Municipal solid waste-derived biochar for the removal of benzene from landfill leachate

  • Yohan Jayawardhana
  • S. S. Mayakaduwa
  • Prasanna Kumarathilaka
  • Sewwandi Gamage
  • Meththika Vithanage
Original Paper


The potential of biochar, produced from fibrous organic fractions of municipal solid waste (MSW), for remediation of benzene, one of the frequently found toxic volatile organic compounds in landfill leachate, was investigated in this study based on various environmental conditions such as varying pH, benzene concentration, temperature and time. At the same time, landfill leachate quality parameters were assessed at two different dump sites in Sri Lanka: Gohagoda and Kurunegala. MSW biochar (MSW-BC) was produced by slow temperature pyrolysis at 450 °C, and the physiochemical characteristics of the MSW-BC were characterized. All the leachate samples from the MSW dump sites exceeded the World Health Organization permissible level for benzene (5 µg/L) in water. Removal of benzene was increased with increasing pH, with the highest removal observed at ~pH 9. The maximum adsorption capacity of 576 µg/g was reported at room temperature (~25 °C). Both Freundlich and Langmuir models fitted best with the equilibrium isotherm data, suggesting the involvement of both physisorption and chemisorption mechanisms. Thermodynamic data indicated the feasibility of benzene adsorption and its high favorability at higher temperatures. The values of \(\Delta G\) suggested physical interactions between sorbate and sorbent, whereas kinetic data implied a significant contribution of chemisorption. Results obtained from FTIR provided clear evidence of the involvement of functional groups in biochar for benzene adsorption. This study suggests that MSW biochar could be a possible remedy for benzene removal from landfill leachate and at the same time MSW can be a potential source to produce biochar which acts as a prospective material to remediate its pollutants while reducing the volume of waste.


Landfill leachate Physisorption Chemisorption Thermodynamic Open dumps 



The research was funded by the National Research Council NRC Grant 15-024, Sri Lanka. The equipment for the study were supported by the Japan International Cooperation Agency (JST-JICA) Science and Technology Research Partnership for Sustainable Development (SATREPS) Project.


  1. Abdullah, M. P., & Chian, S. S. (2011). Chlorinated and nonchlorinated-volatile organic compounds (VOCs) in drinking water of peninsular Malaysia. Sains Malaysiana, 40(11), 1255–1261.Google Scholar
  2. Abumaizar, R. J., Kocher, W., & Smith, E. H. (1998). Biofiltration of BTEX contaminated air streams using compost-activated carbon filter media. Journal of Hazardous Materials, 60(2), 111–126.CrossRefGoogle Scholar
  3. Agarwal, M., Tardio, J., & Mohan, S. V. (2015). Pyrolysis biochar from cellulosic municipal solid waste as adsorbent for azo dye removal: Equilibrium isotherms and kinetics analysis. International Journal of Environmental Science and Development, 6(1), 67.CrossRefGoogle Scholar
  4. Agrafioti, E., Kalderis, D., & Diamadopoulos, E. (2014). Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge. Journal of Environmental Management, 133, 309–314.CrossRefGoogle Scholar
  5. Ahmad, M., Lee, S. S., Dou, X., Mohan, D., Sung, J.-K., Yang, J. E., et al. (2012). Effects of pyrolysis temperature on soybean stover-and peanut shell-derived biochar properties and TCE adsorption in water. Bioresource Technology, 118, 536–544.CrossRefGoogle Scholar
