using the oil from sludge process. Water Science and Technology, 22(12), 249–258.Google Scholar
  10. Bridle, T. R., & Pritchard, D. (2004). Energy and nutrient recovery from sewage sludge via pyrolysis. Water Science and Technology, 50(9), 169–175.Google Scholar
  11. Brown, D. J. A., & Sadler, K. (1989). Fish survival in acid waters. In R. Morris et al. (Eds.), Acid toxicity and aquatic animals. Society for experimental biology seminar series (Vol. 34, pp. 34–44). Cambridge: Cambridge University Press.Google Scholar
  12. Busch, D., Kammann, C., Grünhage, L., & Müller, C. (2012). Simple biotoxicity tests for evaluation of carbonaceous soil additives: Establishment and reproducibility of four test procedures. Journal of Environment Quality, 41(4), 1023–1032.CrossRefGoogle Scholar
  13. Busch, D., Stark, A., Kammann, C. I., & Glaser, B. (2013). Genotoxic and phytotoxic risk assessment of fresh and treated hydrochar from HTC compared to biochar from pyrolysis. Ecotoxicology and Environmental Safety, 97, 59–66.CrossRefGoogle Scholar
  14. Butt, K. R. (1999). Effects of thermally dried sewage granules on earthworms and vegetation during pot and field trials. Bioresource Technology, 67, 149–154.CrossRefGoogle Scholar
  15. Chakrabarti, S., Dicke, C., Kalderis, D., & Kern, J. (2015). Rice husks and their hydrochars cause unexpected stress response in the nematode Caenorhabditis elegans: reduced transcription of stress-related genes. Environmental Science and Pollution Research International, 22(16), 12092–12103.CrossRefGoogle Scholar
  16. Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A., & Joseph, S. (2008). Using poultry litter biochars as soil amendments. Australian Journal of Soil Research, 46(5), 437–444.CrossRefGoogle Scholar
  17. Cheng, C. H., Lehmann, J., Thies, J. E., Burton, D., & Engelhard, M. H. (2006). Oxidation of black carbon by biotic and abiotic processes. Organic Geochemistry, 37(11), 1477–1488.CrossRefGoogle Scholar
  18. CONAMA. (2006). RESOLUÇÃO N. 375. Brazil. DOU n. 167, 30/08/2006, 141–146.Google Scholar
  19. CONAMA, Brazilian National Environment Council. (2005). RESOLUÇÃO N. 357. Brazil. DOU n. 053, 18/03/2005, 58–63.Google Scholar
  20. Crone, T. (2004). The basic sediment transport equations made ridiculously simple. OCEAN/ESS 410 Marine Geology and Geophysics.Google Scholar
  21. Danso-Boateng, E., Shama, G., Wheatley, A. D., Martin, S. J., & Holdich, R. G. (2015). Hydrothermal carbonisation of sewage sludge: Effect of process conditions on product characteristics and methane production. Bioresource Technology, 177, 318–327.CrossRefGoogle Scholar
  22. Domene, X., Enders, A., Hanley, K., & Lehmann, J. (2015). Ecotoxicological characterization of biochars: Role of feedstock and pyrolysis temperature. Science of the Total Environment, 512, 552–561.CrossRefGoogle Scholar
  23. Dores-Silva, P. R., Landgraf, M. D., & Rezende, M. O. O. (2013). Use of bioassays to evaluate the effect of acute toxicity, reproduction and increase of biomass of earthworms Eisenia Fetida in acclimated domestic sewage sludge. Ecotoxicology and Environmental Contamination, 8(1), 143–146.Google Scholar
  24. dos Santos, E. R. (2009). Caracterizacao quimica, microbiologica e toxicidade do lodo de esgoto da estação mangueira. Master Thesis, Recife/Pernambuco, Brazil. Universidade Católica de Pernambuco.Google Scholar
  25. Edwards, C. A., & Bohlen, P. J. (1996). Biology and ecology of earthworms. London: Chapman & Hall.Google Scholar
  26. Embrapa—Empresa Brasileira de Pesquisa Agropecuária. (2009). Manual de análises químicas de solos, plantas e fertilizantes, Brazil.Google Scholar
  27. Environment Canada. (2004). Biological test methods: Tests for toxicity of contaminated soil to earthworms (Eisenia andrei, Eisenia fetida, or Lumbricus terrestris).Google Scholar
