Solvent effects on quantitative analysis of brominated flame retardants with Soxhlet extraction

  • Yin Zhong
  • Dan Li
  • Xifen Zhu
  • Weilin Huang
  • Ping’an Peng
Original Paper
  • 114 Downloads

Abstract

Reliable quantifications of brominated flame retardants (BFRs) not only ensure compliance with laws and regulations on the use of BFRs in commercial products, but also is key for accurate risk assessments of BFRs. Acetone is a common solvent widely used in the analytical procedure of BFRs, but our recent study found that acetone can react with some BFRs. It is highly likely that such reactions can negatively affect the quantifications of BFRs in environmental samples. In this study, the effects of acetone on the extraction yields of three representative BFRs [i.e., decabrominated diphenyl ether (decaBDE), hexabromocyclododecane (HBCD) and tetrabromobisphenol A (TBBPA)] were evaluated in the Soxhlet extraction (SE) system. The results showed that acetone-based SE procedure had no measureable effect for the recovery efficiencies of decaBDE but could substantially lower the extraction yields for both TBBPA and HBCD. After 24 h of extraction, the recovery efficiencies of TBBPA and HBCD by SE were 93 and 78% with acetone, 47 and 70% with 3:1 acetone:n-hexane, and 82 and 94% with 1:1 acetone:n-hexane, respectively. After 72 h of extraction, the extraction efficiencies of TBBPA and HBCD decreased to 68 and 55% with acetone, 0 and 5% with 3:1 acetone/n-hexane mixtures, and 0 and 13% with 1:1 acetone/n-hexane mixtures, respectively. The study suggested that the use of acetone alone or acetone-based mixtures should be restricted in the quantitative analysis of HBCD and TBBPA. We further evaluated nine alternative solvents for the extraction of the three BFRs. The result showed that diethyl ether might be reactive with HBCD and may not be considered as the alternative to acetone used solvents for the extraction of HBCD.

Keywords

DecaBDE TBBPA HBCD Soxhlet extraction Acetone 

Notes

Acknowledgements

This study was supported financially by National Natural Science Foundation of China (Nos. 41120134006 and 41473107). This is contribution No. IS-2392 from GIGCAS.