  6. Ahmad, M., Lee, S. S., Rajapaksha, A. U., Vithanage, M., Zhang, M., Cho, J. S., et al. (2013). Trichloroethylene adsorption by pine needle biochars produced at various pyrolysis temperatures. Bioresource Technology, 143, 615–622. doi: 10.1016/j.biortech.2013.06.033.CrossRefGoogle Scholar
  7. Andrew, D., Lenore, S., Eugene, W., & Arnold, E. (1981). Standard methods for the examination of water and wastewater: Selected analytical methods approved and cited by the United States Environmental Protection Agency. Washington, DC: American Public Health Association.Google Scholar
  8. Ateş, F., Miskolczi, N., & Borsodi, N. (2013). Comparision of real waste (MSW and MPW) pyrolysis in batch reactor over different catalysts. Part I: Product yields, gas and pyrolysis oil properties. Bioresource Technology, 133, 443–454.CrossRefGoogle Scholar
  9. Bernardo, M., Lapa, N., Gonçalves, M., Mendes, B., Pinto, F., Fonseca, I., & Lopes, H. (2012). Physico-chemical properties of chars obtained in the co-pyrolysis of waste mixtures. Journal of Hazardous Materials, 219–220, 196–202.CrossRefGoogle Scholar
  10. Bornemann, L. C., Kookana, R. S., & Welp, G. (2007). Differential sorption behaviour of aromatic hydrocarbons on charcoals prepared at different temperatures from grass and wood. Chemosphere, 67(5), 1033–1042.CrossRefGoogle Scholar
  11. Cal, M. P., Rood, M. J., & Larson, S. M. (1996). Removal of VOCs from humidified gas streams using activated carbon cloth. Gas Separation and Purification, 10(2), 117–121.CrossRefGoogle Scholar
  12. Cantrell, K. B., Hunt, P. G., Uchimiya, M., Novak, J. M., & Ro, K. S. (2012). Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource Technology, 107, 419–428. doi: 10.1016/j.biortech.2011.11.084.CrossRefGoogle Scholar
  13. Chun, Y., Sheng, G., Chiou, C. T., & Xing, B. (2004). Compositions and sorptive properties of crop residue-derived chars. Environmental Science and Technology, 38(17), 4649–4655.CrossRefGoogle Scholar
  14. Coates, J. (2000). Interpretation of infrared spectra, a practical approach. In Encyclopedia of analytical chemistry. Chichester: Wiley.Google Scholar
  15. Colthup, N. B. (1976). The calculation of some CH wag group frequencies in substituted benzenes, naphthalenes, and acetylenes. Applied Spectroscopy, 30(6), 589–593.CrossRefGoogle Scholar
  16. Colthup, N. B., Daly, L. H., & Wiberley, S. E. (1990). Introduction to infrared and Raman spectroscopy (3rd ed.). San Diego: Academic Press.Google Scholar
  17. Costa, A. S., Romão, L., Araújo, B., Lucas, S., Maciel, S., Wisniewski, A., et al. (2012). Environmental strategies to remove volatile aromatic fractions (BTEX) from petroleum industry wastewater using biomass. Bioresource Technology, 105, 31–39.CrossRefGoogle Scholar
  18. Cotruvo, J. A., & Regelski, M. (1989). National primary drinking water regulations for volatile organic chemicals. In E. J. Calabrese (Ed.), Safe drinking water act: Amendments, regulations, and standards (pp. 29–34). Chelsea, MI: Lewis Publishers.Google Scholar
  19. Daifullah, A., & Girgis, B. (2003). Impact of surface characteristics of activated carbon on adsorption of BTEX. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 214(1), 181–193.CrossRefGoogle Scholar
  20. Dula, T., Siraj, K., & Kitte, S. A. (2014). Adsorption of hexavalent chromium from aqueous solution using chemically activated carbon prepared from locally available waste of bamboo (Oxytenanthera abyssinica). ISRN Environmental Chemistry. doi: 10.1155/2014/438245.
