Environmental Geochemistry and Health

, Volume 39, Issue 6, pp 1501–1511 | Cite as

Medical geology of endemic goiter in Kalutara, Sri Lanka; distribution and possible causes

  • G. W. A. R. Fernando
  • P. L. C. L. Liyanage
  • Anushka Upamali Rajapaksha
  • Meththika Vithanage
Original Paper
  • 54 Downloads

Abstract

This study assesses the distribution of goiter in the Kalutara District, Sri Lanka in order to find causative factors for the occurrence of goiter even after the salt iodization. A questionnaire survey was conducted at the household level and at the same time iodine and selenium levels of the water sources were analyzed. Questionnaire survey results indicated the highest numbers of goiter patients in the northern part where the lowest were found in the southern sector which may be due to the presence of acid sulfate soils. Females were more susceptible and it even showed a transmittance between generations. Average iodine concentrations in subsurface water of goiter endemic regions are 28.25 ± 15.47 μg/L whereas non-goiter regions show identical values at 24.74 ± 18.29 μg/L. Surface water exhibited relatively high values at 30.87 ± 16.13 μg/L. Endemic goiter was reported in some isolated patches where iodine and selenium concentrations low, latter was <10 μg/L. The formation of acid sulfate soils in the marshy lands in Kalutara district may lead to transformation of biological available iodine oxidation into volatile iodine by humic substances, at the same time organic matter rich peaty soil may have strong held of iodine and selenium which again induced by low pH and high temperature were suggested as the instrumental factors in the endemic goiter in Kalutara district. Hence, geochemical features such as soil pH, organic matter and thick lateritic cap in the Kalutara goiter endemic area play a role in controlling the available selenium and iodine for food chain through plant uptake and in water.

