Environmental Geochemistry and Health

, Volume 40, Issue 1, pp 543–556 | Cite as

Selenium deficiency in subtropical littoral pampas: environmental and dietary aspects

  • N. Mirlean
  • E. R. Seus-Arrache
  • O. Vlasova
Original Paper


Se deficiency has a critical effect on human health. The littoral near Patos Lagoon in the south of Brazil is composed of Quaternary sandy deposits and nutrient-deficient soils, which contribute to Se deficiency in the surrounding environment. The average concentration of Se in littoral soils is six times lower than the metalloid deficiency threshold of 0.5 mg kg−1 and is close to that in countries where Keshan disease is registered. The sediments in the Patos Estuary are also notably lower in Se than near-shore marine sediments. Foodstuffs produced in the littoral pampas are characterised by extremely low Se concentrations compared with the same alimentary products reported worldwide. The total daily dietary intake of Se in the region is 24 μg day−1, which is half the Estimated Average Requirement for adults. Black beans in the local diet provide over 40% of daily Se intake. Prescriptive addition of Se to prevalent products seems the most effective solution to the problem of metalloid dietary deficiency in the region. Similar environmental conditions and significant concentration of the population in the littoral zone suggest that the problem of Se deficiency probably affects a large proportion of the population along the Atlantic coast of Brazil.


Selenium Deficiency Pampas Soil Foodstuff Diet 



Authors are grateful to anonymous reviewers for their valuable comments, which helped in article content improvement. This study was supported by the Brazilian National Research and Technology Development Council (CNPq, Grant 470140/2012-7).


  1. Akl, M. A., Ismael, D. S., & El-Asmy, A. A. (2006). Precipitate flotation-separation, speciation and hydride generation atomic absorption spectrometric determination of selenium (IV) in foodstuffs. Microchemical Journal, 83, 61–69.CrossRefGoogle Scholar
  2. Al-Kunani, A. S., Knight, R., Haswell, S. J., Thompson, J. W., & Lindow, S. W. (2001). The selenium status of women with a history of recurrent miscarriage. British Journal of Obstetrics and Gynaecology, 108, 1094–1097.CrossRefGoogle Scholar
  3. Ambrógi, J. B., Avegliano, R. P., & Maihara, V. A. (2016). Essential element contents in food groups from the second Brazilian total diet study. Journal of Radioanalytical and Nuclear Chemistry, 307, 2209–2216.CrossRefGoogle Scholar
  4. Anttolainen, M., Valsta, L. M., Alfthan, G., Kleemola, P., Salminen, I., & Tamminen, M. (1996). Effect of extreme fish consumption on dietary and plasma antioxidant levels and fatty acid composition. European Journal of Clinical Nutrition, 50, 741–746.Google Scholar
  5. Avegliano, R. P., Maihara, V. A., & Silva, F. F. (2015). Development of the food list for a Brazilian total diet study. Food Science and Technology Campinas, 35, 207–212.CrossRefGoogle Scholar
  6. Barclay, M. N. I., MacPherson, A., & Dixon, J. (1995). Selenium content of a range of UK foods. Journal of Food Composition and Analysis, 8, 307–318.CrossRefGoogle Scholar
  7. Boaventura, G. T., & Cozzolino, S. M. F. (1993). Selenium bioavailability in the regional urban diet of Mato Grosso, Brazil. International Journal of Food Sciences and Nutrition, 43, 223–229.CrossRefGoogle Scholar
  8. Bourre, J. M., & Paquotte, P. (2008). Seafood (wild and farmed) for the elderly: Contribution to the dietary intakes of iodine, selenium, DHA and vitamins B12 and D. The Journal of Nutrition Health and Aging, 12, 186–192.CrossRefGoogle Scholar
  9. Broadley, M. R., White, P. J., & Bryson, R. J. (2006). Biofortification of UK food crops with selenium. Proceedings of the Nutrition Society, 65, 169–181.CrossRefGoogle Scholar
  10. Burger, J., Jeitner, C., & Donio, M. (2013). Mercury and selenium levels, and selenium: mercury molar ratios of brain, muscle and other tissues in bluefish (Pomatomus saltatrix) from New Jersey, USA. Science of the Total Environment, 409, 278–286.CrossRefGoogle Scholar
  11. Capita, R., & Alonso-Calleja, C. (2006). Evaluation of vitamin and mineral intakes and impact of snack foods on Spanish adults. Nutrition Research, 26, 255–265.CrossRefGoogle Scholar
  12. Chariot, P., & Bignani, O. (2003). Skeletal muscle disorders associated with selenium deficiency in humans. Muscle and Nerve, 27, 662–668.CrossRefGoogle Scholar
  13. Cominetti, C., & Cozzolino, S. M. F. (2009). Funções Plenamente Reconhecidas de Nutrientes-Selênio. Brasil: International Life Science Institute. (in Portuguese).Google Scholar
  14. Donovan, U. M., Gibson, R. S., Ferguson, E. L., Ounpuu, S., & Heywood, P. (1992). Selenium intakes of children from Malawi and Papua New Guinea consuming plant-based diet. Journal of Trace Elements and Electrolytes in Health and Disease, 6, 39–43.Google Scholar
  15. El-Ghawi, U. M., Al-Sadeq, A. A., Bejey, M. M., & Alamin, M. B. (2005). Determination of selenium in Libyan food items using pseudo cyclic instrumental neutron activation analysis. Biological Trace Element Research, 107, 61–71.CrossRefGoogle Scholar
  16. El-Ramady, H., Abdalla, N., & Alshaal, T. (2015). Selenium in soils under climate change, implication for human health. Environmental Chemistry Letters, 13, 1–19.CrossRefGoogle Scholar
  17. Fairweather-Tait, S. J., Bao, Y. P., Broadley, M. R., Collings, R., Ford, D., Hesketh, J. E., et al. (2011). Selenium in human health and disease. Antioxidants & Redox Signaling, 14, 1337–1383.CrossRefGoogle Scholar
  18. Fang, W., Wu, P., & Hu, P. (2002). Environmental Se–Mo–B deficiency and its possible effects in Jiantou Keshan Disease Area in Shaanxi Province, China. Environmental Geochemistry and Health, 24, 349–358.CrossRefGoogle Scholar
  19. Fang, W., Wu, P., Hu, R., & Huang, Z. (2003). Environmental Se–Mo–B deficiency and its possible effects on crops and Keshan–Beck Disease (KBD) In the Chousang area, Yao County, Shaanxi Province, China. Environmental Geochemistry and Health, 25, 267–280.CrossRefGoogle Scholar
  20. Farias, C. R., Cardoso, B. R., Oliveira, G. M. B., Mello Guazzelli, I. C., Catarino, R. M., Chammas, M. C., et al. (2015). A randomized-controlled, double-blind study of the impact of selenium supplementation on thyroid autoimmunity and inflammation with focus on the GPx1 genotypes. Journal of Endocrinological Investigation, 38, 1065–1074.CrossRefGoogle Scholar
  21. Ferreira, K. S., Gomes, J. C., Bellato, C. R., & Jordão, C. P. (2002). Concentrações de selênio em alimentos consumidos no Brasil. Revista Panamericana de Salud Pública, 11, 172–179. (in Portuguese).CrossRefGoogle Scholar
  22. Fordyce, F. M., Zhang, G. D., Green, K., & Liu, X. P. (2000). Soil, grain and water chemistry in relation to human selenium-responsive diseases in Enshi District, China. Applied Geochemistry, 15, 117–132.CrossRefGoogle Scholar
  23. Foster, L. H., & Sumar, S. (1997). Selenium in health and disease: A review. Critical Reviews in Food Science and Nutrition, 37, 211–228.CrossRefGoogle Scholar
  24. Frankenberger, J. W. T., & Benson, S. (1994). Selenium in the environment. New York: Marcel Dekker.Google Scholar
  25. Gashu, D., Stoecker, B. J., Adish, A., Haki, G. D., Bougma, K., Aboud, F. E., et al. (2016). Association of serum selenium with thyroxin in severely iodine-deficient young children from the Amhara region of Ethiopia. European Journal of Clinical Nutrition, 70, 929–934.CrossRefGoogle Scholar
  26. Griffiths, N. M. (1973). Dietary intake and urinary excretion of selenium in some New Zealand women. Proceedings of the University of Otago Medical School, 51, 8–9.Google Scholar
  27. Gupta, U. C., & Gupta, S. C. (2000). Selenium in soils and crops, its deficiencies in livestock and humans: Implications for management. Communications in Soil Science and Plant Analysis, 31, 1791–1807.CrossRefGoogle Scholar
  28. Hincal, F. (2007). Trace elements in growth: Iodine and selenium status of Turkish children. Journal of Trace Elements in Medicine and Biology, 21, 40–43.CrossRefGoogle Scholar
  29. Instituto Brasileiro de Geografia e Estatistica (2009). Pesquisa de Orçamentos Familiares.2008–2009. Analise do consumo Alimentar Pessoal no Brasil. (In Portuguese). Accessed 15 Aug 2016.
  30. IUPAC. (1994). Analytical methods committee. Analyst, 119, 16–32.Google Scholar
  31. Jenny-Burri, J., Haldimann, M., & Dudler, V. (2010). Estimation of selenium intake in Switzerland in relation to selected food groups. Food Additives & Contaminants, 27, 1516–1531.CrossRefGoogle Scholar
  32. Kadrabova, J., Madaric, C., & Ginter, E. (1997). The selenium content of selected food from the Slovak Republic. Food Chemistry, 58, 29–32.CrossRefGoogle Scholar
  33. Kehrig, H. A., Seixas, T. G., Beneditto, A. P., & Malm, O. (2013). Selenium and mercury in widely consumed seafood from South Atlantic Ocean. Ecotoxicology and Environmental Safety, 93, 156–162.CrossRefGoogle Scholar
  34. Koehler, J., & Gaertner, R. (2009). Selenium and thyroid. Best Practice & Research in Clinical Rheumatology, 23, 815–827.Google Scholar
  35. Leblanc, J. C., Guérin, T., Noel, L., Calamassi-Tran, G., Volatier, J. L., & Verger, P. (2005). Dietary exposure estimates of 18 elements from the 1st French Total Diet Study. Food Additives & Contaminants, 22, 624–641.CrossRefGoogle Scholar
  36. Lemire, M., Philibert, A., Fillion, M., Passos, C. J. S., Barbosa, F., Jr., Guimarães, J. R., et al. (2010). Elevated levels of selenium in the typical diet of Amazonian riverside populations. Science of the Total Environment, 408, 4076–4084.CrossRefGoogle Scholar
  37. Lemire, M., Philibert, A., Fillion, M., Passos, C. J. S., Guimarães, J. R., Barbosa, F., Jr., et al. (2012). No evidence of selenosis from a selenium-rich diet in the Brazilian Amazon. Environment International, 40, 128–136.CrossRefGoogle Scholar
  38. Lemly, A. D. (1998). Selenium assessment in aquatic ecosystems: A guide for hazard evaluation and water quality criteria. New York: Springer.Google Scholar
  39. Lima, A. P. S., Sarkis, J. E. S., Shihomatsu, H. M., & Muller, R. C. S. (2005). Mercury and selenium concentrations in fish samples from Cachoeira do Piria Municipality, Para State, Brazil. Environmental Research, 97, 236–244.CrossRefGoogle Scholar
  40. Liquiang, X., Sen Wangxing, S., Qinhua, X., Huiming, H., & Schramel, P. (1991). Selenium in Kashin–Beck disease areas. Biological Trace Element Research, 31, 2–9.CrossRefGoogle Scholar
  41. Longnecker, M. P., Taylor, P. R., Levander, O. A., Howe, M., Veillon, C., & McAdam, P. A. (1991). Selenium in diet, blood, and toenails in relation to human health in a seleniferous area. American Journal of Clinical Nutrition, 53, 1288–1294.CrossRefGoogle Scholar
  42. Maihara, V. A., Gonzaga, V. I., Silva, V. I., Favaro, D. I. T., Vasconcellos, M. B. A., & Cozzolino, S. M. F. (2004). Daily dietary selenium intake of selected Brazilian population groups. Journal of Radioanalytical and Nuclear Chemistry, 259, 465–468.CrossRefGoogle Scholar
  43. Marro, N. (1996). The 1994 Australian market basket survey. Canberra: Australian Government Publishing Service.Google Scholar
  44. Martens, I. B. G., Cardoso, B. R., & Hare, D. J. (2015). Selenium status in preschool children receiving a Brazil nut-enriched diet. Nutrition, 31, 1339–1343.CrossRefGoogle Scholar
  45. Marzec, Z. (2004). Alimentary chromium, nickel, and selenium intake of adults in Poland estimated by analysis and calculations using the duplicate portion technique. Food/Nahrung, 48, 47–52.CrossRefGoogle Scholar