  21. Edil, T. B. (2003). A review of aqueous-phase VOC transport in modern landfill liners. Waste Management, 23(7), 561–571. doi: 10.1016/S0956-053X(03)00101-6.CrossRefGoogle Scholar
  22. Eichelberger, J., Budde-Revision, W., Munch, J., & Bellar-Revision, T. (1989). Method 524.2 measurement of purgeable organic compounds in water by capillary column gas chromatography/mass spectrometry. In J. W. Munch (Ed.), Environmental monitoring systems laboratory office of research and development (p. 45268). Cincinnati, OH: US EPA.Google Scholar
  23. EPA. (2003). Integrated risk information system (IRIS) technical factsheet on: Benzene. Washington, DC: United States Environmental Protection Agency.Google Scholar
  24. Florez Menendez, J. C., Fernandez Sanchez, M. L., Fernandez Martıinez, E., Sanchez Urıia, J. E., & Sanz-Medel, A. (2004). Static headspace versus head space solid-phase microextraction (HS-SPME) for the determination of volatile organochlorine compounds in landfill leachates by gas chromatography. Talanta, 63(4), 809–814. doi: 10.1016/j.talanta.2003.12.044.CrossRefGoogle Scholar
  25. Först, C., Stieglitz, L., Roth, W., & Kuhnmünch, S. (1989). Quantitative analysis of volatile organic compounds in landfill leachates. International Journal of Environmental Analytical Chemistry, 37(4), 287–293.CrossRefGoogle Scholar
  26. Gebelein, C., Cheng, T., & Yang, V. C. (1991). Cosmetic and pharmaceutical applications of polymers. New York: Springer, Plenum Press.Google Scholar
  27. Gómez-Serrano, V., Acedo-Ramos, M., López-Peinado, A. J., & Valenzuela-Calahorro, C. (1994). Oxidation of activated carbon by hydrogen peroxide. Study of surface functional groups by FT-ir. Fuel, 73(3), 387–395.CrossRefGoogle Scholar
  28. Harkov, R., Gianti, S. J., Jr., Bozzelli, J. W., & LaRegina, J. E. (1985). Monitoring volatile organic compounds at hazardous and sanitary landfills in New Jersey. Journal of Environmental Science and Health Part A, 20(5), 491–501.CrossRefGoogle Scholar
  29. Heavey, M. (2003). Low-cost treatment of landfill leachate using peat. Waste Management, 23(5), 447–454.CrossRefGoogle Scholar
  30. Hercigonja, R., Rac, V., Rakic, V., & Auroux, A. (2012). Enthalpy–entropy compensation for n-hexane adsorption on HZSM-5 containing transition metal ions. The Journal of Chemical Thermodynamics, 48, 112–117.CrossRefGoogle Scholar
  31. Hinedi, Z., Johnston, C., & Erickson, C. (1993). Chemisorption of benzene on Cu-montmorillonite as characterized by FTIR and^ 1^ 3C MAS NMR. Clays and Clay Minerals, 41, 87.CrossRefGoogle Scholar
  32. Ho, Y. S., Porter, J. F., & McKay, G. (2002). Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: Copper, nickel and lead single component systems. Water, Air, and Soil Pollution, 141(1–4), 1–33. doi: 10.1023/a:1021304828010.CrossRefGoogle Scholar
  33. Horsfall, M., Spiff, A. I., & Abia, A. (2004). Studies on the influence of mercaptoacetic acid (MAA) modification of cassava (Manihot sculenta cranz) waste Biomass on the adsorption of Cu2+ and Cd2+ from aqueous solution. Bulletin of the Korean Chemical Society, 25(7), 969–976.CrossRefGoogle Scholar
  34. Huang, J., Wang, X., Hou, Y., Chen, X., Wu, L., & Fu, X. (2008). Degradation of benzene over a zinc germanate photocatalyst under ambient conditions. Environmental Science and Technology, 42(19), 7387–7391.CrossRefGoogle Scholar
  35. Ilhan, F., Kurt, U., Apaydin, O., & Gonullu, M. T. (2008). Treatment of leachate by electrocoagulation using aluminum and iron electrodes. Journal of Hazardous Materials, 154(1), 381–389.CrossRefGoogle Scholar
  36. Jin, H., Capareda, S., Chang, Z., Gao, J., Xu, Y., & Zhang, J. (2014). Biochar pyrolytically produced from municipal solid wastes for aqueous As (V) removal: Adsorption property and its improvement with KOH activation. Bioresource Technology, 169, 622–629.CrossRefGoogle Scholar
  37. Kaur, K., Mor, S., & Ravindra, K. (2016). Removal of chemical oxygen demand from landfill leachate using cow-dung ash as a low-cost adsorbent. Journal of Colloid and Interface Science, 469, 338–343.CrossRefGoogle Scholar
  38. Kim, K.-H., Baek, S. O., Choi, Y.-J., Sunwoo, Y., Jeon, E.-C., & Hong, J. (2006). The emissions of major aromatic VOC as landfill gas from urban landfill sites in Korea. Environmental Monitoring and Assessment, 118(1–3), 407–422.CrossRefGoogle Scholar
  39. Kim, K.-H., Shon, Z.-H., Kim, M.-Y., Sunwoo, Y., Jeon, E.-C., & Hong, J.-H. (2008). Major aromatic VOC in the ambient air in the proximity of an urban landfill facility. Journal of Hazardous Materials, 150(3), 754–764.CrossRefGoogle Scholar
  40. Kolb, B., & Ettre, L. S. (2006). Static headspace-gas chromatography: theory and practice. Hoboken, NJ: Wiley.CrossRefGoogle Scholar
  41. Kumarathilaka, P., Jayawardhana, Y., Basnayake, B., Mowjood, M., Nagamori, M., Saito, T., et al. (2016). Characterizing volatile organic compounds in leachate from Gohagoda municipal solid waste dumpsite, Sri Lanka. Groundwater for Sustainable Development, 2, 1–6.CrossRefGoogle Scholar
  42. Larkin, P. (2011). Infrared and Raman spectroscopy; principles and spectral interpretation. Oxford: Elsevier.Google Scholar
  43. Lehmann, J., & Joseph, S. (Eds.). (2009). Biochar for environmental management: Science and technology (416 p). London & Sterling, VA: Earthscan.Google Scholar
  44. Lehmann, J., & Joseph, S. (2015). Biochar for environmental management: Science, technology and implementation (2nd ed., pp. 563–594). Routledge.Google Scholar
  45. Li, W., Hua, T., Zhou, Q., Zhang, S., & Li, F. (2010). Treatment of stabilized landfill leachate by the combined process of coagulation/flocculation and powder activated carbon adsorption. Desalination, 264(1), 56–62.CrossRefGoogle Scholar
  46. Lillo-Ródenas, M., Fletcher, A., Thomas, K., Cazorla-Amorós, D., & Linares-Solano, A. (2006). Competitive adsorption of a benzene–toluene mixture on activated carbons at low concentration. Carbon, 44(8), 1455–1463.CrossRefGoogle Scholar
  47. Liu, G., Xie, M., & Zhang, S. (2015). Effect of organic fraction of municipal solid waste (OFMSW)-based biochar on organic carbon mineralization in a dry land soil. Journal of Material Cycles and Waste Management, 1–10.Google Scholar
  48. Memon, G. Z., Bhanger, M., Memon, J. R., & Akhtar, M. (2009). Adsorption of methyl parathion from aqueous solutions using mango kernels: Equilibrium, kinetic and thermodynamic studies. Bioremediation Journal, 13(2), 102–106.CrossRefGoogle Scholar
  49. Milla, O. V., Wang, H.-H., & Huang, W.-J. (2013). Feasibility study using municipal solid waste incineration bottom ash and biochar from binary mixtures of organic waste as agronomic materials. Journal of Hazardous Toxic and Radioactive Waste, 17(3), 187–195.CrossRefGoogle Scholar
  50. Mohan, D., Rajput, S., Singh, V. K., Steele, P. H., & Pittman, C. U., Jr. (2011). Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent. Journal of Hazardous Materials, 188(1–3), 319–333. doi: 10.1016/j.jhazmat.2011.01.127.CrossRefGoogle Scholar
  51. Mor, S., Ravindra, K., Dahiya, R., & Chandra, A. (2006). Leachate characterization and assessment of groundwater pollution near municipal solid waste landfill site. Environmental Monitoring and Assessment, 118(1–3), 435–456.CrossRefGoogle Scholar
  52. Mor, S., Ravindra, K., & Bishnoi, N. (2007). Adsorption of chromium from aqueous solution by activated alumina and activated charcoal. Bioresource Technology, 98(4), 954–957.CrossRefGoogle Scholar
  53. Mor, S., Chhoden, K., & Ravindra, K. (2016). Application of agro-waste rice husk ash for the removal of phosphate from the wastewater. Journal of Cleaner Production, 129, 673–680.CrossRefGoogle Scholar
  54. Mournighan, R., Dudzinska, M. R., Barich, J., Gonzalez, M. A., & Black, R. K. (2007). Chemistry for the protection of the environment 4 (Vol. 59). New York: Springer.Google Scholar
  55. Navarri, P., Marchal, D., & Ginestet, A. (2001). Activated carbon fibre materials for VOC removal. Filtration & Separation, 38(1), 33–40.CrossRefGoogle Scholar
  56. Nourmoradi, H., Khiadani, M., & Nikaeen, M. (2012). Multi-component adsorption of benzene, toluene, ethylbenzene, and xylene from aqueous solutions by montmorillonite modified with tetradecyl trimethyl ammonium bromide. Journal of Chemistry. doi: 10.1155/2013/589354.
  57. Ok, Y. S., Yang, J. E., Zhang, Y. S., Kim, S. J., & Chung, D. Y. (2007). Heavy metal adsorption by a formulated zeolite-Portland cement mixture. Journal of Hazardous Materials, 147(1–2), 91–96. doi: 10.1016/j.jhazmat.2006.12.046.CrossRefGoogle Scholar
  58. Pei, J., & Zhang, J. S. (2012). Determination of adsorption isotherm and diffusion coefficient of toluene on activated carbon at low concentrations. Building and Environment, 48, 66–76.CrossRefGoogle Scholar
  59. Rajapaksha, A. U., Ahmad, M., Vithanage, M., Kim, K.-R., Chang, J. Y., Lee, S. S., et al. (2015). The role of biochar, natural iron oxides, and nanomaterials as soil amendments for immobilizing metals in shooting range soil. Environmental Geochemistry and Health, 37(6), 931–942.CrossRefGoogle Scholar
  60. Restek, A. (2000). Technical guide for static headspace analysis using GC (pp. 11–12). Bellefonte: Restek Corp.Google Scholar
  61. Sabel, G. V., & Clark, T. P. (1984). Volatile organic compounds as indicators of municipal solid waste leachate contamination. Waste Management and Research, 2(1), 119–130.CrossRefGoogle Scholar
  62. Safarova, V., Sapelnikova, S., Djazhenko, E., Teplova, G., Shajdulina, G., & Kudasheva, F. K. (2004). Gas chromatography–mass spectrometry with headspace for the analysis of volatile organic compounds in waste water. Journal of Chromatography B, 800(1), 325–330.CrossRefGoogle Scholar
  63. Salman, J., Njoku, V., & Hameed, B. (2011). Adsorption of pesticides from aqueous solution onto banana stalk activated carbon. Chemical Engineering Journal, 174(1), 41–48.CrossRefGoogle Scholar
  64. Scheutz, C., Mosbæk, H., & Kjeldsen, P. (2004). Attenuation of methane and volatile organic compounds in landfill soil covers. Journal of Environmental Quality, 33(1), 61–71.CrossRefGoogle Scholar
  65. Sizirici, B., & Tansel, B. (2010). Projection of landfill stabilization period by time series analysis of leachate quality and transformation trends of VOCs. Waste Management, 30(1), 82–91. doi: 10.1016/j.wasman.2009.09.006.CrossRefGoogle Scholar
  66. Slovetskaya, K., Zlotina, N., Kiperman, S., & Rubinshtein, A. (1970). Adsorption of benzene on a nickel-zinc oxide catalyst. Russian Chemical Bulletin, 19(5), 1014–1019.CrossRefGoogle Scholar
  67. Srivastava, A., & Mazumdar, D. (2011). Monitoring and Reporting VOCs in Ambient Air. Rijeka: INTECH Open Access Publisher.CrossRefGoogle Scholar
  68. Steed, J. W., & Atwood, J. L. (2013). Supramolecular chemistry (2nd ed.). Chichester: Wiley.Google Scholar
  69. Su, F., Lu, C., & Hu, S. (2010). Adsorption of benzene, toluene, ethylbenzene and p-xylene by NaOCl-oxidized carbon nanotubes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 353(1), 83–91.CrossRefGoogle Scholar
  70. Tham, Y., Latif, P. A., Abdullah, A. M., Shamala-Devi, A., & Taufiq-Yap, Y. (2011). Performances of toluene removal by activated carbon derived from durian shell. Bioresource Technology, 102(2), 724–728.CrossRefGoogle Scholar
  71. Van der Mass, J. H. (1969). Basic infrared spectroscopy. London: Hyden & son Ltd.Google Scholar
  72. Visvanathan, C., & Trankler, J. (2003). Municipal solid waste management in Asia: A comparative analysis. In workshop on sustainable landfill management (pp. 3–5). Citeseer.Google Scholar
  73. WACS (May 2014). Source: Waste amount and composition surveys (WACS) implemented in the Central and Southern Provinces of Sri Lanka, SATREPS report.Google Scholar
  74. Wang, J., Liu, H., Yang, H., Qiao, C., & Li, Q. (2016). Competition adsorption, equilibrium, kinetic, and thermodynamic studied over La (III)-loaded active carbons for dibenzothiophene removal. Journal of Chemical and Engineering Data, 61, 3533.CrossRefGoogle Scholar
  75. Watanabe, F., & Olsen, S. (1965). Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Science Society of America Journal, 29(6), 677–678.CrossRefGoogle Scholar
  76. Wibowo, N., Setyadhi, L., Wibowo, D., Setiawan, J., & Ismadji, S. (2007). Adsorption of benzene and toluene from aqueous solutions onto activated carbon and its acid and heat treated forms: influence of surface chemistry on adsorption. Journal of Hazardous Materials, 146(1), 237–242.CrossRefGoogle Scholar
  77. Wijesekara, S. S. R. M. D. H. R., Mayakaduwa, S., Siriwardana, A. R., de Silva, N., Basnayake, B. F. A., Kawamoto, K., et al. (2014). Fate and transport of pollutants through a municipal solid waste landfill leachate in Sri Lanka. Environmental Earth Sciences, 72(5), 1707–1719. doi: 10.1007/s12665-014-3075-2.Google Scholar
  78. Wolbach, W. S., & Anders, E. (1989). Elemental carbon in sediments: determination and isotopic analysis in the presence of kerogen. Geochimica et Cosmochimica Acta, 53(7), 1637–1647.CrossRefGoogle Scholar
  79. Wood, J. A., & Porter, M. L. (1987). Hazardous pollutants in class II landfills. JAPCA, 37(5), 609–615.CrossRefGoogle Scholar
  80. Workman, J., Jr., & Weyer, L. (2012). Practical guide and spectral atlas for interpretive near-infrared spectroscopy. Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
  81. Wu, B., Taylor, C. M., Knappe, D. R., Nanny, M. A., & Barlaz, M. A. (2001). Factors controlling alkylbenzene sorption to municipal solid waste. Environmental Science and Technology, 35(22), 4569–4576.CrossRefGoogle Scholar
  82. Xiao, L., Bi, E., Du, B., Zhao, X., & Xing, C. (2014). Surface characterization of maize-straw-derived biochars and their sorption performance for MTBE and benzene. Environmental Earth Sciences, 71(12), 5195–5205.CrossRefGoogle Scholar
  83. Xu, X., Schierz, A., Xu, N., & Cao, X. (2016). Comparison of the characteristics and mechanisms of Hg(II) sorption by biochars and activated carbon. Journal of Colloid and Interface Science, 463, 55–60.CrossRefGoogle Scholar
  84. Yakout, S. M. (2014). Removal of the hazardous, volatile, and organic compound benzene from aqueous solution using phosphoric acid activated carbon from rice husk. Chemistry Central Journal, 8(1), 1–7. doi: 10.1186/s13065-014-0052-5.CrossRefGoogle Scholar
  85. Zhang, M., Ahmad, M., Al-Wabel, M. I., Vithanage, M., Rajapaksha, A. U., Kim, H. S., et al. (2015). Adsorptive removal of trichloroethylene in water by crop residue biochars pyrolyzed at contrasting temperatures: Continuous fixed-bed experiments. Journal of Chemistry. doi: 10.1155/2015/647072.
  86. Zou, S., Lee, S., Chan, C., Ho, K., Wang, X., Chan, L., et al. (2003). Characterization of ambient volatile organic compounds at a landfill site in Guangzhou. South China. Chemosphere, 51(9), 1015–1022.CrossRefGoogle Scholar
  87. Zurbrugg, C. (2002). Urban solid waste management in low-income countries of Asia how to cope with the garbage crisis. In presented for: scientific committee on problems of the environment (SCOPE ) urban solid waste management review session (pp. 1–13). Durban.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Yohan Jayawardhana
    • 1
  • S. S. Mayakaduwa
    • 1
  • Prasanna Kumarathilaka
    • 1
  • Sewwandi Gamage
    • 2
  • Meththika Vithanage
    • 1
  1. 1.Environmental Chemodynamics ProjectNational Institute of Fundamental StudiesKandySri Lanka
  2. 2.Faculty of TechnologySouth Eastern University of Sri LankaOluvilSri Lanka

Personalised recommendations