  28. Escala, M., Zumbühl, T., Koller, C., Junge, R., & Krebs, R. (2013). Hydrothermal carbonization as an energy-efficient alternative to established drying technologies for sewage sludge: A feasibility study on a laboratory scale. Energy & Fuels, 27(1), 454–460.CrossRefGoogle Scholar
  29. Fang, J., Gao, B., Chen, J., & Zimmerman, A. R. (2015). Hydrochar derived from plant biomass under various conditions: Characterization and potential applications and impacts. Chemical Engineering Journal, 267, 253–259.CrossRefGoogle Scholar
  30. Fink, J. C. (2005). Chapter 4. Establishing a relationship between sediment concentrations and turbidity. The effects of Urbanization on Baird Creek, Green Bay, WI (Dissertation) (pp. 76–90).Google Scholar
  31. Flora, J. F. R., Lu, X., Li, L., Flora, J. R. V., & Berge, N. D. (2013). The effects of alkalinity and acidity of process water and hydrochar washing on the adsorption of atrazine on hydrothermally produced hydrochar. Chemosphere, 93(9), 1989–1996.CrossRefGoogle Scholar
  32. Fühner, C., van Afferden, M., & Müller, R. A. (2011). The sewchar concept strategies for the sustainable treatment of human waste and sewage sludge. Abstract, IBI – Third International Biochar Conference 2010, 12-15, Sept 2010, Rio de Janeiro.Google Scholar
  33. Funke, A., & Ziegler, F. (2010). Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels, Bioproducts and Biorefining, 4(2), 160–177.CrossRefGoogle Scholar
  34. Gajić, A., & Koch, H.-J. (2012). Sugar beet (L.) growth reduction caused by hydrochar is related to nitrogen supply. Journal of Environment Quality, 41(4), 1067–1075.CrossRefGoogle Scholar
  35. Gajić, A., Ramke, H.-G., Hendricks, A., & Koch, H.-J. (2012). Microcosm study on the decomposability of hydrochars in a Cambisol. Biomass and Bioenergy, 47, 250–259.CrossRefGoogle Scholar
  36. Gao, Y., Wang, X., Wang, J., Li, X., Cheng, J., Yang, H., et al. (2013). Effect of residence time on chemical and structural properties of hydrochar obtained by hydrothermal carbonization of water hyacinth. Energy, 58, 375–383.CrossRefGoogle Scholar
  37. Gaskin, J. W., Speier, R. A., Harris, K., Das, K. C., Lee, R. D., Moris, A. L., et al. (2010). Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agronomy Journal, 102(2), 623–633.CrossRefGoogle Scholar
  38. George, C., Wagner, M., Kücke, M., & Rillig, M. C. (2012). Divergent consequences of hydrochar in the plant–soil system: Arbuscular mycorrhiza, nodulation, plant growth and soil aggregation effects. Applied Soil Ecology, 59, 68–72.CrossRefGoogle Scholar
  39. Glaser, B., Lehmann, J., & Zech, W. (2002). Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—A review. Biology and Fertility of Soils, 35(4), 219–230.CrossRefGoogle Scholar
  40. Glasner, C., Deerberg, G., & Lyko, H. (2011). Hydrothermale Carbonisierung: Ein Überblick. Chemie Ingenieur Technik, 83(11), 1932–1943.CrossRefGoogle Scholar
  41. Gonzalez, V., Diez-Ortiz, M., Simon, M., & van Gestel, C. A. M. (2013). Assessing the impact of organic and inorganic amendments on the toxicity and bioavailability of a metal-contaminated soil to the earthworm Eisenia andrei. Environmental Science and Pollution Research, 20(11), 8162–8171.CrossRefGoogle Scholar
  42. Hoekman, S. K., Broch, A., & Robbins, C. (2011). Hydrothermal carbonization (HTC) of lignocellulosic biomass. Energy & Fuels, 25(4), 1802–1810.CrossRefGoogle Scholar
  43. IBAMA. (1990). Manual de testes para avaliação de ecotoxicidade de agentes químicos, Brazil.Google Scholar
  44. ISO—International Organization for Standardization. (2008). ISO 17512-1 Soil qualityAvoidance test for determining the quality of soils and effects of chemicals on behaviourPart 1: Test with earthworms (Eisenia fetida and Eisenia andrei).Google Scholar
  45. Jandl, G., Eckhardt, K.-U., Bragmann, I., Kücke, M., Greef, J. M., Knicker, H., et al. (2013). Hydrothermal carbonization of biomass residues: Mass spectrometric characterization for ecological effects in the soil plant system. Journal of Environment Quality, 42(1), 199–207.CrossRefGoogle Scholar
  46. Johnson, R. A., & Wichern, D. W. (2007). Applied multivariate statistical analysis (6th ed., p. 767). New Jersey: Pearson Education, Inc.Google Scholar
  47. Kalderis, D., Kotti, M. S., Méndez, A., & Gascó, G. (2014). Characterization of hydrochars produced by hydrothermal carbonization of rice husk. Solid Earth, 5, 477–483.CrossRefGoogle Scholar
  48. Kambo, H. S., & Dutta, A. (2015). A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renewable and Sustainable Energy Reviews, 45, 359–378.CrossRefGoogle Scholar
  49. Kang, S., Ye, J., Zhang, Y., & Chang, J. (2013). Preparation of biomass hydrochar derived sulfonated catalysts and their catalytic effects for 5-hydroxymethylfurfural production. RSC Advances, 3, 7360–7366.CrossRefGoogle Scholar
  50. Kim, J. H., Ok, Y. S., Choi, G.-H., & Park, B.-J. (2015). Residual perfluorochemicals in the biochar from sewage sludge. Chemosphere, 134, 435–437.CrossRefGoogle Scholar
  51. Levi Strauss & CO. (2007). Global effluent guidelines. In Environment, health, and safety handbook.Google Scholar
  52. Li, D., Hockaday, W. C., Masiello, C. A., & Alvarez, P. J. J. (2011). Earthworm avoidance of biochar can be mitigated by wetting. Soil Biology & Biochemistry, 43, 1732–1737.CrossRefGoogle Scholar
  53. Libra, J. A., Ro, K. S., Kammann, C., Funke, A., Berge, N. D., Neubauer, Y., et al. (2011). Hydrothermal carbonization of biomass residuals: A comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels, 2(1), 71–106.CrossRefGoogle Scholar
  54. Lynam, J., Reza, M. T., Yan, W., & Coronella, C. J. (2015). Hydrothermal carbonization of various lignocellulosic biomass. Biomass Conversion and Biorefinery., 5(2), 173–181.CrossRefGoogle Scholar
  55. Matos-Moreira, M., Niemeyer, J. C., Sousa, J. P., Cunha, M., & Carral, E. (2011). Behavioral avoidance tests to evaluate effects of cattle slurry and dairy sludge application to soil. Revista Brasileira de Ciência doSolo, 35, 1471–1477.CrossRefGoogle Scholar
  56. Meyer, B. N., Ferrigni, N. R., Putnam, J. E., Jacobsen, L. B., Nichols, D. E., & McLaughlin, J. L. (1982). Brine Shrimp: A convenient general bioassay for active plant constituents. Planta Medica, 45(5), 31–34.CrossRefGoogle Scholar
  57. Moreira, R., Sousa, J. P., & Canhoto, C. (2008). Biological testing of a digested sewage sludge and derived composts. Bioresource Technology, 99(17), 8382–8389.CrossRefGoogle Scholar
  58. Morris, R., Taylor, E. W., Brown, D. J. A., & Brown, J. A. (1989). Acid toxicity and aquatic animals Society for experimental biology seminar series (Vol. 34, p. 282). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  59. Nam, T.-H., Kim, L., Jeon, H.-J., Kim, K., Ok, Y. S., Choi, S.-D., et al. (2016). Biomarkers indicate mixture toxicities of fluorine and phenanthrene with endosulfan toward earthworm (Eisenia fetida). Environmental Geochemistry and Health, 39(2), 307–317.CrossRefGoogle Scholar
  60. Nunes, B. S., Carvalho, F. D., Guilhermino, L. M., & Van Stappen, G. (2006). Use of the genus Artemia in ecotoxicity testing. Environmental Pollution, 144, 453–462.CrossRefGoogle Scholar
  61. OECD. (1984). Earthworm, acute toxicity Tests. OECD Guideline for testing of chemicals, 207(April), 2–8.Google Scholar
  62. OECD. (2004). OECD 222 Guideline for testing of chemicals. Earthworm Reproduction Test.Google Scholar
  63. Ok, Y. S., Uchimiya, S. M., Chang, S. X., & Bolan, N. (2015). Biochar: Production, characterization, and applications. CRC Press.Google Scholar
  64. Paneque, M., María, J., Rosa, D., Aragón, C., Kern, J., & Conte, P. (2015). Sewage sludge hydrochars: properties and agronomic impact as related to different production conditions. Geophysical Research Abstracts—EGU General Assembly, 2015(17), 3–4.Google Scholar
  65. Pino, M. R., Val, J., Mainar, A. M., Zuriaga, E., Español, C., & Langa, E. (2015). Acute toxicological effects on the earthworm Eisenia fetida of 18 common pharmaceuticals in artificial soil. Science of the Total Environment, 518, 225–237.CrossRefGoogle Scholar
  66. Reibe, K., Götz, K. P., Roß, C. L., Döring, T. F., Ellmer, F., & Ruess, L. (2015). Impact of quality and quantity of biochar and hydrochar on soil Collembola and growth of spring wheat. Soil Biology & Biochemistry, 83, 84–87.CrossRefGoogle Scholar
  67. Reza, M. T., Andert, J., Wirth, B., Busch, D., Pielert, J., Lynam, J. G., et al. (2014). Hydrothermal carbonization of biomass for energy and crop production. Applied Bioenergy, 1(1), 11–29.CrossRefGoogle Scholar
  68. Rillig, C. M., Wagner, M., Salem, M., Antunes, P. M., George, C., Ramke, H.-G., et al. (2010). Material derived from hydrothermal carbonization: Effects on plant arbuscular mycorrhiza. Applied Soil Ecology, 45(3), 238–242.CrossRefGoogle Scholar
  69. Rondon, M. A. M., Lehman, J., Ramirez, J., & Hurtado, M. (2007). Biological nitrogen fixation by common beans (Phaselous vulgarism L.) increases with bio-char additions. Biology and Fertility in Soils, 43, 699–708.CrossRefGoogle Scholar
  70. Roy, M. M., Dutta, A., Corscadden, K., Havard, P., & Dickie, L. (2011). Review of biosolids management options and co-incineration of a biosolid-derived fuel. Waste Management, 31(11), 2228–2235.CrossRefGoogle Scholar
  71. Sack, S. (2014). Nutrient mobilization in Brazilian sugarcane bagasse ashes by hydrothermal carbonization. Master Thesis, Hochschule Trier, Umwelt-Campus Birkenfeld and Instituto Federal de Educação Tecnológica de Goiás.Google Scholar
  72. Saetea, P., & Tippayawong, N. (2003). Recovery of value-added products from hydrothermal carbonization of sewage sludge. ISRN Chemical Engineering, 2013, 1–6.CrossRefGoogle Scholar
  73. Salem, M., Kohler, J., Wurst, S., & Rillig, M. C. (2013). Earthworms can modify effects of hydrochar on growth of Plantago lanceolata and performance of arbuscular mycorrhizal fungi. Pedobiologia, 56(4–6), 219–224.CrossRefGoogle Scholar
  74. Schimmelpfennig, S., Mueller, C., Gruenhage, L., Koch, C., & Kammann, C. (2014). Biochar, hydrochar and uncarbonized feedstock application to permanent grassland—Effects on greenhouse gas emissions and plant growth. Agriculture, Ecosystems & Environment, 191, 39–52.CrossRefGoogle Scholar
  75. Sevilla, M., Maciá-Agulló, J. A., & Fuertes, A. B. (2011). Hydrothermal carbonization of biomass as a route for the sequestration of CO2: Chemical and structural properties of the carbonized products. Biomass and Bioenergy, 35(7), 3152–3159.CrossRefGoogle Scholar
  76. Shanableh, A. (2000). Production of useful organic matter from sludge using hydrothermal treatment. Water Research, 34(3), 945–951.CrossRefGoogle Scholar
  77. Sun, X. H., Sumida, H., & Yoshikawa, K. (2013). Effects of hydrothermal process on the nutrient release of sewage sludge. International Journal of Waste Resources, 3, 124.Google Scholar
  78. Süterlin, H., Trittler, R., Bojanowski, S., Stadbauer, E., & Kümmerer, K. (2007). Fate of benzalkonium chloride in a sewage sludge low temperature conversion process investigated by LC-LC/ESI-MS/MS. CLEAN—Soil, Air, Water, 35(1), 81–87.CrossRefGoogle Scholar
  79. Teotia, S. P., Duley, F. L., & McCalla, T. M. (1950). Effect of stubble mulching on number and activity of earthworms (165th ed., p. 20). Lincoln, Neb: University of Nebraska, College of Agriculture, Agricultural Experiment Station.Google Scholar
  80. Titirici, M.-M., & Antonietti, M. (2009). Chemistry and materials options of suitable carbon materials made by hydrothermal carbonization. Chemical Society Reviews, 39(1), 103–116.CrossRefGoogle Scholar
  81. Ukiwe, L. N., & Oguzie, E. E. (2008). Effect of pH and acid on heavy metal solubilization of domestic sewage sludge. Terrestrial and aquatic environmental toxicology. Global Science Books, 2(1), 54–58.Google Scholar