References

  1. Abb, M., Stahl, B., & Lorenz, W. (2011). Analysis of brominated flame retardants in house dust. Chemosphere, 85(11), 1657–1663.CrossRefGoogle Scholar
  2. Abdallah, M. A.-E., & Harrad, S. (2009). Personal exposure to HBCDs and its degradation products via ingestion of indoor dust. Environment International, 35(6), 870–876.CrossRefGoogle Scholar
  3. Abdallah, M. A.-E., Ibarra, C., Neels, H., Harrad, S., & Covaci, A. (2008). Comparative evaluation of liquid chromatography-mass spectrometry versus gas chromatography-mass spectrometry for the determination of hexabromocyclododecanes and their degradation products in indoor dust. Journal of Chromatography A, 1190(1–2), 333–341.CrossRefGoogle Scholar
  4. An, T., Zhang, D., Li, G., Mai, B., & Fu, J. (2011). On-site and off-site atmospheric PBDEs in an electronic dismantling workshop in south China: Gas-particle partitioning and human exposure assessment. Environmental Pollution, 159(12), 3529–3535.CrossRefGoogle Scholar
  5. Bai, Y. M., Sun, P., Zhang, M. Q., Zhao, G., Yang, Z. Y., & Shao, Y. H. (2003). Effects of solution viscosity on heterogeneous electron transfer across a liquid/liquid interface. Electrochimica Acta, 48(23), 3447–3453.CrossRefGoogle Scholar
  6. Birnbaum, L. S., & Staskal, D. F. (2004). Brominated flame retardants: Cause for concern? Environmental Health Perspectives, 112(1), 9–17.CrossRefGoogle Scholar
  7. Chu, S., Haffner, G. D., & Letcher, R. J. (2005). Simultaneous determination of tetrabromobisphenol A, tetrachlorobisphenol A, bisphenol A and other halogenated analogues in sediment and sludge by high performance liquid chromatography-electrospray tandem mass spectrometry. Journal of Chromatography A, 1097(1–2), 25–32.CrossRefGoogle Scholar
  8. Covaci, A., Voorspoels, S., Abdallah, M. A.-E., Geens, T., Harrad, S., & Law, R. J. (2009). Analytical and environmental aspects of the flame retardant tetrabromobisphenol-A and its derivatives. Journal of Chromatography A, 1216(3), 346–363.CrossRefGoogle Scholar
  9. Covaci, A., Voorspoels, S., & de Boer, J. (2003). Determination of brominated flame retardants, with emphasis on polybrominated diphenyl ethers (PBDEs) in environmental and human samples—a review. Environment International, 29(6), 735–756.CrossRefGoogle Scholar
  10. Covaci, A., Voorspoels, S., Ramos, L., Neels, H., & Blust, R. (2007). Recent developments in the analysis of brominated flame retardants and brominated natural compounds. Journal of Chromatography A, 1153(1–2), 145–171.CrossRefGoogle Scholar
  11. Davis, J. W., Gonsior, S. J., Markham, D. A., Friederich, U., Hunziker, R. W., & Ariano, J. M. (2006). Biodegradation and product identification of [C-14]hexabromocyclododecane in wastewater sludge and freshwater aquatic sediment. Environmental Science and Technology, 40(17), 5395–5401.CrossRefGoogle Scholar
  12. de Wit, C. A. (2002). An overview of brominated flame retardants in the environment. Chemosphere, 46(5), 583–624.CrossRefGoogle Scholar
  13. Dodder, N. G., Strandberg, B., & Hites, R. A. (2002). Concentrations and spatial variations of polybrominated diphenyl ethers and several organochlorine compounds in fishes from the northeastern United States. Environmental Science and Technology, 36(2), 146–151.CrossRefGoogle Scholar
  14. Evenset, A., Christensen, G. N., Carroll, J., Zaborska, A., Berger, U., Herzke, D., et al. (2007). Historical trends in persistent organic pollutants and metals recorded in sediment from Lake Ellasjoen, Bjornoya, Norwegian Arctic. Environmental Pollution, 146(1), 196–205.CrossRefGoogle Scholar
  15. Gao, S. T., Wang, J. Z., Yu, Z. Q., Guo, Q. R., Sheng, G. Y., & Fu, J. M. (2011). Hexabromocyclododecanes in surface soils from e-waste recycling areas and industrial areas in South China: Concentrations, diastereoisomer- and enantiomer-specific profiles, and inventory. Environmental Science and Technology, 45(6), 2093–2099.CrossRefGoogle Scholar
  16. Gerecke, A. C., Giger, W., Hartmann, P. C., Heeb, N. V., Kohler, H.-P. E., Schmid, P., et al. (2006). Anaerobic degradation of brominated flame retardants in sewage sludge. Chemosphere, 64(2), 311–317.CrossRefGoogle Scholar
  17. Han, C., Chen, X., Xie, W., Zhu, Z., Liu, C., Chen, F., et al. (2010). Determination of hexabromocyclododecane diastereoisomers in Sargassum fusiforme and comparison of the extraction efficiency of ultrasonication, microwave-assisted extraction, Soxhlet extraction and pressurised liquid extraction. Journal of Separation Science, 33(21), 3319–3325.CrossRefGoogle Scholar
  18. Haukås, M., Hylland, K., Berge, J. A., Nygård, T., & Mariussen, E. (2009). Spatial diastereomer patterns of hexabromocyclododecane (HBCD) in a Norwegian fjord. Science of the Total Environment, 407(22), 5907–5913.CrossRefGoogle Scholar
  19. Hiebl, J., & Vetter, W. (2007). Detection of hexabromocyclododecane and its metabolite pentabromocyclododecene in chicken egg and fish from the official food control. Journal of Agricultural and Food Chemistry, 55(9), 3319–3324.CrossRefGoogle Scholar
  20. Hoh, E., & Hites, R. A. (2005). Brominated flame retardants in the atmosphere of the east-central United States. Environmental Science and Technology, 39(20), 7794–7802.CrossRefGoogle Scholar
  21. Hyotylainen, T., & Hartonen, K. (2002). Determination of brominated flame retardants in environmental samples. TrAC Trends in Analytical Chemistry, 21(1), 13–30.CrossRefGoogle Scholar
  22. Johari, G. P. (1968). Dielectric constants, densities, and viscosities of acetone-1-propanol and acetone-n-hexane mixtures at 25 °C. Journal of Chemical and Engineering Data, 13(4), 541–543.CrossRefGoogle Scholar