Keywords

Iodide Acid sulfate soils Laterite Selenium Salt iodization Soil organic matter 

References

  1. Ahad, F., & Ganie, S. A. (2010). Iodine, iodine metabolism and iodine deficiency disorders revisited. Indian Journal of Endocrinology and Metabolism, 14(1), 13–17.Google Scholar
  2. Balasuriya, S., Perera, P. A. J., Herath, K. B., Katugampola, S. L., & Fernando, M. A. (1992). Role of iodine content of drinking water in the aetiology of goitre in Sri Lanka. Ceylon Journal of Medical Science, 35, 45–51.Google Scholar
  3. Brauer, V. F. H., Schweizer, U., Kohrle, J., & Paschke, R. (2006). Selenium and goiter prevalence in borderline iodine sufficiency. European Journal of Endocrinology, 155, 807–812.CrossRefGoogle Scholar
  4. Chandrasinghe, P., Fernando, R., Nandasena, S., & Pathmeswaran, A. (2015). Epidemiology of goiters in Sri Lanka with geographic information system mapping: Population-based cross-sectional study. World Journal of Endocrine Surger, 7(3), 55–59.CrossRefGoogle Scholar
  5. Dissanayake, C. B., & Chandrajith, R. L. R. (1993). Geochemistry of endemic goitre, Sri Lanka. Applied Geochemistry, 8, 211–213. doi:10.1016/S0883-2927(09)80039-5.CrossRefGoogle Scholar
  6. Dissanayake, C. B., & Chandrajith, R. (1999). Medical geochemistry of tropical environments. Earth-Science Reviews, 47(3–4), 219–258. doi:10.1016/S0012-8252(99)00033-1.CrossRefGoogle Scholar
  7. Dissanayake, C. B., Chandrajith, R., & Tobschall, H. J. (1999). The iodine cycle in the tropical environment—implications on iodine deficiency disorders. International Journal of Environmental Studies, 56(3), 357–372. doi:10.1080/00207239908711210.CrossRefGoogle Scholar
  8. Fernando, M. A., Balasuriya, S., Herath, K. B., & Katugampola, S. (1989). Endemic goitre in Sri Lanka. Asia-Pacific Journal of Public Health, 3(1), 11–18.CrossRefGoogle Scholar
  9. Fernando, R., Pathmeswaran, A., & Pinto, M. D. P. (2015). Epidemiology of goitre in Sri Lanka in the post-iodization era. Ceylon Medical Journal, 60(2), 41–44.CrossRefGoogle Scholar
  10. Fernando, R., Pinto, M. D. P., & Pathmeswaran, A. (2012). Goitrogenic food and prevalence of goitre in Sri Lanka. International Journal of Internal Medicine, 1, 17–20.Google Scholar
  11. Fordyce, F. M. (2013). Selenium Deficiency and Toxicity in the Environment. In O. Selinus (Ed.), Essentials of medical geology: Revised edition (pp. 375–416). Netherlands: Springer.CrossRefGoogle Scholar
  12. Fordyce, F. M., Johnson, C. C., Navaratna, U. R. B., Appleton, J. D., & Dissanayake, C. B. (2000). Selenium and iodine in soil, rice and drinking water in relation to endemic goitre in Sri Lanka. Science of the Total Environment, 263(1–3), 127–141. doi:10.1016/S0048-9697(00)00684-7.CrossRefGoogle Scholar
  13. Fuge, R. (1986). Soils and iodine deficiency. In O. Sellinus (Ed.), Essentials of medical geology. Berlin: Springer.Google Scholar
  14. Fuge, R. (1996). Geochemistry of iodine in relation to iodine deficiency diseases. In Appleton,J. D. , Fuge, R., McCall, & G.J.H (Ed.), Environmental geochemistry and health. Geological SOC Sp Pub: (pp. 201–112).Google Scholar
  15. Fuge, R., & Johnson, C. C. (1986). The geochemistry of iodine—A review. Environmental Geochemistry and Health, 8(2), 31–54. doi:10.1007/bf02311063.CrossRefGoogle Scholar
  16. Greenburg, A. E., Clesceri, L. S., & Eaton, A. D. (1992). Standard methods for water and wastewater analysis (18 ed.).American Public Health Association, American Water Works Association and Water Environment Federation, Washington DC.Google Scholar
  17. IEE (2011). Feasibility study and detailed design review NHSP–Southern Expressway Link Roads. Colombo.(pp. 295).Google Scholar
  18. Jayasinghe, I. M. A. (2009). Assessment of a risk from acid sulphate soils in the southern highway development project from Kottawa to Dodangoda. Peradeniya, Sri Lanka: University of Peradeniya.Google Scholar
  19. Kalutara, (1990). Topographic map. Colombo: Survey Department of Sri Lanka.Google Scholar
  20. Kalutara, (2013). Quaternary maps of Kalutara, Sheet 75. Colombo: Geological Survey and Mines Bureau.Google Scholar
  21. Khurana, I. (2006). Textbook of medical physiology. In endocrinal system (Vol. India, pp. 710–715).Google Scholar
  22. Kipp, A. P., Strohm, D., Brigelius-Flohé, R., Schomburg, L., Bechthold, A., Leschik-Bonnet, E., et al. (2015). Revised reference values for selenium intake. Journal of Trace Elements in Medicine and Biology, 32, 195–199. doi:10.1016/j.jtemb.2015.07.005.CrossRefGoogle Scholar
  23. Leung, A. M., LE, Braverman, & Pearce, E. N. (2012). History of U.S. iodine fortification and supplementation. Nutrients, 4(11), 1740–1746. doi:10.3390/nu4111740.CrossRefGoogle Scholar
  24. Li, H., & Li, J. (2015). Thyroid disorders in women. Minerva Medica, 106(2), 109–114.Google Scholar
  25. Mahadeva, K., & Senthe Shanmuganathan, S. (1967). The problem of goitre in ceylon. British Journal of Nutrition, 21(2), 341–352. doi:10.1079/bjn19670036.CrossRefGoogle Scholar
  26. Malboosbaf, R., Hosseinpanah, F., Mojarrad, M., Jambarsang, S., & Azizi, F. (2013). Relationship between goiter and gender: a systematic review and meta-analysis. Endocrine, 43(3), 539–547. doi:10.1007/s12020-012-9831-8.CrossRefGoogle Scholar
  27. Panabokke, C. R. (1996). Soils and agroecological environments of Sri Lanka (natural resources series 2). Colombo: Natural Resources, Energy and Science Authority of Sri Lanka.Google Scholar
  28. Pandav, C. S., Yadav, K., Srivastava, R., Pandav, R., & Karmarkar, M. G. (2013). Iodine deficiency disorders (IDD) control in India. The Indian Journal of Medical Research, 138(3), 418–433.Google Scholar
  29. Pettine, M., McDonald, T. J., Sohn, M., Anquandah, G. A. K., Zboril, R., & Sharma, V. K. (2015). A critical review of selenium analysis in natural water samples. Trends in Environmental Analytical Chemistry, 5, 1–7. doi:10.1016/j.teac.2015.01.001.CrossRefGoogle Scholar
  30. Shetaya, W. H., Young, S. D., Watts, M. J., Ander, E. L., & Bailey, E. H. (2012). Iodine dynamics in soils. Geochimica et Cosmochimica Acta, 77, 457–473. doi:10.1016/j.gca.2011.10.034.CrossRefGoogle Scholar
  31. Truong, T., Orsi, L., Dubourdieu, D., Rougier, Y., Hémon, D., & Guénel, P. (2005). Role of goiter and of menstrual and reproductive factors in thyroid cancer: a population-based case-control study in New Caledonia (South Pacific), a very high incidence area. American Journal of Epidemiology, 161(11), 1056–1065.CrossRefGoogle Scholar
  32. WHO (2004). Guidelines for Drinking-Water Quality. (Vol. 1). Geneva.Google Scholar
  33. WHO (2014). Goitre as a determinant of the prevalence and severity of iodine deficiency disorders in populations, WHO/NMH/NHD/EPG/14.5. Geneva: World Health Organization, (pp. 6).Google Scholar
  34. Zimmermann, M. B. (2009). Iodine deficiency. Endocrine Reviews, 30(4), 376–408. doi:10.1210/er.2009-0011.CrossRefGoogle Scholar
  35. Zou, S., Wu, F., Guo, C., Song, J., Huang, C., Zhu, Z., et al. (2012). Iodine nutrition and the prevalence of thyroid disease after salt iodization: A cross-sectional survey in Shanghai, a coastal area in China. PLoS ONE, 7(7), e40718.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • G. W. A. R. Fernando
    • 1
    • 2
  • P. L. C. L. Liyanage
    • 3
  • Anushka Upamali Rajapaksha
    • 2
    • 4
  • Meththika Vithanage
    • 4
    • 5
    • 6
  1. 1.Department of Physics, Faculty of Natural SciencesThe Open University of Sri LankaNugegodaSri Lanka
  2. 2.Department of Basic Sciences, Faculty of Health SciencesThe Open University of Sri LankaNugegodaSri Lanka
  3. 3.Post Graduate Institute of ScienceUniversity of PeradeniyaPeradeniyaSri Lanka
  4. 4.Ofiice of the Dean, Faculty of Applied SciencesUniversity of Sri JayewardenepuraNugegodaSri Lanka
  5. 5.Environmental Chemodynamics ProjectNational Institute of Fundamental StudiesKandySri Lanka
  6. 6.Faculty of Health, Engineering and SciencesUniversity of Southern QueenslandToowoombaAustralia

Personalised recommendations