  46. Mora, M. L., Duran, P., Acuna, A., Cartes, P., Demanet, R., & Gianfreda, L. (2015). Improving selenium status in plant nutrition and quality. Journal of Soil Science and Plant Nutrition, 15, 486–503.Google Scholar
  47. Murphy, J., & Cashman, K. D. (2001). Selenium content of a range of Irish foods. Food Chemistry, 74, 493–498.CrossRefGoogle Scholar
  48. Mutanen, M., Koivistoinen, P., Morris, V. C., & Levander, O. A. (1986). Nutritional availability to rats of selenium in four sea foods: crab (Callinectes sapidus), oyster (Crassostrea virginica), shrimp (Penaeus duorarum) and Baltic herring (Clupea harengus). British Journal of Nutrition, 55, 219–225.CrossRefGoogle Scholar
  49. Nascimento, S. N., Charão, M. F., Moro, A. M., Roehrs, M., Paniz, C., Baierle, M., et al. (2014). Evaluation of toxic metals and essential elements in children with learning disabilities from a rural area of Southern Brazil. International Journal of Environmental Research and Public Health, 11, 10806–10823.CrossRefGoogle Scholar
  50. National Research Council (NRC). (1977). Drinking Water and Health. Safe Drinking Water Committee, Adviser Center on Toxicology, Assembly of Life Sciences. Washington, DC.: National Academy of Sciences.Google Scholar
  51. National Research Council (NRC). (1980). Recommended Dietary Allowances, 9th ed. Food and Nutrition Board, Committee on Dietary Allowances. Washington, DC: National Academy of Sciences.Google Scholar
  52. National Research Council (NRC). (1983). Risk assessment in the federal government: Managing the process. Washington, DC: National Academy Press.Google Scholar
  53. National Research Council (NRC). (2000). Dietary intakes: For vitamin C, vitamin E, selenium and carotenoides. Washington, DC: National Academy Press.Google Scholar
  54. Navarro-Alarcon, M., & Cabrera-Vique, C. (2008). Selenium in food and the human body. Science of the Total Environment, 400, 115–141.CrossRefGoogle Scholar
  55. Nazemi, L., Nazmara, S., Eshraghyan, M. R., Nasseri, S., & Djafarian, K. (2012). Selenium status in soil, water and essential crops of Iran. Iranian Journal of Environmental Health Science & Engineering, 9, 11–15.CrossRefGoogle Scholar
  56. Nookabkaew, S., Rangkadilok, N., Akib, C. A., Tuntiwigit, N., Saehun, J., & Satayavivad, J. (2013). Evaluation of trace elements in selected foods and dietary intake by young children in Thailand. Food Additives & Contaminants, 6, 55–67.CrossRefGoogle Scholar
  57. Outzen, M., Tjønneland, A., Larsen, E. H., Andersen, K. K., Christensen, J., Overvad, K., et al. (2015). The effect on selenium concentrations of a randomized intervention with fish and mussels in a population with relatively low habitual dietary selenium intake. Nutrients, 7, 608–624.CrossRefGoogle Scholar
  58. Özden, Ö., & Erkan, N. (2011). A preliminary study of amino acid and mineral profiles of important and estimable 21 seafood species. British Food Journal, 113, 457–469.CrossRefGoogle Scholar
  59. Pappa, E. C., Pappa, A. C., & Surai, P. F. (2006). Selenium content in selected foods from the Greek market and estimation of the daily intake. Science of the Total Environment, 372, 100–108.CrossRefGoogle Scholar