  23. Johnson-Restrepo, B., Adams, D. H., & Kannan, K. (2008). Tetrabromobisphenol A (TBBPA) and hexabromocyclododecanes (HBCDs) in tissues of humans, dolphins, and sharks from the United States. Chemosphere, 70(11), 1935–1944.CrossRefGoogle Scholar
  24. Kajiwara, N., Noma, Y., & Takigami, H. (2011). Brominated and organophosphate flame retardants in selected consumer products on the Japanese market in 2008. Journal of Hazardous Materials, 192(3), 1250–1259.CrossRefGoogle Scholar
  25. Kemmlein, S., Herzke, D., & Law, R. J. (2009). Brominated flame retardants in the European chemicals policy of REACH-Regulation and determination in materials. Journal of Chromatography A, 1216(3), 320–333.CrossRefGoogle Scholar
  26. Law, R. J., Bersuder, P., Allchin, C. R., & Barry, J. (2006). Levels of the flame retardants hexabromocyclododecane and tetrabromobisphenol A in the blubber of harbor porpoises (Phocoena phocoena) stranded or bycaught in the UK, with evidence for an increase in HBCD concentrations in recent years. Environmental Science and Technology, 40(7), 2177–2183.CrossRefGoogle Scholar
  27. Law, R. J., Bersuder, P., Barry, J., Wilford, B. H., Allchin, C. R., & Jepson, P. D. (2008). A significant downturn in levels of hexabromocyclododecane in the blubber of harbor porpoises (Phocoena phocoena) stranded or bycaught in the UK: An update to 2006. Environmental Science and Technology, 42(24), 9104–9109.CrossRefGoogle Scholar
  28. Mechlińska, A., Wolska, L., & Namiesńik, J. (2012). Removal of sulfur from a solvent extract. TrAC Trends in Analytical Chemistry, 31, 129–133.CrossRefGoogle Scholar
  29. Meng, X. Z., Duan, Y. P., Yang, C., Pan, Z. Y., Wen, Z. H., & Chen, L. (2011). Occurrence, sources, and inventory of hexabromocyclododecanes (HBCDs) in soils from Chongming Island, the Yangtze River Delta (YRD). Chemosphere, 82(5), 725–731.CrossRefGoogle Scholar
  30. Morris, S., Allchin, C. R., Zegers, B. N., Haftka, J. H., Boon, J. P., Belpaire, C., et al. (2004). Distribution and fate of HBCD and TBBPA brominated flame retardants in north sea estuaries and aquatic food webs. Environmental Science and Technology, 38(21), 5497–5504.CrossRefGoogle Scholar
  31. Morris, S., Bersuder, P., Allchin, C. R., Zegers, B., Boon, J. P., Leonards, P. E. G., et al. (2006). Determination of the brominated flame retardant, hexabromocyclodocane, in sediments and biota by liquid chromatography-electrospray ionisation mass spectrometry. TrAC Trends in Analytical Chemistry, 25(4), 343–349.CrossRefGoogle Scholar
  32. Pulkrabová, J., Hajšlová, J., Poustka, J., & Kazda, R. (2007). Fish as biomonitors of polybrominated diphenyl ethers and hexabromocyclododecane in Czech aquatic ecosystems: pollution of the Elbe river basin. Environmental Health Perspectives, 115(Suppl 1), 28–34.CrossRefGoogle Scholar
  33. Sellström, U., & Jansson, B. (1995). Analysis of tetrabromobisphenol A in a product and environmental-samples. Chemosphere, 31(4), 3085–3092.CrossRefGoogle Scholar
  34. Strandberg, B., Dodder, N. G., Basu, I., & Hites, R. A. (2001). Concentrations and spatial variations of polybrominated diphenyl ethers and other organohalogen compounds in Great Lakes air. Environmental Science and Technology, 35(35), 1078–1083.CrossRefGoogle Scholar
  35. Takigami, H., Suzuki, G., Hirai, Y., & Sakai, S. (2009). Brominated flame retardants and other polyhalogenated compounds in indoor air and dust from two houses in Japan. Chemosphere, 76(2), 270–277.CrossRefGoogle Scholar
  36. van Leeuwen, S. P. J., & de Boer, J. (2008). Advances in the gas chromatographic determination of persistent organic pollutants in the aquatic environment. Journal of Chromatography A, 1186(1–2), 161–182.CrossRefGoogle Scholar
  37. Wu, J. P., Luo, X. J., Zhang, Y., Luo, Y., Chen, S. J., Mai, B. X., et al. (2008). Bioaccumulation of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in wild aquatic species from an electronic waste (e-waste) recycling site in South China. Environment International, 34(8), 1109–1113.CrossRefGoogle Scholar
  38. Xiong, J., An, T., Zhang, C., & Li, G. (2015). Pollution profiles and risk assessment of PBDEs and phenolic brominated flame retardants in water environments within a typical electronic waste dismantling region. Environmental Geochemistry and Health, 37(3), 457–473.CrossRefGoogle Scholar
  39. Xiong, J., Li, G., An, T., Zhang, C., & Wei, C. (2016). Emission patterns and risk assessment of polybrominated diphenyl ethers and bromophenols in water and sediments from the Beijiang River, South China. Environmental Pollution, 219, 596–603.CrossRefGoogle Scholar
  40. Zhang, X. L., Luo, X. J., Chen, S. J., Wu, J. P., & Mai, B. X. (2009). Spatial distribution and vertical profile of polybrominated diphenyl ethers, tetrabromobisphenol A, and decabromodiphenylethane in river sediment from an industrialized region of South China. Environmental Pollution, 157(6), 1917–1923.CrossRefGoogle Scholar
  41. Zhong, Y., Peng, P. A., & Huang, W. L. (2012). Transformation of tetrabromobisphenol A in the presence of different solvents and metals. Chemosphere, 87(10), 1141–1148.CrossRefGoogle Scholar
  42. Zhong, Y., Peng, P. A., Yu, Z. Q., & Deng, H. P. (2010). Effects of metals on the transformation of hexabromocyclododecane (HBCD) in solvents: Implications for solvent-based recycling of brominated flame retardants. Chemosphere, 81(1), 72–78.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Yin Zhong
    • 1
  • Dan Li
    • 1
    • 3
  • Xifen Zhu
    • 1
    • 3
  • Weilin Huang
    • 2
  • Ping’an Peng
    • 1
  1. 1.State Key Laboratory of Organic Geochemistry, Guangzhou Institute of GeochemistryChinese Academy of SciencesGuangzhouChina
  2. 2.Department of Environmental SciencesRutgers, The State University of New JerseyNew BrunswickUSA
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations