Environmental Geochemistry and Health

, Volume 40, Issue 5, pp 1907–1918 | Cite as

Distribution, seasonal variation and inhalation risks of polychlorinated dibenzo-p-dioxins and dibenzofurans, polychlorinated biphenyls and polybrominated diphenyl ethers in the atmosphere of Beijing, China

  • Yanfen Hao
  • Yingming LiEmail author
  • Thanh Wang
  • Yongbiao Hu
  • Huizhong Sun
  • Julius Matsiko
  • Shucheng Zheng
  • Pu Wang
  • Qinghua Zhang
Original Paper


Spatial distribution, seasonal variation and potential inhalation risks of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) were investigated in the atmosphere of Beijing, using passive air samplers equipped with polyurethane foam disks. Concentrations of ΣPCDD/Fs, ΣPCBs and ΣPBDEs ranged from 8.4 to 179 fg WHO2005-TEQ/m3, 38.6–139 and 1.5–176 pg/m3, respectively. PCDFs showed higher air concentrations than those of PCDDs, indicating the influence of industrial activities and other combustion processes. The non-Aroclor congener, PCB-11, was detected in air (12.3–99.4 pg/m3) and dominated the PCB congener profiles (61.7–71.5% to ∑PCBs). The congener patterns of PBDEs showed signatures from both penta-BDE and octa-BDE products. Levels of PCDD/Fs, PCBs and PBDEs at the industrial and residential sites were higher than those at rural site, indicating human activities in urban area as potential sources. Higher air concentrations of PCDD/Fs, PCBs and PBDEs were observed in summer, which could be associated with atmospheric deposition process, re-volatilization from soil surface and volatilization from use of technical products, respectively. Results of inhalation exposure and cancer risk showed that atmospheric PCDD/Fs, dioxin-like PCBs and PBDEs did not cause high risks to the local residents of Beijing. This study provides further aid in evaluating emission sources, influencing factors and potential inhalation risks of the persistent organic pollutants to human health in mega-cities of China.


PCDD/Fs PCBs PBDEs Passive air sampling Beijing air Seasonal variation Inhalation risk 



This work was jointly funded by National Natural Science Foundation of China (Nos. 21277165, 21477156, 21477155), National Basic Research Program of China (2015CB453101) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB14010100).

Supplementary material

10653_2017_9961_MOESM1_ESM.doc (140 kb)
Supplementary material 1 (DOC 139 kb)