  60. Plant, J. A., Kinniburgh, D. G., Smedley, P. L., Fordyce, F. M., & Klinck, B. A. (2005). Arsenic and Selenium. In B. Sherwood Lollar, H. D. Holland, & K. K. Turekian (Eds.), Environmental geochemistry (Vol. 9, pp. 17–67). New York: Elsevier.Google Scholar
  61. Rayman, M. P. (2012). Selenium and human health. Lancet, 379, 1256–1268.CrossRefGoogle Scholar
  62. Robberecht, H. J., Hendrix, P., Van Cauwenbergh, R., & Deelstra, H. A. (1994). Actual dietary intake of selenium in Belgium, using duplicate portion sampling. Zeitschrift für Le0bensmittel-Untersuchung und -Forschung, 199, 251–254.CrossRefGoogle Scholar
  63. Rocha, A. V., Cardoso, B. R., & Cominetti, C. R. (2014). Selenium status and hair mercury levels in riverine children from Rondonia, Amazonia. Nutrition, 30, 1318–1323.CrossRefGoogle Scholar
  64. Ros, G. H., van Rotterdam, A. M. D., Bussink, D. W., & Bindraban, P. S. (2016). Selenium fertilization strategies for bio-fortification of food: an agro-ecosystem approach. Plant and Soil, 404, 99–112.CrossRefGoogle Scholar
  65. Rybicka, I., Krawczyk, M., Stanisz, E., & Gliszczyńska-Świglo, A. (2015). Selenium in gluten-free products. Plant Foods for Human Nutrition, 70, 128–134.CrossRefGoogle Scholar
  66. Schneider, L., Maher, W., & Potts, J. (2015). Use of a multi-proxy method to support the restoration of estuaries receiving inputs from industry. Ecological Engineering, 85, 247–256.CrossRefGoogle Scholar
  67. Schrauzer, G. N. (2009). Selenium and selenium-antagonistic elements in nutritional cancer prevention. Critical Reviews in Biotechnology, 29, 10–17.CrossRefGoogle Scholar
  68. Shortt, C. T., Duthie, G. G., Robertson, J. D., Morrice, P. C., Nicol, F., & Arthur, J. R. (1997). Selenium status of a group of Scottish adults. European Journal of Clinical Nutrition, 51, 400–404.CrossRefGoogle Scholar
  69. Singh, V., & Garg, A. N. (2006). Availability of essential trace elements in Indian cereals, vegetables and spices using INAA and the contribution of spices to daily dietary intake. Food Chemistry, 94, 81–89.CrossRefGoogle Scholar
  70. Streck, E. V. (2002). Solos do Rio Grande do Sul. Porto Alegre: UFRGS. (in Portuguese).Google Scholar
  71. Takematsu, N., Sato, Y., Kato, Y., & Okabe, S. (1993). Factors regulating the distribution of elements in marine sediments predicted by a simulation model. Journal of Oceanography, 49, 425–441.CrossRefGoogle Scholar
  72. Tan, J. A., Zhu, W. Y., & Wang, W. Y. (2002). Selenium in soil and endemic diseases in China. Science of the Total Environment, 284, 227–235.CrossRefGoogle Scholar
  73. Tinggi, U. (1999). Determination of selenium in meat products by hydride generation atomic absorption spectrophotometry. Journal of AOAC International, 82, 364–367.Google Scholar
  74. Tomazelli, L. J., Dillenburg, S. R., & Villwock, J. A. (2000). Late Quaternary geological history of Rio Grande do Sul coastal plain, southern Brazil. Revista Brasileira de Geociencias, 30, 474–476.Google Scholar
  75. Turner, A. (2013). Selenium in sediments and biota from estuaries of southwest England. Marine Pollution Bulletin, 73, 192–198.CrossRefGoogle Scholar
  76. United States Department of Agriculture (USDA). (1999). Nutrient database for standard reference release 13. Nutrient data laboratory homepage on the World Wide Web. Accessed 01 Oct 2016.
  77. United States Environmental Protection Agency (USEPA). (2007). Microwave assisted acid digestion of sediments sludge, soils, and oils. EPA: 3051a.Google Scholar
  78. United States Environmental Protection Agency (USEPA). (2014). Microwave assisted acid digestion of siliceous and organically based matrices. EPA: 3052.Google Scholar
  79. US Institute of Medicine (IOM). (2000). Dietary reference intakes for vitamin C, vitamin E, selenium and carotenoids. Washington, DC: National Academy.Google Scholar
  80. Valentine, J. L., Cebrian, M. E., Garcia, G., & Faraji, B. (1994). Daily selenium intake estimates for residents of arsenic-endemic areas. Environmental Research, 64, 1–9.CrossRefGoogle Scholar
  81. Varo, P., Alfthan, G., Huttunen, J. K., & Aro, A. (1994). Nationwide selenium supplementation in Finland—Effects on diet, blood and tissue levels, and health. In R. F. Burk (Ed.), Selenium in biology and human health (pp. 197–218). New York: Springer.CrossRefGoogle Scholar
  82. Ventura, M. G., Freitas, M. C., & Pacheco, A. M. G. (2009). Determination of selenium daily intakes in two small groups of the Portuguese population by replicate sample neutron activation analysis. Journal of Radioanalytical and Nuclear Chemistry, 281, 193–196.CrossRefGoogle Scholar
  83. World Health Organization (WHO). Selenium in Drinking-water. Background document for development of WHO Guidelines for Drinking-water Quality, 2011. Web. (acessed 14.03.2017).
  84. Wu, Z., Bañuelos, G. S., Lin, Z.-Q., Liu, Y., Yuan, L., Yin, X., et al. (2015). Biofortification and phytoremediation of selenium in China. Frontiers in plant science, 6, 136.Google Scholar
  85. Yadav, S. K., Singh, I., Singh, D., & Han, S. D. (2005). Selenium status in soils of northern districts of India. Journal of Environmental Management, 75, 129–132.CrossRefGoogle Scholar
  86. Yamada, H., Kamada, A., Usuki, M., & Yanai, J. (2009). Total selenium content of agricultural soils in Japan. Soil Science and Plant Nutrition, 55, 616–622.CrossRefGoogle Scholar
  87. Yang, G., Wang, S., Zhou, R., & Sun, S. (1983). Endemic selenium intoxication of humans in China. American Journal of Clinical Nutrition, 37, 872–877.CrossRefGoogle Scholar
  88. Yang, G. Q., Zhu, L. Z., Liu, S. J., Gu, L. Z., Qian, P. C., Huang, J. H., et al. (1987). Human selenium requirements in China. In G. F. Combs Jr., O. A. Levander, J. E. Spallholz, & J. E. Oldfield (Eds.), Selenium in biology and medicine (pp. 589–607). New York: Springer.Google Scholar
  89. Ysart, G., Miller, P., Crews, H., Robb, P., Baxter, M., DeL’ Argy, C., et al. (1999). Dietary exposure estimates of 30 elements from the UK Total Diet Study. Food Additives & Contaminants, 16, 391–403.CrossRefGoogle Scholar
  90. Yu, D., Liang, D., Lei, L., Zhang, R., Sun, X., & Lin, Z. (2015). Selenium geochemical distribution in the environment and predicted human daily dietary intake in northeastern Qinghai, China. Environmental Science and Pollution Research, 22, 1224–1235.Google Scholar
  91. Yuyama, L. K. O., & Cozzolino, S. M. F. (1995). Determinação dos teores de Zn, Fe, Ca, Se, Cu, K, Mg e Mn na dieta regional de Manaus, AM. Revista do Instituto Adolfo Lutz, 55, 45–50.Google Scholar
  92. Zhang, M. L. C., Ding, X., & Cao, C. W. (2003). Optimization for preservation of selenium in sweet pepper under low-vacuum dehydration. Drying Technology, 21, 569–579.CrossRefGoogle Scholar
  93. Zhang, C., Qiu, G., Anderson, C. W. N., Zhang, H., Meng, B., Liang, L., et al. (2015). Effect of atmospheric mercury deposition on selenium accumulation in rice(Oryza sativa L.) at a mercury mining region in Southwestern China. Environmental Science and Technology, 49, 3540–3547.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Oceanography Institute, Marine Geology LaboratoryFederal University of Rio GrandeRio GrandeBrazil
  2. 2.Nishny Novgorod State Technical UniversityNizhny NovgorodRussian Federation

Personalised recommendations