  82. US EPA, United States Environmental Protection Agency. (2002). Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. Fifth Edition October 2002. U. S. Environmental Protection Agency Office of Water.Google Scholar
  83. US EPA, United States Environmental Protection Agency (2013). Aquatic life ambient water quality criteria for ammoniafreshwater. EPA-822-R-13-001.Google Scholar
  84. US EPA, United States Environmental Protection Agency Method 3051A. (2007). Microwave assisted acid digestion of sediments, sludges, soils, and oils. In: Test methods for evaluating solid waste: physical/chemical methods. U.S. Environmental protection agency, Office of solid waste and emergency response, Washington, Dc. Revision 1, Feb 2007.Google Scholar
  85. Van Zwieten, L., Kimber, S., Morris, S., Chan, K. Y., Downie, A., Rust, J., et al. (2010). Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil, 327, 235–246.CrossRefGoogle Scholar
  86. Verstegen, J. (2015). Verwertung von Klärschlämmen des Sanitärsektors durch die Hydrothermale Carbonisierung im Sinne eines. Master Thesis. Hochschule Trier, Umwelt-Campus Birkenfeld, Germany.Google Scholar
  87. Wagner, A., & Kaupenjohann, M. (2014). Suitability of biochars (pyro- and hydrochars) for metal immobilization on former sewage field soils. European Journal of Soil Science, 65, 139–148.CrossRefGoogle Scholar
  88. Wiedner, K., Naisse, C., Rumpel, C., Pozzi, A., Wieczorek, P., & Glaser, B. (2013). Chemical modification of biomass residues during hydrothermal carbonization—What makes the difference, temperature or feedstock? Organic Geochemistry, 54, 91–100.CrossRefGoogle Scholar
  89. Wijayawardena, A., Mallavarapu, M., & Naidu, R. (2016). Bioaccumulation and toxicity of lead, influenced by edaphic factors: using earthworms to study the effect of Pb on ecological health. Journal of Soil and Sediments, 17(4), 1–9.Google Scholar
  90. Xue, X., Chen, D., Song, X., & Dai, X. (2015). Hydrothermal and pyrolysis treatment for sewage sludge: choice from product and from energy benefit. Energy Procedia, 66, 301–304.CrossRefGoogle Scholar
  91. Yu, Y., Lou, X., & Wu, H. (2008). Some recent advances in hydrolysis o biomass in hot-compressed water and its comparisons with other hydrolysis methods. Energy & Fuels, 22, 46–60.CrossRefGoogle Scholar
  92. Žaltauskaitė, J., & Sodienė, I. (2010). Effects of total cadmium and lead concentrations in soil on the growth, reproduction and survival of earthworm Eisenia fetida. Ekologija, 56, 10–16.CrossRefGoogle Scholar
  93. Zhang, J., Lin, Q., & Zhao, X. (2014). The hydrochar characters of municipal sewage sludge under different hydrothermal temperatures and durations. Journal of Integrative Agriculture, 13(3), 471–482.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Tatiane Medeiros Melo
    • 1
    Email author
  • Michael Bottlinger
    • 2
  • Elke Schulz
    • 3
  • Wilson Mozena Leandro
    • 4
  • Adelmo Menezes de Aguiar Filho
    • 5
  • Yong Sik Ok
    • 6
    • 7
  • Jörg Rinklebe
    • 6
    • 8
  1. 1.Institute of Foundation Engineering, Water- and Waste-Management, School of Architecture and Civil Engineering, Soil and Groundwater ManagementUniversity of WuppertalWuppertalGermany
  2. 2.Department of Hydrothermal CarbonizationTrier University of Applied Sciences, Environmental Campus BirkenfeldBirkenfeldGermany
  3. 3.Department of Soil EcologyHelmholtz Centre for Environmental Research (UFZ)HalleGermany
  4. 4.Department of AgronomyFederal University of Goiás (UFG)GoiâniaBrazil
  5. 5.Department of Chemical EngineeringFederal University of Bahia (UFBA)SalvadorBrazil
  6. 6.Soil and Groundwater ManagementUniversity of WuppertalWuppertalGermany
  7. 7.Korea Biochar Research Center, School of Natural Resources and Environmental ScienceKangwon National UniversityChuncheonSouth Korea
  8. 8.Department of Environment and EnergySejong UniversitySeoulSouth Korea

Personalised recommendations