  1. Alcock, R. E., & Jones, K. C. (1996). Dioxins in the environment: a review of trend data. Environmental Science and Technology, 30, 3133–3143. doi: 10.1021/es960306z.CrossRefGoogle Scholar
  2. Besis, A., & Samara, C. (2012). Polybrominated diphenyl ethers (PBDEs) in the indoor and outdoor environments—A review on occurrence and human exposure. Environmental Pollution, 169, 217–229. doi: 10.1016/j.envpol.2012.04.009.CrossRefGoogle Scholar
  3. Birgul, A., Katsoyiannis, A., Gioia, J., Earnshaw, M., Ratola, N., Jones, K. C., et al. (2012). Atmospheric polybrominated diphenyl ethers (PBDEs) in the United Kingdom. Environmental Pollution, 169, 105–111. doi: 10.1016/j.envpol.2012.05.005.CrossRefGoogle Scholar
  4. Cappelletti, N., Astoviza, M., Migoya, M. C., & Colombo, J. C. (2016). Airborne PCDD/F profiles in rural and urban areas of Buenos Aires Province, Argentina. Science of the Total Environment, 573, 1406–1412. doi: 10.1016/j.scitotenv.2016.07.126.CrossRefGoogle Scholar
  5. Cortés, J., Cobo, M., González, C. M., Gómez, C. D., Abalos, M., & Aristizábal, B. H. (2016). Environmental variation of PCDD/Fs and dl-PCBs in two tropical Andean Colombian cities using passive samplers. Science of the Total Environment, 568, 614–623. doi: 10.1016/j.scitotenv.2016.02.094.CrossRefGoogle Scholar
  6. Cortés, J., González, C. M., Morales, L., Abalos, M., Abad, E., & Aristizábal, B. H. (2014). PCDD/PCDF and dl-PCB in the ambient air of a tropical Andean city: Passive and active sampling measurements near industrial and vehicular pollution sources. Science of the Total Environment, 491–492, 67–74. doi: 10.1016/j.scitotenv.2014.01.113.CrossRefGoogle Scholar
  7. Diefenbacher, P. S., Bogdal, C., Gerecke, A. C., Gluege, J., Schmid, P., Scheringer, M., et al. (2015). Emissions of polychlorinated biphenyls in Switzerland: A combination of long-term measurements and modeling. Environmental Science and Technology, 49, 2199–2206. doi: 10.1021/es505242d.CrossRefGoogle Scholar
  8. Diefenbacher, P. S., Gerecke, A. C., Bogdal, C., & Hungerbuehler, K. (2016). Spatial distribution of atmospheric PCBs in Zurich, Switzerland: Do joint sealants still matter? Environmental Science and Technology, 50, 232–239. doi: 10.1021/acs.est.5b04626.CrossRefGoogle Scholar
  9. Ding, L., Li, Y. M., Wang, P., Li, X. M., Zhao, Z. S., Tuan, T., et al. (2013). Spatial concentration, congener profiles and inhalation risk assessment of PCDD/Fs and PCBs in the atmosphere of Tianjin, China. Chinese Sciences Bulletin, 58, 971–978. doi: 10.1007/s11434-013-5694-5.CrossRefGoogle Scholar
  10. Ding, L., Li, Y. M., Wang, P., Li, X. M., Zhao, Z. S., Zhang, Q. H., et al. (2012). Seasonal trend of ambient PCDD/Fs in Tianjin city, northern China using active sampling strategy. Journal of Environmental Sciences-China, 24, 1966–1971. doi: 10.1016/s1001-0742(11)61058-9.CrossRefGoogle Scholar
  11. Domingo, J. L., Rovira, J., Vilavert, M., Nadal, M., Figueras, M. J., & Schuhmacher, M. (2015). Health risks for the population living in the vicinity of an integrated waste management facility: Screening environmental pollutants. Science of the Total Environment, 518–519, 363–370. doi: 10.1016/j.scitotenv.2015.03.010.CrossRefGoogle Scholar
  12. Duan, X. L. (2016). Highlights of the Chinese exposure factors handbook. Time–activity factors related to air exposure (pp. 121–122). China Environmental Science Press (In Chinese).Google Scholar
  13. Estellano, V. H., Pozo, K., Harner, T., Franken, M., & Zaballa, M. (2008). Altitudinal and seasonal variations of persistent organic pollutants in the Bolivian Andes mountains. Environmental Science and Technology, 42, 2528–2534. doi: 10.1021/es702754m.CrossRefGoogle Scholar
  14. Evans, M. S., & Derek C. G. Muir. (2016). Persistent organic contaminants in sediments and biota of great slave lake, Canada: Slave River and long-range atmospheric source influences. Journal of Great Lakes Research, 42, 233–247. doi: 10.1016/j.jglr.2015.12.001.CrossRefGoogle Scholar
  15. Han, Y., Liu, W., Hansen, H. C., Chen, X., Liao, X., Li, H., et al. (2016). Concentrations of and health risks posed by polychlorinated dibenzo-p-dioxins and dibenzofurans around industrial sites in Hebei province, China. Environmental Science and Pollution Research, 23, 18742–18752. doi: 10.1007/s11356-016-7050-1.CrossRefGoogle Scholar
  16. Heo, J., & Lee, G. (2014). Field-measured uptake rates of PCDDs/Fs and dl-PCBs using PUF-disk passive air samplers in Gyeonggi-do, South Korea. Science of the Total Environment, 491, 42–50. doi: 10.1016/j.scitotenv.2014.03.073.CrossRefGoogle Scholar
  17. Hites, R. A. (2011). Dioxins: an overview and history. Environmental Science and Technology, 45, 16–20. doi: 10.1021/es1013664.CrossRefGoogle Scholar
  18. Ho, C. C., Chan, C. C., Chio, C. P., Lai, Y. C., Guo, P., Chang, C., et al. (2016). Source apportionment of mass concentration and inhalation risk with long-term ambient PCDD/Fs measurements in an urban area. Journal of Harzardous Materials, 317, 180–187. doi: 10.1016/j.jhazmat.2016.05.059.CrossRefGoogle Scholar
  19. Hogarh, J. N., Seike, N., Kobara, Y., & Masunaga, S. (2013). Seasonal variation of atmospheric polychlorinated biphenyls and polychlorinated naphthalenes in Japan. Atmospheric Environment, 80, 275–280. doi: 10.1016/j.atmosenv.2013.07.076.CrossRefGoogle Scholar
  20. Holt, E., Kocan, A., Klanova, J., Assefa, A., & Wiberg, K. (2016). Spatiotemporal patterns and potential sources of polychlorinated biphenyl (PCB) contamination in Scots pine (Pinus sylvestris) needles from Europe. Environmental Science and Pollution Research, 23, 19602–19612. doi: 10.1007/s11356-016-7171-6.CrossRefGoogle Scholar
  21. Hu, J., Jin, J., Wang, Y., Ma, Z., & Zheng, W. (2011). Levels of polybrominated diphenyl ethers and hexabromocyclododecane in the atmosphere and tree bark from Beijing, China. Chemosphere, 84, 355–360. doi: 10.4209/aaqr.2012.07.0172.CrossRefGoogle Scholar
  22. Hu, D. F., Martinez, A., & Hornbuckle, K. C. (2008). Discovery of non-aroclor PCB (3,3′-dichlorobiphenyl) in Chicago air. Environmental Science and Technology, 42, 7873–7877. doi: 10.1021/es801823r.CrossRefGoogle Scholar
  23. Hu, J. C., Zheng, M. H., Liu, W. B., Nie, Z. Q., Li, C. L., Liu, G. R., et al. (2014). Characterization of polychlorinated dibenzo-p-dioxins and dibenzofurans, dioxin-like polychlorinated biphenyls, and polychlorinated naphthalenes in the environment surrounding secondary copper and aluminum metallurgical facilities in China. Environmental Pollution, 193, 6–12. doi: 10.1016/j.envpol.2014.06.007.CrossRefGoogle Scholar
  24. Jaward, F. M., Farrar, N. J., Harner, T., Sweetman, A. J., & Jones, K. C. (2004). Passive air sampling of PCBs, PBDEs, and organochlorine pesticides across Europe. Environmental Science and Technology, 38, 34–41. doi: 10.1021/es034705n.CrossRefGoogle Scholar
  25. Jaward, F. M., Farrar, N. J., Harner, T., Sweetman, A. J., & Jones, K. C. (2005). Passive air sampling of polychlorinated biphenyls, organochlorine compounds, and polybrominated diphenyl ethers across Asia. Environmental Science and Technology, 39, 8638–8645. doi: 10.1021/es034705n.CrossRefGoogle Scholar
  26. Klanova, J., Kohoutek, J., Hamplova, L., Urbanova, P., & Holoubek, I. (2006). Passive air sampler as a tool for long-term air pollution monitoring: Part 1. Performance assessment for seasonal and spatial variations. Environmental Pollution, 144, 393–405. doi: 10.1016/j.envpol.2005.12.048.CrossRefGoogle Scholar
  27. Lakshmanan, D., Howell, N. L., Rifai, H. S., & Koenig, L. (2010). Spatial and temporal variation of polychlorinated biphenyls in the Houston ship channel. Chemosphere, 80, 100–112. doi: 10.1016/j.chemosphere.2010.04.014.CrossRefGoogle Scholar
  28. Li, Y. M., Wang, P., Ding, L., Li, X. M., Wang, T., Zhang, Q. H., et al. (2010). Atmospheric distribution of polychlorinated dibenzo-p-dioxins, dibenzofurans and dioxin-like polychlorinated biphenyls around a steel plant area, northeast China. Chemosphere, 79, 253–258. doi: 10.1016/j.chemosphere.2010.01.061.CrossRefGoogle Scholar
  29. Melymuk, L., Robson, M., Helm, P. A., & Diamond, M. L. (2012). PCBs, PBDEs, and PAHs in Toronto air: Spatial and seasonal trends and implications for contaminant transport. Science of the Total Environment, 429, 272–280. doi: 10.1016/j.scitotenv.2012.04.022.CrossRefGoogle Scholar
  30. Mi, H. H., Wu, Z. S., Lin, L. F., Lai, Y. C., Lee, Y. Y., Wang, L. C., et al. (2012). Atmospheric dry deposition of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs) in southern Taiwan. Aerosol Air Qual Res, 12, 1016–1029. doi: 10.4209/aaqr.2012.07.0172.CrossRefGoogle Scholar
  31. Moussaoui, Y., Tuduri, L., Kerchich, Y., Meklati, B. Y., & Eppe, G. (2012). Atmospheric concentrations of PCDD/Fs, dl-PCBs and some pesticides in northern Algeria using passive air sampling. Chemosphere, 88, 270–277. doi: 10.1016/j.chemosphere.2012.02.025.CrossRefGoogle Scholar
  32. Ni, H. G., Lu, S. Y., Mo, T., & Zeng, H. (2016). Brominated flame retardant emissions from the open burning of five plastic wastes and implications for environmental exposure. Environmental Pollution, 214, 70–76. doi: 10.1016/j.envpol.2016.03.049.CrossRefGoogle Scholar
  33. Nost, T. H., Halse, A. K., Randall, S., Borgen, A. R., Schlabach, M., Paul, A., et al. (2015). High Concentrations of organic contaminants in air from ship breaking activities in Chittagong, Bangladesh. Environmental Science and Technology, 49, 11372–11380. doi: 10.1021/acs.est.5b03073.CrossRefGoogle Scholar
  34. Pozo, K., Harner, T., Lee, S. C., Sinha, R. K., Sengupta, B., Loewen, M., et al. (2011). Assessing seasonal and spatial trends of persistent organic pollutants (POPs) in Indian agricultural regions using PUF disk passive air samplers. Environmental Pollution, 159, 646–653. doi: 10.1016/j.envpol.2010.09.025.CrossRefGoogle Scholar
  35. Schuster, J. K., Harner, T., Fillmann, G., Ahrens, L., Altarmirano, J. C., Aristizábal, B., et al. (2015). Assessing polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in air across Latin American countries using polyurethane foam disk passive air samplers. Environmental Science and Technology, 49, 3680–3686. doi: 10.1021/es506071n.CrossRefGoogle Scholar
  36. Shang, H. T., Li, Y. M., Wang, T., Wang, P., Zhang, H. D., & Zhang, Q. H. (2014). The presence of polychlorinated biphenyls in yellow pigment products in China with emphasis on 3,3’-dichlorobiphenyl (PCB11). Chemosphere, 98, 44–50. doi: 10.1016/j.chemosphere.2013.09.075.CrossRefGoogle Scholar
  37. Shen, L., Wania, F., Lei, Y. D., Teixeira, C., Muir, D. C., & Xiao, H. (2006). Polychlorinated biphenyls and polybrominated diphenyl ethers in the north American atmosphere. Environmental Pollution, 144, 434–444. doi: 10.1016/j.envpol.2005.12.054.CrossRefGoogle Scholar
  38. Shin, S. K., Jin, G. Z., Kim, W. I., Kim, B. H., Hwang, S. M., Hong, J. P., et al. (2011). Nationwide monitoring of atmospheric PCDD/Fs and dioxin-like PCBs in south Korea. Chemosphere, 83, 1339–1344. doi: 10.1016/j.chemosphere.2011.03.024.CrossRefGoogle Scholar
  39. Shoeib, M., & Harner, T. (2002). Characterization and comparison of three passive air samplers for persistent organic pollutants. Environmental Science and Technology, 36, 4142–4151. doi: 10.1021/es020635t.CrossRefGoogle Scholar
  40. Soderstrom, G., Sellstrom, U., De Wit, C. A., & Tysklind, M. (2004). Photolytic debromination of decabromodiphenyl ether (BDE 209). Environmental Science and Technology, 38, 127–132. doi: 10.1021/es034682c.CrossRefGoogle Scholar
  41. Song, Y. B., Sung, D. C., Hyokeun, P., Jung, H. K., & Yoon, S. C. (2010). Spatial and seasonal distribution of polychlorinated biphenyls (PCBs) in the vicinity of an iron and steel making plant. Environmental Science and Technology, 44, 3035–3040. doi: 10.1021/es903251h.CrossRefGoogle Scholar
  42. Tian, Y. J., Nie, Z. Q., Tian, S. L., Liu, F., He, J., Yang, Y. F., et al. (2015). Passive air sampling for determining the levels of ambient PCDD/Fs and their seasonal and spatial variations and inhalation risk in Shanghai, China. Environmental Science and Pollution Research, 22, 13243–13250. doi: 10.1007/s11356-015-4552-1.CrossRefGoogle Scholar
  43. Torre Ade, L., Sanz, P., Navarro, I., & Martinez, M. A. (2016). Time trends of persistent organic pollutants in Spanish air. Environmental Pollution, 217, 26–32. doi: 10.1016/j.envpol.2016.01.040.CrossRefGoogle Scholar
  44. UNEP. (2015). Listing of POPs in the Stockholm Convention.
  45. US EPA. (1989). Risk assessment guidance for superfund (RAGS), volume I, part A, office of emergency and remedial response, Washington DC.Google Scholar
  46. Vilavert, L., Nadal, M., Schuhmacher, M., & Domingo, J. L. (2014). Seasonal surveillance of airborne PCDD/Fs, PCBs and PCNs using passive samplers to assess human health risks. Science of the Total Environment, 466–467, 733–740. doi: 10.1016/j.scitotenv.2013.07.124.CrossRefGoogle Scholar
  47. Wang, W., Wang, Y., Zhang, R., Wang, S., Wei, C., Chaemfa, C., et al. (2016a). Seasonal characteristics and current sources of OCPs and PCBs and enantiomeric signatures of chiral OCPs in the atmosphere of Vietnam. Science of the Total Environment, 542, 777–786. doi: 10.1016/j.scitotenv.2015.10.129.CrossRefGoogle Scholar
  48. Wang, C. L., Yang, D. C., Zhang, J. Q., Peng, C. Q., Jiang, Y. S., Zhou, J., et al. (2010). Determination of dioxins and furans in atmosphere of Shenzhen, China. Environ Monitir China, 26, 74–79. (In Chinese)Google Scholar
  49. Wang, Y., Zhang, Y., Schauer, J. J., de Foy, B., Guo, B., & Zhang, Y. (2016b). Relative impact of emissions controls and meteorology on air pollution mitigation associated with the Asia-Pacific economic cooperation (APEC) conference in Beijing, China. Science of the Total Environment, 571, 1467–1476. doi: 10.1016/j.scitotenv.2016.06.215.CrossRefGoogle Scholar
  50. Wcgiel, M., Chrzaszcz, R., Maslanka, A., & Grochowalski, A. (2014). Study on the impact of industrial flue gases on the PCDD/Fs congener profile in ambient air. Chemosphere, 114, 76–83. doi: 10.1016/j.chemosphere.2014.03.104.CrossRefGoogle Scholar
  51. Xu, Q., Zhu, X. H., Henkelmann, B., Schramm, K. W., Chen, J. P., Ni, Y. W., et al. (2013). Simultaneous monitoring of PCB profiles in the urban air of Dalian, China with active and passive samplings. Journal of Environmental Science, 25, 133–143. doi: 10.1016/s1001-0742(12)60030-8.CrossRefGoogle Scholar
  52. Yoonki, M., Jongwon, H., & Meehye, L. (2014). Determination of toxic congeners of 17 PCDDs/PCDFs and 12 dl-PCBs using polyurethane foam passive air samplers in ten cities around Seoul. Science of the Total Environment, 491–492, 17–27. doi: 10.1016/j.scitotenv.2014.04.039.CrossRefGoogle Scholar
  53. Yu, L. P., Mai, B. X., Meng, A. Z., Bi, X. H., Sheng, G. Y., Fu, J. M., et al. (2006). Particle-bound polychlorinated dibenzo-p-dioxins and dibenzofurans in the atmosphere of Guangzhou, China. Atmospheric Environment, 40, 96–108. doi: 10.1016/j.atmosenv.2005.09.038.CrossRefGoogle Scholar
  54. Zhang, G., Chakraborty, P., Li, J., Sampathkumar, P., Balasubramannian, T., Kathiresan, K., et al. (2008). Passive atmospheric sampling of organochlorine pesticides, polychlorinated biphenyls, and polybrominated diphenyl ethers in urban, rural, and wetland sites along the coastal length of India. Environmental Science and Technology, 42, 8218–8223. doi: 10.1021/es8016667.CrossRefGoogle Scholar
  55. Zhang, L. F., Dong, L., Huang, Y. R., Shi, S. X., Yang, W. L., & Zhou, L. (2016). Seasonality in polybrominated diphenyl ether concentrations in the atmosphere of the Yangtze River Delta, China. Chemosphere, 150, 438–444. doi: 10.1016/j.chemosphere.2016.01.001.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Yanfen Hao
    • 1
    • 2
  • Yingming Li
    • 1
    Email author
  • Thanh Wang
    • 3
  • Yongbiao Hu
    • 1
  • Huizhong Sun
    • 1
    • 2
  • Julius Matsiko
    • 1
    • 2
  • Shucheng Zheng
    • 1
    • 2
  • Pu Wang
    • 1
  • Qinghua Zhang
    • 1
    • 2
  1. 1.State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental SciencesChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.MTM Research CenterÖrebro UniversityÖrebroSweden

Personalised recommendations